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Abstract— Tendon driven mechanisms have been considered
in robotic design for several decades. They provide lightweight
end effectors with high dynamics. Using remote actuators it
is possible to free more space for mechanics or electronics.
Nevertheless, lightweight mechanism are fragile and unfor-
tunately their control software can not protect them during
the very first instant of an impact. Compliant mechanisms
address this issue, providing a mechanical low pass filter,
increasing the time available before the controller reacts. Using
adjustable stiffness elements and an antagonistic architecture,
the joint stiffness can be adjusted by variation of the tendon
pre-tension. In this paper, the fundamental equations of m

antagonistic tendon driven mechanisms are reviewed. Due to
limited tendon forces the maximum torque and the maximum
acheivable stiffness are dependent. This implies, that not only
the torque workspace, or the stiffness workspace must be
considered but also their interactions. Since the results are of
high dimensionality, quality measures are necessary to provide
a synthetic view. Two quality measures, similar to those used in
grasp planning, are presented. They both provide the designer
with a more precise insight into the mechanism.

I. INTRODUCTION

Numerous new robot designs are based on tendon driven

systems, for instance one finger of the integrated hand arm

system of DLR is presented in Fig. 1. The advantages

of tendon mechanisms are mainly low link inertia, remote

actuation and high dynamics. Several research papers present

the analysis of the workspace of parallel manipulators (such

as [1]). Optimization methods, like convex techniques, have

been applied to optimize the workspace [2]. But, the analyses

are limited to the kinematic workspace and did not consider

the use of variable stiffness mechanisms. The force limitation

of the actuators creates constraints on the achievable torque

and joint stiffness. Therefore, their interactions should be

analyzed to understand the mechanism behavior.

In [3] Albu-Schäffer highlights that the intrinsic compli-

ance, respectively the tendon pre-tension of robots, seen as a

drawback in the past, can be a feature today. It is especially

interesting in terms of protecting the robot itself. Indeed,

since a control law can not react in the very first instant of

the impact, the only protection of the robot is its intrinsic

compliance [3].

Different mechanisms to adjust stiffness, for example the

ANLES mechanism [4], have been studied with the help

of stiffness ellipsoids (at the operating point). Stiffness and

torque analysis of a variable stiffness joint, however, not

considering tendons, can be found in [5]. A controller for

a variable stiffness mechanism using two motors and two

springs in an antagonistic configuration is presented in [6].

Only little work is dealing with stiffness analysis of tendon

driven systems with nonlinear tendon stiffness. Kobayashi [7]

has investigated the question of serial tendon driven mecha-

nisms with adjustable tendons stiffness. In such systems the

joint torques are generated by rolling tendons around pulleys

as shown in Fig. 2.

Fig. 1. Single finger of the DLR Integrated Hand Arm System(4 DOF, 8
tendons)

Fig. 2. Two joints and their associated 4 tendons

The tendons are pulled by remote actuators. If flexible

tendons are used in an antagonistic configuration, one part

of the tendon forces generates joint torques and the other

part, known as pretension, adjusts the intrinsic stiffness of
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the joints. Examples of mechanisms used to obtain variable

stiffness behavior can be found in [8]–[10]. At DLR a new

integrated hand arm system, [11], is developed that com-

bines a novel finger joint technology with variable stiffness

elements. In Fig. 1 a prototype of one finger with four joints

driven by eight tendons is presented.

The very specific configuration of mechansims with an-

tagonistic flexible tendons creates new challenges. For such

systems it is desirable to specify the position and the stiffness

at the same time. However, if the actuation limits are taken

into account the torque and stiffness ranges are not indepen-

dent. Consequently, the output work must be restricted to

some maximal load or be position dependent. The addition

of a desired stiffness to the trajectory, by increasing the

dimensionality, appeals for the use of new quality measures.

The main contribution of this paper is to extend the work

of Kobayashi [7] by including actuator force limitations. The

analysis of tendon driven mechanisms, as found in [4], [9],

is extended by computing torque/stiffness workspace under

actuator limitations. Several quality measures are introduced

to evaluate if a given mechanism is suitable for a given task.

The use of ratios is compulsory since the dimensionality of

the results do not allow for simple 2D and 3D representation.

In the first section, the fundamental equations that relate joint

torques, tendon forces, tendon stiffness, and joint stiffness

are established. The second section applies several quality

measures to the analysis of variable stiffness elements that

can help reducing the dimensionality of the results. The third

section proposes an analysis tools for the sensitivity of the

variable stiffness (VS) mechanism.

