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Abstract— In this paper we present a formation synchro-
nization and reconfiguration scheme based on distributed
computation. In our previous work, we have introduced a
formation abstraction by means of a virtual rectangular grid.
The grid was used to ensure collision-free transitions between
formations, coordinated by a centralized controller. This paper
is an extension of that work, proposing control laws that are
computed in a distributed way while still ensuring collision-
free formation reconfigurations. Furthermore, we consider an
extension of the group rendezvous problem. The agents are
required to meet at the rendezvous point and establish consen-
sus on formation state. Again, the grid abstraction is used to
describe the formation state. Nonholonomic constraints of agent
motion are taken into account explicitly. As our approach is
communication-based, we also examine the effects of temporary
communication loss.

I. INTRODUCTION

In the vast majority of possible application areas of

autonomous systems, a group of units working together

in a coordinated fashion will by far outperform a single

unit working on the same task. Examples include cooper-

ative transportation, exploration and mapping, environment

monitoring, and supporting search and rescue operations, to

name just a few. Due to rapid developments in the areas of

embedded computing, drive systems, sensing and wireless

communications, using a group of autonomous agents to

solve real-world tasks is quickly becoming technologically

and economically viable.

Deploying a team of autonomous agents poses significant

challenges in terms of coordination, communication and

control. Those challenges have been in the focus of attention

of the research community for over a decade, [1] - [2]. The

fundamental issues of system stability, convergence to the

desired state and robustness must be considered. High system

dimensionality, complex interactions, inherent parallelism

and uncertainties make analysis and control synthesis a

challenging task. One often used approach is to introduce

artificial potential functions [3] attached to agents and ob-

jects in the environment. These approaches have analytically
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provable stability, and can also ensure collision avoidance

between the agents themselves, as well as between the agents

and the environment. However, the potential functions also

impose artificial constraints on the system and suffer from

the local minima problem. Graph theory is another tool that

provides a very natural description of group configuration

[4] and agent interactions. Authors in [5] and [2] propose

an abstraction map to transform the high-dimensional state

space into a lower-dimensional space capturing the position,

orientation and shape of the team. Optimization-based ap-

proaches [6] have also been successfully applied to multi-

agent systems. Problems related specifically to communi-

cation, coordination and consensus have been receiving a

considerable amount of attention recently [7], [8].

In spite of the significant progress that has been achieved,

some important issues still remain unresolved. Most works

assume a linear, first or second order model of the system,

and only few (notably [2]) take into account nonholonomic

vehicle constraints. Few approaches, with the exception of

the potential-field based ones, can guarantee collision avoid-

ance within the group, or with the environment. Consensus

seeking and area coverage approaches [8] can rarely account

for motion and orientation of the group.

Our previous work in [9], [10] introduces a formation

coordination framework based on a discretized, rectangu-

lar grid-based representation of the group. Using discrete

event scheduling techniques that have been well-established

in manufacturing systems control, we have designed a

controller that guarantees collision-free transitions between

arbitrary formations. This controller was integrated with

continuous-time vehicle position controllers into a hybrid

control architecture, capable of driving the group through the

environment while switching between formations. We now

extend that approach to a more decentralized architecture.

In this new approach, each agent performs the computations

required to control its motion and negotiates for priority with

other agents when moving through the formation. In this way,

inter-agent collisions are still explicitly prevented. The only

remaining centralized aspect of the proposed control system

is a higher-level supervisor that provides group waypoints

and formation setpoints. Furthermore, in this work we also

take into account the nonholonomic constraints of vehicle

motion.

The paper is organized as follows. In Section II we for-

mally state the two problems we are considering and outline

the assumptions that we are making on the agents and on

the environment. Section III deals with the rendezvous and

group synchronization problem. We propose decentralized
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algorithms for formation reconfiguration in Section IV and

in Section V we present simulation results showing the

validity of our approach. Concluding remarks and directions

for further research are given in Section VI.

