
Optimization Techniques for Laser-Based 3D Particle Filter SLAM

Jochen Welle, Dirk Schulz, Thomas Bachran
Fraunhofer FKIE

Neuenahrer Straße 20, D-53343 Wachtberg
{jochen.welle, dirk.schulz, thomas.bachran}@fkie.fraunhofer.de

Armin B. Cremers
Institute of Computer Science III

University of Bonn
Römerstraße 164, D-53117 Bonn

abc@iai.uni-bonn.de

Abstract— In recent years multiple simultaneous localization
and mapping (SLAM) algorithms have been proposed, which
address the challenges of 3D environments in combination
with six degress of freedom in the robot position. Commonly,
solutions based on scan-matching algorithms are applied. In
contrast to these approaches, we propose to use a particle
filter transferring the concept of the 2D Rao-Blackwellized
particle filter SLAM to 3D. As filter input, 3D laser range
data and odometry readings are obtained while the robot is
in motion. The ground plane is estimated based on previously
built map parts, thereby approaching the problem that not
all degrees of freedom are covered by the odometry. To gain
control of the high memory requirements for the particles’ 3D
map representations, we introduce a memory efficient search
structure and adapt a technique to efficiently organize and
share maps between particles. We evaluate our approach based
on experimental results obtained by simulation as well as
measurements of a real robot system.

I. INTRODUCTION

The availability of an environmental map is essential for
many tasks of a mobile robot system. Thus, building and
maintaining a map based on sensor information is a key
ability. In order to integrate new sensor information into an
existing map the robot position needs to be known. How-
ever, the robot position estimate depends on the previously
collected map information. Due to this mutual dependency,
an error in the robot position estimate has a direct impact
on the map consistency, while a mapping error influences
the accuracy of the robot location estimate. This problem is
known as simultaneous localization and mapping (SLAM)
and has been addressed by a lot of researchers.

Early SLAM approaches have been applied for 2D map
building in flat indoor environments. While 2D maps are
often sufficient for this simple type of environment, more
recent approaches address the challenge of non-flat, indoor
and outdoor environments by using 3D sensor information
and building 3D maps. One method is to apply the well-
known scan-matching paradigm to 3D [1], [2], [3]. In con-
trast to these methods, we follow a different approach and
apply the particle filter paradigm, which has been explored
for 2D SLAM in [4], [5], [6], [7], [8]. We transfer the
particle filter concept to the 3D environment and support six
degrees of freedom in the robot movement. Our approach
uses 3D laser scans and odometry information. A special
feature is the support for robot mobility, while a 3D laser
scan is performed. Some 3D approaches like [1] suffer
from the need to stop during a laser scan. To counter this

Fig. 1. Our robot platform: Pioneer P3-AT, which carries a SICK LMS
laser range scanner mounted vertically on a rotating disk. Image courtesy
of Timo Röhling.

problem, additional sensor information can be used [3], but
this solution is not considered in this paper. Instead, the usage
of a particle filter allows to process the data acquired while
the robot moves, without the need to first combine it into
local maps.

When transferring the particle filter approach to 3D, a
higher number of particles is required due to the addi-
tional three dimensions in the robot state (z location and
pitch and roll angles). This increases runtime and memory
consumption. To reduce this impact, we include the col-
lected environmental map in the robots motion model. We
thereby restrict the number of possible robot positions and
compensate the lack of additional sensors to determine all
degrees of freedom. In combination with the higher number
of required particles, the more complex map built for each
particle dramatically increases the memory consumption.
In our solution we developed a memory efficient search
structure based on an Octree [9] and using delta encoding to
reduce this effect. In addition, we adopt a technique to share
submaps between different particles if they have a common
history. This idea was implemented for 2D maps by Eliazar
and Parr in the DP-SLAM algorithm [8].

This paper is organized as follows. First, in section II,
we briefly introduce the particle filter concept and some
related work. We present our extensions to the basic particle
filter concept, i. e. the improved motion model including
a ground plane estimation and the modified weighting of

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3525

the particles, which is used for the resampling strategy
to concentrate on the most probable particles. Afterwards,
in section III, we describe the map represenation and the
method applied to control its memory consumption. The
experimental evaluation based on results on simulation and
real robot measurements, obtained with our robot system
shown in figure 1, is presented in section IV. Finally we
conclude the paper in section V.