II. TORQUE/STIFFNESS MODELING

In this section, the derivation of two fundamental equa-

tions of tendon driven system with nonlinear tendon stiffness

is presented. The notion of stiffness vector is introduced. It is

shown that it takes a form that can be expressed in a simple

way (under some conditions on the coupling matrix).

Table I defines the used symbols. The tendons are consid-

Symbol Designation

n ∈ N number of mechanical degree of freedom (joints)
m ∈ N number of tendons
h ∈ R

m positions of the tendon w.r.t. a fixed reference
q ∈ R

n positions of the joint
τ ∈ R

n joint torques generated by the tendon forces
f ∈ R

m forces applied on the tendon extremity

Kt ∈ R
m×m stiffness matrix of the tendons

Kq ∈ R
n×n stiffness matrix of the joints

kti
(fti

) ∈ R stiffness of the tendon depending on the tendon
force

P ∈ R
n×m coupling matrix

TABLE I

DESCRIPTION OF VARIABLES

ered to be fixed (as with non-backdrivable motors) and only

static analysis is performed. More details about a dynamic

analysis of such mechanisms can be found in [12]. The

coupling matrix P (q) ∈ R
n×m, which relates the m tendon

velocities ḣ ∈ R
m to the n joint velocities q̇ ∈ R

n, is

obtained as the derivative of the tendon length h with respect

to the joint position q.

P (q) =

(

∂h(q)

∂q

)T

(1)

Using the principal of virtual work it yields:

τ = P (q)f (2)

Because tendons can only pull, the number of tendons is

greater than the number of joints for a fully actuated system

[13]. The minimum number of tendon required for a fully

actuated system is n + 1. Consequently, the coupling matrix

is not square in general. It is assumed throughout this article

that the coupling matrix has full row rank. If P has full rank,

the system is said to be tendon controllable [7]. Using the

previous definition of the coupling matrix the tendon forces

can be decomposed in two parts,

f = P (q)+τ + fint

where P+ is the generalized pseudo inverse and fint is a

force vector in the null space of P (q). The pseudo inversion

can be weighted such that the solution minimize a specific

cost function [14]. Especially, the Moore-Penrose pseudo

inverse minimizes the internal forces and distributes the

forces equally (in the least mean squares sense). E.g., a

weighting dependent on the actuator temperature could be

used to avoid local overheating.

The tendon stiffness kt is simply obtained as the derivative

of the tendon force f with respect to the variation of the

tendon length h (around the equilibrium point h0),

kt =
∂f

∂h

∣

∣

∣

∣

h=h0

Under the assumption that the tendons are not coupled

directly, the tendon stiffness can be written in a diagonal

matrix 1:

Kt = diag{kt1(f1), ..., ktm
(fm)} (3)

The tendon stiffness being a function of the tendon force it

allows to obtain a variable joint stiffness by modulating the

internal forces fint. The dependency of the tendon stiffness

upon the tendon force creates the capacity of adjusting

the joint stiffness. The stiffness matrix of the joints, at an

equilibrium point q0 is defined as :

Kq(q0) =
∂τ(q)

∂q

∣

∣

∣

∣

q=q0

(4)

Together with eq.(2) and assuming non-backdrivable motors
2:

Kq =
∂P (q)

∂q
f(q) + P (q)

∂f(q)

∂q
(5)

1Throughout this paper diag{.} applied to a matrix extracts its diagonal
elements, applied to a vector it creates a matrix which diagonal elements
are the vector elements

2Consideration on the control of system with back drivable motors are
found in [12]
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If the coupling matrix depends on the joint configuration,

i.e. ∂P
∂q

6= 0, it introduces another term that changes the

joint stiffness. This results in a variable joint stiffness due to

the variable transmission mechanism. Using eq.(1) and the

definition of Kt in eq.(3) we obtain,

Kq(q) =
∂P (q)

∂q
f + P (q)KtP (q)T (6)

It can be shown that the joint stiffness matrix is always

symmetric. Moreover, if the coupling is linear, i.e. ∂P
∂q

=
0, the joint stiffness matrix expression can be simplified.