II. PROBLEM STATEMENT

We are aiming to design control laws that will enable

a group of autonomous agents to establish and maintain

a desired formation and switch between formations in a

safe and reliable manner. This should be performed in a

distributed fashion, meaning that each agent carries out the

computations necessary to control its own motion. To achieve

this goal, we must design a controller that enables the

agents to establish and maintain a common representation of

group state. Furthermore, we need algorithms for switching

between arbitrary formations, which are defined with respect

to the common group representation. We now proceed to

define the agents and environment that we are dealing with

and give a more formal description of the above problems.

Let A = {an|n = 1, . . . , N} be a set of N identical

autonomous agents, moving in the two-dimensional plane.

Each agent has the state an = [xn yn θn]
T

∈ SE(2),
describing its position and orientation with respect to a

fixed world frame W . Agent dynamics are described by the

unicycle model

ẋn = vn cos θn

ẏn = vn sin θn (1)

θ̇n = ωn

where vn and ωn are the linear and angular velocities

respectively, representing control inputs of agent an. All

agents are assumed to be traveling within a bounded region

S with a boundary ∂S . This region contains a finite number

of static obstacles which compose the set O, and the union

of all points on the perimeter of any obstacle form the set

∂O. Furthermore, there is a set of P predefined waypoints

Q =
{

qp|qp = [xqp yqp]
T
∈ S ∩ O, p = 1, . . . , P

}

that the

agents must pass through. The first waypoint, q1 has a special

purpose and is called the rendezvous point. We require that

the space between initial agent positions and the rendezvous

point be obstacle-free.

To describe the desired formation, we introduce the notion

of a virtual rectangular grid Gn attached to each agent.

We call this grid the formation grid. Each grid consists of

(2N + 1) × (2N + 1) square cells, each with side length

lc. The size of the grid can be chosen arbitrarily, as long

as the total number of cells is equal to or exceeds the

number of agents N . Simulations have shown that (2N+1)2

cells give adequate freedom in specifying formation layouts.

The minimum cell size must be chosen so that the entire

physical dimensions of an agent can fit within one cell.

Formation layouts on the grid are represented as binary

matrices F = {fij |i, j = 1, . . . , (2N + 1)}, where fij = 1
denotes an occupied cell. Conversely, the position of each

agent on the grid is described with a pair of grid coordinates

a
(G)
n = [in jn]

T , in, jn ∈ {1, . . . , 2N + 1}, relative to the

upper left corner of the grid1. Grid position and orientation

in S are given by the [xgn ygn θgn] ∈ SE(2) triplet.

Taking the above notions into account, we can define the

Grid rendezvous problem as follows.

Problem 1: (Grid rendezvous) Given a rendezvous point

q1 and a group of N agents, design a control law that will

drive all virtual grids associated with the agents so that they

coincide at q1.

When considering a solution to Problem 1, we assume there

is an obstacle-free circle segment centered at q1 containing

the initial positions of all grids.

Once the agents have established a common formation

representation by matching their respective virtual grid struc-

tures, this unified grid G can be used for coordinating

formation transitions. The goal of this transition coordinator

can be formalized as follows.

Problem 2: (Transition coordination) Design a coordina-

tion law that will ensure a safe and collision-free transition

from any initial formation on the formation grid G to the

desired formation specified by the binary matrix F(t).

In our proposed solutions to Problems 1 and 2 that are

presented in the remainder of this paper, we are assuming the

existence of a centralized supervisor providing waypoint and

formation references to the agent group. This supervisor does

not perform any coordination functions, it merely notifies the

group of robots of the task that they need to perform. Fur-

thermore, we are assuming that the agents can communicate

between each other without any restrictions. We are however

considering the effects of temporary communication failures.

III. GROUP SYNCHRONIZATION

We propose a consensus-based group synchronization

scheme as a potential solution to Problem 1. As an exten-

sion to the commonly considered rendezvous problem, as

described for instance in [7], [8], it is not only required

that the virtual formation grids converge to the same point,

but also that they are aligned with each other. Agents can

initially be placed arbitrarily in the obstacle-free part of the

environment. As they converge at the rendezvous point, they

should also establish and maintain a common representation

of group state through their respective formation grids.

An abstract grid structure is attached to every agent,

serving as a virtual formation leader A supervisory controller

provides waypoint references that the group should drive to.

Additionally, it provides formation setpoints, specifying the

position of each agent on the formation grid.