II. PARTICLE FILTER SLAM
For the SLAM problem, a map m and robot positions

(including orientations) x1:t = x1, .., xt are sought, which
best explain the input information given by odometry mea-
surements u1:t and distance measurements z1:t of the envi-
ronment. Since the input data does not cover all required
information and may be erroneous, the real map and po-
sitions are usually described by a probability distribution
P(x1:t,m|z1:t, u1:t).

Murphy, Doucet et al. [10], [11] determine this distribution
by introducing the Rao-Blackwellized particle filter (RBPF).
Particle filters are sequential monte carlo methods. The basic
idea is to approximate a probability distribution with a
set of samples, called particles. This set is updated if a
new filter input alters the probability distribution. Since a
direct approximation of P(x1:t,m|z1:t, u1:t) using a particle
filter would be inefficient, their key idea is to split up the
distribution:

P(x1:t,m|z1:t, u1:t) = P(m|x1:t, z1:t) P(x1:t|z1:t, u1:t) (1)

First, the robot positions P(x1:t|z1:t, u1:t) are approximated
by a particle filter. Here, each particle represents one possible
robot trajectory. Second, the probability distribution for the
map P(m|x1:t, z1:t) is calculated conditioned on the robot
positions. Thus, conventional solutions to solve the mapping
problem can be applied. A characteristic of this approach is
that a map has to be maintained for each particle.

The particle filter incrementally updates the robot trajec-
tories of all particles based on new pairs of odometry and
distance measurements (ut, zt). An update step from time
t− 1 to t is performed in four steps:
(1) For each particle i a new position x

(i)
t is sampled

from a proposal distribution π. Usually π specifies the
assumptions about possible robot movements.

(2) The importance weight w
(i)
t is computed for each

particle i according to the mismatch between proposal
and target distribution:

w
(i)
t =

P(x(i)
1:t|z1:t, u1:t)

π(x(i)
1:t|z1:t, u1:t)

. (2)

(3) In the resampling step, a new set of particles is drawn
with repetition from the old set. The sampling is done
proportional to the particle weight w(i)

t . The weights of
the particles in the new set are initialized to one. Due
to the resampling, the filter assigns more particles to
trajectories, which are underestimated by the proposal
distribution in comparison to the target distribution.
Particles which are overestimated may be removed.

(4) The map m(i)
t of each particle i is updated based upon

the new distance measurement zt and robot positions
x

(i)
t .

The particle filter concept presented so far has undergone
several modifications over time. Montemerlo et al. [4] were
first to realize the approach on real robots, based on the
ideas of Murphy and Doucet. They developed a landmark-
based SLAM algorithm, called FastSLAM. Hähnel et al. [5]
modified the FastSLAM algorithm by introducing grid maps
and combining it with scan matching to compute improved
odometry measurements with the goal to reduce the number
of particles. Stachniss et al. [6] continued the work of Hähnel
et al. Based on a scan-matching process, which is carried out
once per particle, they compute a Gaussian distribution to
approximate the optimal proposal distribution. Furthermore,
they introduce an intelligent resampling technique to reduce
the number of resampling operations. Grisetti et al. [7]
concentrate on computational speed and memory efficiency
aspects. They reuse an already computed proposal distribu-
tion and provide a compact map model. Parallel to the work
of Hähnel et al. Eliazar and Parr [8] developed a different
grid map based RBPF and described a memory efficient map
representation. By maintaining an ancestry tree of particles
and storing an observation tree in each grid map cell, they
achieve a compact representation of the map hypotheses.

A. Motion Model with Ground Plane Estimation
In the first particle filter step the proposal distribution is

used to determine the new robot position. To allow efficient,
incremental processing, the distribution is commonly trans-
ferred into a recursive form:

π(x1:t|z1:t, u1:t) = π(xt|x1:t−1, z1:t, u1:t)
π(x1:t−1|z1:t−1, u1:t−1). (3)

A frequent choice for π(xt|x1:t−1, z1:t, u1:t) is the odom-
etry motion model P(xt|xt−1, ut) [12]. However, in 3D non-
planar environments not all relevant degrees of freedom
are considered. Especially changes of the ground plane, on
which the robot is moving, can lead to large mismatches
between target and proposal distributions. These mismatches
result in a higher demand of particles to approximate the
target distribution with sufficient quality, thereby increasing
run-time and memory requirements. To counter this effect,
we consider the ground plane, which can be calculated
from previously acquired measurements z1:t−1 and positions
x1:t−1. This information is available in the currently known
map mt−1, resulting in our motion model:

P(xt|xt−1, ut,mt−1). (4)

As ground plane, we determine the regression plane of the
nearest neighbor points around the current particle position.
This plane is calculated using singular value decomposition
and then perturbed with a Gaussian error. A new particle
position is obtained in that plane by sampling from the odom-
etry motion model. For future work we plan to include the
latest measurement zt to improve the proposal distribution,
but omit it for now to simplify calculations.