Thanks to the symmetry, only n(n + 1)/2 coefficients are

sufficient to describe the matrix Kq. There are n torques

and n(n+1)/2 stiffness coefficients to control so intuitively

n(n + 3)/2 tendons are required [7]. In the case of mecha-

nisms like fingers the full decoupling of all the coefficients

is prohibitive in terms of tendons. For a 4 DOF finger 14

tendons would be needed, so 70 tendons for a 5 fingered

hand. A trade-off has to be made and it is often chosen to

use a 2n tendons configuration. In this case, the n torques

and at most n stiffness coefficients are controllable. It is

often decided to only control the diagonal terms and neglect

the coupling terms. In the fingers of the DLR Hand Arm

system, the tendon routing has been optimized in order to

minimize the constraints due to the coupling. The vector of

the joint stiffness can be advantageously rewritten as a linear

combination of the tendon stiffness. To avoid repeating, in

the following formulas, i ∈ [1..n] and j ∈ [1..m].:

sq = diag(Kq) = S diag(Kt)

The form of the S matrix is easily obtained (if only the

diagonal terms of the stiffness matrix are considered). The

proof requires only few steps. δ(i, j) is the Kronecker symbol

which is 1 if i = j and 0 otherwise. The notation M(i, j) is

used to represent the elementMij . First, the part A = KtP
T

of the definition of Kq can be computed.

A(i, j) =

m
∑

b=1

Kt(i, b)P
T (b, j)

Then the A matrix can be introduced again in the equation

(6), looking carefully at the indices.

Kq(i, j) =

m
∑

a=1

P (i, a))

m
∑

b=1

(Kt(a, b)PT (b, j))

Futhermore, given the diagonal shape of Kt the previous

equation can be dramatically simplified.

Kq(i, j) =

m
∑

a=1

P (i, a))

m
∑

b=1

(δ(a, a)Kt(a, a)PT (a, j))

The second sum symbol can be dropped and the scalar

reordered :

Kq(i, j) =

m
∑

a=1

P (i, a))PT (a, j)Kt(a, a)

Looking only at the diagonal coefficients, it follows

Kq(i, i) =
m

∑

a=1

P (i, a))PT (a, i)Kt(a, a).

This proves that the joint stiffness vector sq can be written

as

sq = S diag(Kt),

where

S(i, j) = P (i, j)2

Using the two fundamental equations:






τ = Pf

sq = diag(PKt(ft)P
T )

(7)

It is possible to construct the mapping Ψ from the tendon

force space Θ to the torque/stiffness workspace Ω. As:

Ψ : Θ ∈ [fmin..fmax]
m

7→ Ω ⊂ R
m

f →

[

Pf
diag(PT Kt(ft)P )

]

(8)

III. ANALYSIS OF THE TORQUE/STIFFNESS WORKSPACE

The dimension of the workspace constructed in the previ-

ous section is usually too large to be displayed using conven-

tional methods. However, in order to compare designs the di-

mensions must be reduced to offer interpretable information.

Intuitive methods based on the minimum, maximum torque

and stiffness, with which several indices are constructed,

provide limited information. Although sufficient in the case

of rigid mechanisms, they appear to be too limited in the

case of stiffness adjustable mechanisms. Indeed, they do

not capture the behavior of the elastic element and simula-

tions/experiments have shown that the system performances

vary largely upon the progression of the stiffness elements.

Other types of analysis are also possible, for example an

analysis that provide stiffness adjustable mechanisms classi-

fication can be found in [15]

A. Safety margin

A simple example is proposed to illustrate the possible

limitations. Figure 3 shows two workspaces of a 1 DOF

joint. The tendon maximum forces and the coupling matrix

are identical. Only the stiffness characteristics have been

changed.

A(f) : f2

B(f) : eβf − α, β = ln(A(fmax)+α)
fmax

With f ∈ [0, fmax], P = [0.005,−0.005]. It is easy to see

that indices based on the extremes would not capture the

differences.

To avoid this problem, it is proposed to introduce the

notion of safety margin. The safety margin is defined as

the radius of the biggest sphere that can be included in the

workspace, as it can be done for grasp quality measure [16].

The sphere center C is either free or specified. If it is free the

center of the optimal sphere can be interpreted as the natural
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Fig. 3. Example where the min/max of the stiffness is not capturing the
mechanim differences

working point of the mechanism and is called the intrinsic

safety center, ξintrinsic. It is associated to its intrinsic safety

radius (cf. Fig. 4 dotted circle).

If the center is specified, the sphere will give the distance

to the mechanism limits for the specified working point. It is

called local safety center, ξlocal. It is associated to its local

safety radius (cf. Fig. 4 continuous circle). The local safety

margin represents how well the mechanism perform given a

task specification. The intrinsic margin gives the possibility

of the robots. Using both margin th designer can iteratively

adapt the mechanism to best fit his needs. The spheres are

defined as :

ξlocal(C) = max
r∈R

(B(C, r)|B ⊂ W ) (9)

ξintrinsic = max
C∈Ω

(ξlocal(C)) (10)

Where B(C, r) is a ball of center C and radius r. W is the

torque/stiffness workspace of the mechanism. The algorithm

used to derived those measures performs gradient searches. It

finds the minimum distance between the local center C and

the workspace boundaries, i.e, when at least one tendon has

reached its force limit. Indeed, a boundary point neccessarily

belongs to a hypersurface of dimension n − 1, where one

of the tendon is about to break (f = fmax). Applying

this to each tendon leads to (m) surfaces from which a

minimum distance to a point must be searched for. The

gradient searches are smooth and do not pose any particular

problems of convergence.