A. The non synchronized case

Simply by providing the same waypoint reference to all

the agents, we will force their respective grids to meet at

that point. However, as illustrated by the following example,

this will not suffice to align the grids with each other and

the agents will not achieve the desired formation.

Example 1: (Non synchronized rendezvous) From initial

positions specified in Table I agents are sent to the ren-

dezvous point q1 = [15.0 2.0]
T

. Each agent is moving

1This corresponds to standard matrix notation.
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an xgn(0) ygn(0) θgn(0) in(0) jn(0)

a1 −1.0 10.0 6π
4

6 1

a2 0.0 1.0 −

π
3

5 4

a3 2.0 −7.0 0.0 6 7

TABLE I: Initial positions for Examples 1 and 2

independently, without exchanging any information with

other agents.

Initial and final agent configurations are shown in Fig.

3a and 3b respectively. While the positions of grid centers

converge to the rendezvous point, grid headings are not

aligned, because each robot arrives from a different angle. As

a result, the agents have not achieved the desired formation.

B. Consensus-based group synchronization

As Example 1 indicates, an additional control signal is re-

quired to align formation grid orientations at the rendezvous

point. In the proposed controller, this signal is derived

from the arithmetic mean of individual grid representation

coordinates,

xg =
1

N

N
∑

n=1

xgn

yg =
1

N

N
∑

n=1

ygn (2)

θg =
1

N

N
∑

n=1

θgn.

Fig. 1: Block diagram of the agent controller.

The controller structure for an individual agent is depicted

in Fig. 1. Each agent is tracking its own virtual grid model

at the specified angle and distance, using the leader-follower

feedback linearization controller from [11]. The tracking

angle and distance are computed from the formation speci-

fication aGn = [in jn]
T

, relative to the top of the grid, and

taking into account the number of cells N and real cell length

L. Grid dynamics are modeled by a first-order unicycle

model, described by the set of equations (2). A feedback

linearization controller drives the grid model towards the

given waypoint.

Inputs into the nonlinear grid controller are the super-

position of two error signals. The waypoint error signal is

used to drive the grid towards the current waypoint. The

group error signal is responsible for achieving formation

convergence. By adjusting the gain ratio on the two errors,

we can influence how fast the group converges to the desired

formation. Giving more weight to the waypoint error will

yield a faster approach to the waypoint, but also slower group

convergence, because agents lagging behind the group will

need more time to catch up.

Example 2: (Consensus-based coordination) As in the

previous example, agents are driven from their initial po-

sitions specified in Table I to the rendezvous point q1 =
[15.0 2.0]

T
. However, this time the agents are communi-

cating with each other to establish a common virtual grid

representation. The control structure depicted in Fig. 1 is

used to align them with the common grid.
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Fig. 2: Rendezvous with consensus-based synchronization,

grid positions and orientations.

The initial and final agent configurations are shown in Fig.

3, and the evolution of grid coordinates over time is plotted

in Fig. 2. It can be observed that all the virtual grids reach the

rendezvous point simultaneously, with aligned headings. The

agents have achieved the desired formation. Furthermore,

because the aligned grids form a common representation

of group state, they can be used to coordinate formation

changes, as described in the following section.

IV. COOPERATIVE FORMATION

RECONFIGURATION

Once the agent group has established a common repre-

sentation of the formation, they can use the common grid

abstraction to synchronize formation transitions. The syn-

chronization scheme is based on our previous work described
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(a) Initial agent positions with their respective
grids.
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(b) Final agent and grid positions, the non-
coordinated case.
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(c) Final agent and grid positions, the coordinated
case.

Fig. 3: Rendezvous with and without grid consensus.

in [10]. However, in this paper we extend those results by

using distributed computation and communication instead of

a fully centralized approach. In the work presented here,

we still assume the existence of a centralized coordinator,

but its role is reduced to providing waypoint and formation

setpoints.

Having received the desired formation setpoints, the al-

gorithm performed by each agent can be outlined by these

steps:

1) Target assignment

2) Path execution

• Priority negotiation

• Target re-assignment

The algorithm is discretized in space and in time. Space

discretization implies that agent positions are only described

by grid cell occupations. Time discretization means that

agents move from one cell to the next at discrete time steps

which are synchronized among the whole group. In the first

phase, the agents negotiate to determine which position in

the target formation is going to be assigned to which agent.