3526

B. Weighting Particles

The weighting of particles is an important prerequisite
to determine the most likely trajectories and for selecting
adequate trajectories in the resampling step. Based on equa-
tion (2), the weight is given by:

w
(i)
t =

P(x(i)
1:t|z1:t, u1:t)

π(x(i)
1:t|z1:t, u1:t)

=
P(zt|x(i)

1:t, z1:t−1, u1:t) P(x(i)
1:t|z1:t−1, u1:t)

P(zt|z1:t−1, u1:t)π(x(i)
1:t|z1:t, u1:t)

. (5)

(3)
= η

P(zt|x(i)
1:t, z1:t−1, u1:t) P(x(i)

t |x
(i)
1:t−1, z1:t−1, u1:t)

π(x(i)
t |x

(i)
1:t−1, z1:t, u1:t)

·
P(x(i)

1:t−1|z1:t−1, u1:t−1)

π(x(i)
1:t−1|z1:t−1, u1:t−1)︸ ︷︷ ︸

w
(i)
t−1

. (6)

The common Markov assumption in 2D SLAM algorithms
P(xt|x1:t−1, z1:t−1, u1:t) = P(xt|xt−1, ut) is not satisfied
here. ut only measures the movement on the surface and
does not give any information about surface changes. Thus,
xt also depends on x1:t−1, z1:t−1, for which the map mt−1

is assumed as a sufficient statistic:

w
(i)
t ∝ w

(i)
t−1 · P(zt|x(i)

t ,m
(i)
t−1)

P(x(i)
t |x

(i)
t−1,mt−1, ut)

π(x(i)
t |x

(i)
1:t−1, z1:t, u1:t)

.

(7)
Inserting the motion model from section II-A, we obtain:

w
(i)
t ∝ P(zt|x(i)

t ,m
(i)
t−1)

P(x(i)
t |x

(i)
t−1,mt−1, ut)

P(x(i)
t |x

(i)
t−1,m

(i)
t−1, ut)

· w(i)
t−1

= P(zt|x(i)
t ,m

(i)
t−1) · w(i)

t−1 . (8)

Hence, the weight is calculated according to the measure-
ment model. In our work, we use a model similar to the
likelihood-field model of [12].

C. Resampling

The resampling step of the particle filter avoids degener-
ation effects. By avoiding a major number of particles with
low importance weights, it renders the approximation of the
target distribution with a limited number of particles possible.
A drawback of resampling is, that if it is performed too
often, e. g. for every particle filter iteration, the filter may
concentrate on too few different trajectories.

Due to the counteractive effects of frequent and infrequent
resampling Stachniss et al. [6] suggested a criterion whether
a resampling step should be carried out or not. For the
decision, they estimate the effective number of particles
Neff and compare it to the real number of particles Np.
The basic idea behind Neff is that, if the approximation
of the target distribution is exact, the importance weights
would be equal to each other. Neff is then equal to Np. The
higher the variance in the importance weights, the worse is
the approximation of the target distribution and the lower
is the effective number of particles. If Neff falls under a

certain threshold, in our case Np/2, a resampling step is
performed, effectively resetting Neff to Np. To make Neff

comparable to a number of particles, Grisetti et al. [13]
use the normalized importance weights w̃(i)

t instead of the
importance weights w(i)

t to determine Neff :

Neff =
1∑Np

i=1

(
w̃

(i)
t

)2 . (9)

III. MAP REPRESENTATION AND ORGANIZATION

In RBPF-SLAM each particle carries its own map, derived
from the trajectory of the particle and the measurements of
the environment. Fairfield et al. [14] extend the grid map par-
ticle filter SLAM for an underwater robot to 3D grid maps.
Due to the high memory requirements of 3D grid maps, their
approach does not scale very well with respect to particle
number and map resolution. In our outdoor scenario with a
desired resolution of 10 cm3 we would require 400 MB per
particle, resulting in a total of 400 GB with 1.000 particles.
Since 3D environments mainly consist of open space, a lot of
grid cells are unused. To avoid this inefficient encoding, we
use simple point clouds to represent the maps. The points are
organized in search structures to allow efficient neighborhood
queries, used in the measurement model and the estimation of
the ground planes. Except for simple scenarios which require
only a small number of particles, the memory requirements
of one complete map for each particle are still too high. We
therefore adapt the efficient map organization of Eliazar and
Parr [8] to 3D maps and introduce a memory efficient search
structure.