A random starting center, to avoid local minimum, and

gradient search have been used to find the intrisinc center.

It must be noted that the complexity of the algorithms is

growing with a factor m. It means that although efficient

the nonlinear multipoint search can not garantee a global

optimum.

The ratio of the intrinsic safety margin and the local safety

margin is called the safety margin coverage and represents

how well the mechanism is used compared to its natural

abilities. It is a dimensionless value that can be used to

compare, for example, different actuation principles. It must

be noted that the radii have mixed units and certainly a

weighting matrix is required to normalize the units (stiff-

ness and torque). However, an algorithm to obtain such a

weighting matrix is strongly task dependent (cf. the diversity

of weighting matrix found in manipulability analysis). The

designer has the task (and the knowledge) to decide the

relative importance of stiffness versus torque. Similarly, he

can decide to give more importance to a specific joint.

The understanding of the task is necessary to create the

appropriate weighting. For a 1 DOF joint it is possible to

see the results but in higher dimension only an appropriate

weigting can garantee a correct result.

The following design problem aims at improving a single

joint mechanism that is operated around a given working

point ω = (0.2Nm, 0.25Nm/rad)
The initial design uses two identical tendon with the charac-

teristics:

fmax [N] 100
k [N/m] f2

P [m] [0.005,−0.005]

TABLE II

TENDON CHARACTERISTICS

A modified design, with the manually improved coupling

matrix, P = [0.0063,−0.0037], is proposed. The original

and modified workspaces are shown in the figure 4 and 53,

the results of the ratios are reported in the table III.
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Fig. 4. Original coupling, the dotted circle is the intrinsic safety, the
continuous circle is the local safety

Although the intrinsic radius of the mechanism has been

reduced, the coupling is more adapted to the working point.

It can be seen that the local safety radius is larger. The best

solution for this problem, and given this ratio, is naturally to

adjust the coupling matrix such that the intrinsic center and

the desired working point are identical.

The previous analysis can be scaled to higher dimensions

without modifications. It enables the designer to compare

3The circles only appear as ellipsoids because of the graph scales. The
calculations are performed without any weighting matrix.
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Fig. 5. Improved Coupling, the dotted circle is the intrinsic safety, the
continuous circle is the local safety

center radius quality measure

before intrinsic [0.215, 0] 0.215
local [0.25,0.2] 0.075 0.12

after intrinsic [0.278, 0.290] 0.174
local center [0.25,0.2] 0.14 0.64

TABLE III

RESULTS OF THE RATIOS, BEFORE AND AFTER OPTIMIZATION

mechanisms very easily when he is targeting a specific

working point. If the design is unsatisfactory, he can select

a different stiffness curve of the mechanism, or modify the

coupling. This approach has been used at DLR to select the

stiffness elements that will be used in the wrist of the DLR

Hand Arm System [11].

B. Sensitivity

The use of non linear stiffness elements means that the

stiffness and the torque can be adjusted, but it is important

to know how well they can be selected. If the input is

sampled uniformly, the output points distribution gives the

image of the sensitivity. To obtain a synthetic value from the

distribution, several statistics tools are available. However,

it has been decided to only use the first moment of the data,

because the interpretation of the results is difficult in high

dimensions. The first moment is also known as the center

of gravity. It is proposed to use a ratio λ between the first

moment of the output space, G(Ω), and the image of the

first moment of the input space, Ψ(G(Θ)). Namely,

λ =
min(‖G(Ψ(Θ))‖ , ‖Ψ(G(Θ))‖)

max(‖G(Ψ(Θ))‖ , ‖Ψ(G(Θ))‖)
,

where Ψ is the mapping application, Θ = [0..fmax]
m

and

G gives the first moment of a set. The following figure

represents the mapping Ψ from Θ = [0..100N ]2 to Ω. The

transformation of the center of gravity of the force space

G(Θ) to the troque/stiffness workspace Ω is shown with

an arrow (cf. Fig. 6). The coordinates of G(Θ) represent

the center of the achievable actuation forces. Its image by

Ψ, represents the torque and stiffness obtained when all
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Fig. 6. Representation of the mapping from the force space Θ to the
torque/stiffness workpsace Ω. The arrow indicates the tranformation of the
center of gravity (Ψ(G(Θ)))

actuators are at the center of their force workspace. The

set Ψ(Θ) is the set of torques and stiffness values that

the mechanism can achieve. The principal idea is that the

distortion of this space gives a good idea of the systems

nonlinearities. However, since a simple figure is wanted, the

metric concentrate only on the distortion that occurs on the

center of gravity (one could also use several points, or the

surface change of a simple geometry figure).