Having determined their respective targets, the agents start

moving towards them using the shortest paths. In case of

conflict, when two agents require the same cell for their next

move, priority negotiation takes place in order to prevent a

collision. If an agent’s path gets blocked by another agent

that has already reached its target, they swap target positions.

A. Target assignment

Target assignment takes place after the supervisory group

controller broadcasts the desired formation configuration to

all agents. As indicated in [10], optimal target assignment

is a fundamental prerequisite for the convergence of the

entire formation transition algorithm. In our previous work,

we used the Kuhn-Munkres assignment algorithm. To the

best of our knowledge, no algorithm is currently known

that can guarantee optimal assignment without considering

all the initial states and all targets. For this reason, we

require that every agent broadcast its computed distances to

all the targets to all other agents. This information can be

propagated through the agent group using a variation of the

flooding algorithm described in [7].

Algorithm 1: Reconfiguration algorithm for agent am

Input: aGm = [km lm]
T

, F(t) = [fij ],N

1 tList =
{

tn|tn = [in jn]
T
⇔ fij = 1

}

2 foreach tn ∈ tList do

3 dmn = |km − in|+ |lm − jn|
4 end

5 initialize distance matrix D = dm

6 while numrows(dm) < N do

7 broadcast D to all agents

8 receive {dj |j 6= m} and update D

9 end

10 determine assigned target tm from D

11 find direct route to target
{

aGm(k)|k = 1, . . . dmm

}

12 k = 1
13 while new F(t) not received do

14 broadcast aGm(k) to all agents

15 receive cells required by others,
{

aGn (k)|m 6= n
}

16 if aGm(k) 6= aGn (k) ∀n 6= m then

17 move to aGm(k), k =min(k + 1, dmm)

18 else

/* Conflict, negotiate priority.

*/

19 cList =
{

an|a
G
m(k) = aGn (k)

}

20

({

aGm(k)
}

, k
)

=negpri(
{

aGm(k)
}

, k,cList)

21 end

22 end

After receiving the desired formation matrix F(t), each

agent computes its distance to all target positions. The matrix

F(t) is a binary matrix, where the position of target tn the

desired formation is denoted by element at (kn, ln) having

the value 1. If agent am has current coordinates (im, jm) on

the formation grid, then its distance to the targets is computed

using the L1 norm,

dmn = |im − kn|+ |jm − ln| . (3)

Each agent broadcasts a row-vector dm where each column

represents its distance to the respective targets. It also keeps
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Algorithm 2: Priority negotiation for agent am

Input: am(k),tn,k,cList

Output: tn,{am(k)},k

1 dm(k) = ‖am(k)− tm‖
2 dMAX = dm(k), swapidx = 0
3 foreach an ∈ cList do

4 get dn(k) from an
5 if dn(k) > dMAX then

6 if dm(k) = 0 then

7 dMAX = dn(k)
8 swapidx = n

9 else

/* Must yield to an */

10 break

11 end

12 end

13 if dn(k) = 0 then

14 swapidx = n

15 end

16 end

17 if swapidx 6= 0 then

/* Swap targets. */

18 if dMAX = dm(k) then

19 Claim other agent’s target.

20 else

21 if dm(k) = 0 then

22 Yield target to other agent.

23 end

24 end

25 else

/* am has longest path. */

26 k = k + 1
27 end

receiving distance-to-targets information from other agents,

until it can assemble the whole distance matrix D = [dmn].
Then each agent runs the optimal assignment algorithm to

determine its assigned location in the target formation. The

current implementation is rather inefficient, because all the

agents are running the same O
(

n3
)

algorithm. However,

because the convergence of the whole formation transition

procedure depends on the optimality of the assignment, this

is the only viable solution at this point. Improvements to

the formation transition algorithm are a topic of ongoing

research.