Eliazar and Parr organize the maps by introducing an addi-
tional data structure, the ancestry tree. During the resampling
step, particles may be removed or duplicated. If particles are
duplicated, they share a common history and consequently a
common submap. To address these circumstances and limit
the map information, the evolution of particles is stored in the
ancestry tree. The tree is held minimal by pruning tree nodes
without any children in the current generation of particles.
Additionally, if nodes have only one child, they are merged
with their child. Eliazar and Parr maintain a single grid map
for all particles instead of assigning a map to each particle.
In their grid map, a single grid cell may contain information
for multiple particles which have made changes to the cell.

In contrast to this approach, we store a submap, which
consists of the changes to the parent map, in each node of the
ancestry tree. If the resampling step does not remove any par-
ticles, the memory consumption is not improved compared
to the naive approach. However, this worst case is highly
unlikely and in common scenarios large map parts are shared
among different particles. Besides the memory reduction the
method greatly improves the resampling performance, since
maps need not to be copied when particles are duplicated.

Usually kd-trees are used for fast nearest neighbor
searches. Contrary, we developed a search structure based
on an octree [9], which we call DeltaOctree. An octree is a
tree structure in which each inner node has eight children that
equally subdivide the node’s volume into octants. The root

3527

 0

 50

 100

 150

 200

 250

 300

 350

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 i
n

 m
b

number of points in million

ANN
KdTree2

DeltaOctree
points

Fig. 2. Comparing the memory consumption of the DeltaOctree with the
kd-trees ANN and KdTree2 and to the point list without any search structure.

node represents a cube containing the whole environment
and the leaf nodes hold the points. To decrease memory
consumption, the following three methods are applied:
• Delta Compression: Adopting the idea of storing data

in form of differences between data records, we store
points relative to the center of their octant. Depending
on the depth in the tree and the required precision ν,
it is possible to store a point with one or two bytes
per coordinate. Compared to storing data without delta
compression and using four bytes for a 32-bit floating
point number per coordinate, the reduction of memory
consumption is considerable. This method was the main
reason for choosing an octree as base structure, since it
is not as easily applied to data structures without fixed
space subdivision, e.g. kd-trees. The reduced precision
can yield a distance error in nearest neighbor calcula-
tions of up to

√
3ν.

• Resolution Limit: The map is limited to a fixed res-
olution, to avoid storing multiple measurement points
in close vicinity to each other, which does not give
additional information about the environment. The re-
striction of the map resolution is realized by introducing
a minimal edge length emin and a maximum number
of points per octant no. Octants with edge length emin

are not further subdivided. The resolution limit can in-
troduce a distance error in nearest neighbor calculations
of up to

√
3emin.

• Overhead Reduction: We reduced the overhead by not
storing any redundant information like the center and
the edge length of an octant, which can be calculated
during tree traversal. Furthermore, we decreased mem-
ory management overhead by allocating memory blocks
for several nodes at once.

In addition to the savings in memory consumption our
DeltaOctree provides an insert operation to add new points.
Kd-trees like ANN [15] and KdTree2 [16] lack such an
operation and need to be rebuild to include new points.

In our scenarios we used no = 8, emin = 5 cm and
ν = 1 mm. In comparison to the kd-tree implementations

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

e
rr

o
r

e
tr
*

in
 m

2

number of particles

error etr*
standard deviation

Fig. 3. Mean and standard deviation of e∗tr in scenario 1 with different
numbers of particles.

TABLE I
DETAILS OF THE SCENARIOS.