The definition can be applied to a system of any di-

mension. However, to be able to compare the results to a

graphic, an example in 1D is presented. The values used are

summarized in table IV.

fmax [N] 100
k1 [N/m] f2

k2 [N/m] eβf − 1, β =
ln(k1(fmax)+1)

fmax

P1 [m] [0.005,−0.005]
P2 [m] [0.0062,−0.0037]

Θ [0..fmax]m

TABLE IV

PARAMTERS USED FOR THE 1D SENSITIVITY EXAMPLE

The figures 7, 8 and 9 show the output set Ω (i.e. torque

and stiffness of the joint), obtained as Ψ(Θ), for different

choices of Pi and ki.

The table V, presents the results.

Coupling Stiffness function λ

P1 k1 0.833
P1 k2 0.082
P2 k1 0.902

TABLE V

RESULTS OF THE RATIO ON THE DIFFERENT 1D SENSITIVITY EXAMPLES

In those simple cases it appears clearly that the stiffness

function k2 is compressing the workspace around the origin

and leads to a very poor sensitivity in the remaining space.

The stiffness function k1 is spreading uniformly the values
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Fig. 7. The diamond is G(Ψ(Ω)), the circle Ψ(G(Ω)) with P1 and k1
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Fig. 8. The diamond is G(Ψ(Ω)), the circle Ψ(G(Ω)) with P1 and k2

and thus the ratio is really close to one. As mentioned earlier,

the ratio can be used in higher dimension but, of course,

for the graphical representation appropriate projections are

needed. The table VI is presenting the data used for a 2D

analysis of the stiffness curve on the sensitivity ratio. Table

VII reports the sensitivity ratio results. As expected, the

results obtained with the exponential stiffness function are

very low compared to the quadratic stiffness function. This

is due to the contraction of the exponential function near the

origin. Since they are linear, the coupling matrices P1 or P2

have little influence on the sensitivity. They do not really

modifiy the distribution of Ψ. The effect of the coupling

would however be visible when using the safety margin

quality measure.

IV. CONCLUSION AND FUTURE WORK

The derivation of the joint stiffness matrix has been

presented. Under some commonly respected condition, the

torque and stiffness equations can be put together to obtain

a synthetic description of the system. In particular it has been

shown that in case of symmetric coupling the ”joint stiffness

vector” sq can be computed very efficiently.

But, as pointed out in [17], the interpretation of results

in more than three dimensions requires the use of a quality

measures. Two new quality measures have been proposed,
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Fig. 9. The diamond is G(Ψ(Ω)), the circle Ψ(G(Ω)) with P2 and k1

fmax [N] 100
k1 [N/m] f2

k2 [N/m] eβf − 1, β =
ln(k1(fmax)+1)

fmax

P1 [m]

2

6

4

0.005 0
0.005 −0.002
−0.005 0.002
−0.005 0

3

7

5

P2 [m]

2

6

4

0.005 0
0.002 −0.002
−0.004 0.001
−0.005 0

3

7

5

Θ [0..fmax]m

TABLE VI

PARAMTERS USED FOR THE 2D SENSITIVITY EXAMPLE

Coupling Stiffness function λ

P1 k1 0.03
P1 k2 0.714
P2 k1 0.771

TABLE VII

RESULTS OF THE RATIO ON THE DIFFERENT 2D SENSITIVITY EXAMPLES

the safety margin concept and the sensitivity concept. They

both apply to high dimensional spaces, although their calcu-

lation require some specialized algorithms. The safety margin

concept provides a synthetic measure of the capabilities of

the mechanism. Contrary to previous quality measures, it

captures the stiffness behaviour, hence allowing to select the

proper stiffness elements. An example has been proposed

to show how the safety margin can be used to improve the

coupling matrix of a single joint.

A second quality measure, based on the mapping density,

is used to measure the capabilities to adjust the stiffness or

torque. Those two new tools are used in the context of several

hand development at the DLR robotic institute.

The undergoing research concentrates on the development

of an efficient method to solve the system torque/stiffness

equations. Methods to efficiently compute the quality mea-

sures in high dimension is also under investigation.
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