B. Path execution

Once each agent has determined its target position in

the new formation, they need to compute the transition

paths. If the initial position of agent an has the coordinates

an = [i0 j0]
T

and its target position is tn = [it jt]
T

, then

its transition path consists of the set of cells

P =
{

[i j]
T
|i = i0, j = j0, . . . jt

}

∪
{

[i j]
T
|i = i0, . . . it, j = jt

}

. (4)

The agents move on L1 shortest paths on the formation grid,

first along the rows and then along the columns.

Before each move, every agent broadcasts the coordinates

of the next cell along its path to all its neighbors and waits

to receive their replies. If there is no other agent requiring

the same cell for its next move, it starts executing the motion

immediately. If there is a conflict, a priority negotiation

procedure is initiated. When none of the agents in conflict

has reached its target position yet, priority is given to the

agent with the longest remaining path. If the cell in conflict

is a target cell already occupied by an agent, that agent swaps

paths with the one having the longest remaining path. Once

an agent has reached its destination, it keeps listening to

move broadcasts by other agents, ready to swap paths with

the ones that are coming its way.

The complete reconfiguration procedure is outlined by

Algorithm 1 and Algorithm 2. Algorithm 1 describes the re-

configuration sequence performed by each agent. Algorithm

2 shows the priority negotiation procedure.

V. GROUP NAVIGATION SIMULATIONS

The simulations in this section are implemented using

MATLABTMand Simulink R©. Discrete-event control logic is

implemented using Stateflow R©.

A. Rendezvous and reconfiguration

This simulation integrates the group synchronization con-

troller described in Section III with the formation reconfig-

uration algorithm from Section IV. The agents start from

initial positions given in Table I, meet at the rendezvous point

q1 and continue towards waypoint q2. To avoid the obstacle

between q1 and q2 they change their formation along the

way.

System behavior during rendezvous has already been

discussed in Section III. Snapshots from the reconfiguration

sequences and agent trajectories are shown in Fig. 4. Agents

are advancing through the common grid representation cell

by cell, thus avoiding collisions. In Fig. 4b agents a1 and a3
negotiate for priority and a3 yields, because a1 has a longer

path to its target.

B. Temporary communication failure

In this simulation we demonstrate group behavior under

temporary communication failure. This is simulated by dis-

carding all incoming and outgoing information for agent a3.

This includes information exchanged with other agents, as

well as information received from the supervisor. The simu-

lation shows that the control algorithm can enable the group

to realign and restore the formation after communication has

been reestablished.

This simulation is a continuation of Example 2. Only the

y-positions and orientations are plotted in Fig. 5, because
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Fig. 4: Formation reconfiguration snapshots. Shaded grid cells denote target positions.
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Fig. 5: Formation evolution with communication failure for

a3 between t = 35s and t = 50s.

no significant details are visible in the x-position signal.

At t = 30s the formation has been established and the

group is moving towards the waypoint q2 = [30.0 2.0].
At t = 35s agent a3 looses contact with the group, and

at t = 40s the supervisor broadcasts the new waypoint

coordinates, q3 = [40.0 9.0]. Agent a3 is not aware of the

waypoint change and starts diverging from the group. At

t = 50s communication is reestablished a3 starts moving to

rejoin the group. The collective grid position estimate G has

a discontinuity at t = 50s because at that point agents a1
and a2 start getting fresh data from a3 again and including

it into the group state estimate.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a control scheme that enables a team

of agents to converge to a rendezvous point, establish a com-

mon, grid-based representation of group state, and use this

representation to switch between arbitrary formations. The

formation switching algorithm prevents inter-agent collisions

during formation changes. All computations are performed

locally by the agents themselves, and the role of the cen-

tralized supervisor is reduced to providing waypoints and

formation setpoints. The motion controllers take into account

non-holonomic constraints of agent kinematics.

Simulations presented to demonstrate the validity of the

proposed approach are preliminary proof-of-concept results.

Much work remains to be done in order to refine and

validate the described methodology. A thorough stability

analysis must be performed for the consensus-based group

synchronization controller. Similarly, the correctness of the

distributed reconfiguration algorithms must be formally an-

alyzed. The possibility to refine the algorithms and reimple-

ment them using only nearest neighbor information is also

being considered. Finally, the algorithms should be validated

experimentally on actual robotic platforms.
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