Scenario area distance scans rec. time
1 simulated 79m x 34m 181m ≈ 20000 5 min
2 real 105m x 100m 385m ≈ 69000 26 min

the nearest neighbor query time of our structure is about
doubled, but we achieved a significant reduction in memory
consumption. The search structure overhead was reduced by
a factor of three to six compared to the kd-tree implemen-
tations. In figure 2, the overall memory consumption of the
search structures is presented. The tested kd-trees dramati-
cally increase the memory consumption in comparison to the
point list without any search structure. In contrast to the kd-
trees, the overhead of our DeltaOctree is negligible. In some
situations it may even consume less memory than the point
list. Thus, choosing the appropriate data structure comprises
a trade-off between memory consumption and run-time. We
focused on lower memory consumption, to be able to apply
the system to larger scenarios.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We carried out experiments on real robots as well as in
simulation. The robot platform is a Pioneer P3-AT, which
carries a SICK LMS laser range scanner mounted vertically
on a rotating disk, see figure 1. The simulator Gazebo was
used for simulations. Our SLAM system was successfully
applied in multiple different scenarios. For presentation in

TABLE II
RUNTIME AND MEMORY CONSUMPTION ON A 2GHZ DUAL CORE

NOTEBOOK WITH 2GB MEMORY. A = ANN, K = KDTREE2, D =
DELTAOCTREE, D2 WITH TWO THREADS

Scn. time (min) memory (MB)
Np A K D D2 A K D

1 40 4:41 4:06 5:49 2:40 211 161 85
2 100 32 30 31 16 814 626 246
2 200 68 59 69 34 1438 1129 372
2 300 - 99 109 57 - 1715 503
2 1000 - - 419 234 - - 1377

3528

Fig. 4. 3D-View on the corrected map of scenario 1.

this section, we selected two of them. First, the simulation
of a simple indoor environment (scenario 1) and second,
an experiment on a real robot in an outdoor environment
(scenario 2). Table I shows some details of the experiments.

In simulation, the ground truth trajectory of the robot is
known and a trajectory error etr can be calculated for each
particle:

e
(i)
tr =

1
T

T∑
t=1

|p(i)
t − p̄t|2 (10)

In this equation, T specifies the number of robot positions
x

(i)
t , i. e. the number of iterations. p(i)

t = (x, y, z)T are
the ith particle’s robot positions without the orientations,
and p̄t = (x̄, ȳ, z̄)T are the corresponding ground truth
coordinates. Since the orientations influence future positions,
the orientation errors are indirectly present in etr. We refer to
the trajectory error of the best rated particle, i. e. the particle
with the highest importance weight in the last iteration, as
e∗tr. Figure 3 shows the mean and standard deviation of e∗tr
in scenario 1, calculated over 70-80 runs per particle number.
As the number of particles is increased, the trajectory error of
the best rated trajectory decreases. This trend continues up to
50 particles, where it stays on the same level. The remaining
error results from small rotational errors in the first part of
the trajectory. These errors further propagate until the robot
reenters previously measured terrain.

As we observed, the trajectory error is only a rough
estimate to determine the quality of the resulting map. A
challenging task for the particle filter is to close the loop
in our scenario. For low particle numbers the particle filter
was able to decrease the trajectory error but the loop was
not successfully closed. In order to check whether a built
map was consistent or not, we manually assessed all maps.
Figure 4 shows a 3D view of a consistent map. Loop
closing was usually successful for 40 or more particles. For
comparison, figure 5(a) shows the map build based on pure
odometry data and figure 5(b) a consistent map result of the
particle filter.

In the second experiment, we circled around the cafeteria
of the Institute of Computer Science of the University of

Bonn using a real robot system. Figure 6(a) shows the
map result calculated using the odometry trajectory. Again,
the loop around the cafeteria was not successfully closed,
resulting in an inconsistent map. For the particle filter loop
closing was achieved, but we observed that errors in the
absolute elevation and pitch of the calculated trajectory
remain in areas traveled only once by the robot. These
errors result from propagated local errors in the ground plane
estimation. When the robot reenters known terrain and the
loop is closed the elevation and pitch are corrected, resulting
in a consistent map. Figure 6(b) shows a consistent map
using the particle filter with 1.000 particles. In contrast to
the simulation environment a higher number of particles is
required. This was expected, since our real outdoor environ-
ment is more unstructured due to the vegetation and fewer
walls and ceilings bounding the area. Furthermore, the larger
area and the larger loop complicate the map building. In such
a complex environment the particle filter calculations could
not be done online anymore on a 2Ghz dual core system
with 2GB memory. Table II shows the runtime and memory
requirements of our system. For comparison the system
was implemented with our proposed DeltaOctree (single and
multi threaded) and the kd-trees ANN and KdTree2. The out-
door environment could not be processed with 1.000 particles
using the kd-trees, because memory requirements exceeded
the actual available resources. Therefore, the experiments
were also performed with less particles, even though the
resulting maps were inconsistent. As one can see the memory
savings are considerable, whereas the runtime increase is
not as big as the doubled query time for our DeltaOctree
suggests. This results mainly from the insert operation, which
the kd-trees lack.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach for the
SLAM problem in 3D. We applied the particle filter paradigm
known from 2D solutions to a mobile robot system having
six degrees of freedom in a 3D environment. Our goal
was to create a feasible solution concerning the runtime
and memory consumption aspects and counter the effects
of higher complexity compared to 2D solutions. For this
purpose it was crucial to limit the number of particles and
the memory consumption of the particles. In our solution
the number of required particles was reduced by the robot’s
ground plane estimation. The memory consumption was
controlled by using a special DeltaOctree data structure
for map representation and by sharing map parts between
particles which have a common history. We carried out
multiple experiments in simulation as well as on real robots
to test the performance of our approach. It was shown that
our particle filter can successfully build 3D maps of non-
planar environments, even if the robot platform is in motion
while the sensor information is acquired.

Improvements are possible in the ground plane estimation
with a calculation which considers more than the local area
around the robot. Supplementary the usage of additional
sensors to measure the remaining degrees of freedom in

3529

(a) (b)

Fig. 5. Birds eye view of scenario 1. (a) Odometry trajectory and resulting map. (b) Corrected map obtained with 40 particles.

(a) (b)

Fig. 6. Scenario 2: (a) Map resulting from odometry trajectory. The marked walls should overlap. (b) Map of the best rated particle of a run calculated
with 1.000 particles.

the robot position would be beneficial and could further
reduce the number of required particles. Another approach
to reduce the number of particles would be to incorporate
laser measurements in the particle generation process as in
[5] or [6].

REFERENCES

[1] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
- 3D mapping outdoor environments,” Journal of Field Robotics (JFR),
Special Issue on Quantitative Performance Evaluation of Robotic and
Intelligent Systems, vol. 24, pp. 699 – 722, Sept 2007.

[2] D. Cole and P. M. Newman, “Using laser range data for 3d SLAM in
outdoor environments,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), Orlando Florida USA, May 2006, pp. 1556–
1563.

[3] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, and W. B. Rol, “Towards
mapping of cities,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2007.

[4] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem,” in Proc. of the AAAI National Conf. on Artificial Intelligence.
Edmonton, Canada: AAAI, 2002.

[5] D. Hähnel, D. Fox, W. Burgard, and S. Thrun, “A highly efficient
FastSLAM algorithm for generating cyclic maps of large-scale envi-
ronments from raw laser range measurements,” in Proc. of the Conf.
on Intelligent Robots and Systems (IROS), 2003.

[6] C. Stachniss, G. Grisetti, D. Hähnel, and W. Burgard, “Improved rao-
blackwellized mapping by adaptive sampling and active loop-closure,”
Ilmenau, Germany, 2004, pp. 1–15.

[7] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi,
“Fast and accurate slam with rao-blackwellized particle filters,”
Robotics and Autonomous Systems, vol. 55, no. 1, pp. 30–38, 2007.

[8] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simultaneous localiza-
tion and mapping without predetermined landmarks,” in Proc. 18th Int.
Joint Conf. on Artificial Intelligence (IJCAI-03). Morgan Kaufmann,
2003, pp. 1135–1142.

[9] H. Samet, “Spatial data structures,” in Modern Database Systems, The
Object Model, Interoperability and Beyond. Addison-Wesley, 1995,
pp. 361–385.

[10] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, “Rao-
blackwellised particle filtering for dynamic bayesian networks,” in UAI
’00 (Uncertainty in AI), 2000, pp. 176 – 183.

[11] K. Murphy, “Bayesian map learning in dynamic environments,” in
Neural Info. Proc. Systems (NIPS). MIT Press, 1999, pp. 1015–1021.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[13] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, pp. 34–46, Feb 2007.

[14] N. Fairfield, G. Kantor, and D. Wettergreen, “Towards particle filter
slam with three dimensional evidence grids in a flooded subterranean
environment,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), Orlando Florida USA, May 2006.

[15] D. Mount and S. Arya, “ANN: Approximate nearest neighbors,”
http://www.cs.umd.edu/ mount/ANN/, August 2006.

[16] M. B. Kennel, “Kdtree 2: Fortran 95 and C++ software to effi-
ciently search for near neighbors in a multi-dimensional euclidean
space,” http://arxiv.org/abs/physics/0408067v2, Institute For Nonlinear
Science, 2004.

3530

