
High-Fidelity Telepresence and Teleaction

Robert Bauernschmitt1, Martin Buss1, Barbara Deml6, Klaus Diepold1, Berthold Färber4,

Georg Färber1, Ulrich A. Hagn3, Gerd Hirzinger3, Sandra Hirche1, Alois Knoll1, Hermann Müller2,

Tobias Ortmaier5, Angelika Peer1, Michael Popp4, Carsten Preusche3, Gunther Reinhart1, Zhuanghua Shi2,

Eckehard Steinbach1, Heinz Ulbrich1, Ulrich Walter1, Michael F. Zäh1

1Technische Universität München (TUM)
2Ludwig-Maximilians-Universität München (LMU)

3German Aerospace Center (DLR)
4University of Armed Forces Munich

5University of Hannover
6University of Magdeburg

The collaborative research center SFB453

(www.sfb453.de) aims to realize high-fidelity telepresence

and teleaction systems.

Telepresence and teleaction systems, see [1]–[3] for an

overview, extend the human workspace to remote locations

in order to overcome barriers like distance, scaling, danger

or the human skin. Using a human-system interface the

human operator controls a remotely located teleoperator.

Multi-modal feedback in form of visual, auditory, and haptic

data is used to increase the feeling of telepresence [4].

Different application areas including minimally invasive

surgery, on-orbit servicing, microassembly as well as tele-

manufacturing and tele-maintenance are targeted.

For minimally invasive surgery the DLR developed the

MiroSurge Robotic System. The master console is equipped

with an autostereoskopic monitor along with a bimanual

haptic input devices (omega.7 by Force Dimension, Inc.).

The slave consists of several inhouse developed light weight,

torque controlled, and redundant robotic arms (MIROs)

guiding an endoscopic stereo camera and two endoscopic

instruments [5], [6]. For dexterous telesurgery the surgical

instruments add 2 DOF and functional actuation, e.g. a

gripper, along with 7 DOF force measurement.

In another project a highly advanced surgical assistance

system was developed, see [7], which aims at helping the

surgeon with time-consuming and exhausting situations. A

surgical knot, e.g., does not have to be performed any more

by the surgeon himself using direct teleoperation, but can

be executed by the robotic assistant in a semi-autonomous

mode [8].

Operation in space [9] is another field of application. On-

orbit servicing has been selected as a typical demonstration

scenario which requires first docking to the satellite and

then executing the maintenance task [10], [11]. The real

satellite communication channel introduces quite large time

delays and packet loss. To achieve stable interaction with
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the remote environment several projects of the SFB453 aim

at developing new bilateral control algorithms [12]–[15].

Efficient data transmission is hereby achieved by adopting

perception-oriented compression algorithms [16], [17].

Teleoperation promises tremendous potential for micro

assembly. Owing to its scaling capability, teleoperation

in micro-assembly [18] provides a number of advantages

including increased gripping percision and improved er-

gonomics. Due to the seperation between workplace and

operator, decreased contamination through the removal of

direct human contact is also achieved. Furthermore, in [19]

vacuum gripping for pick and place tasks allow micro-chips

and micro-structures to be easily manipulated.

Selected results achieved in the collaborative research

centre are also transferred to industry by means of special

transfer projects. Subject of one of the transfer projects is e.g.

the transfer of in-depth knowledge in the control of macro-

telemanipulation systems [20].

Tele-manifacturing and tele-maintenance is furthermore

studied in first multi-user scenarios, which are enhanced

by highly sophisticated systems for locomotion and ma-

nipulation [21]. Rate-controlled locomotion interfaces are

compared to a mobile human-system interface that allows

walking around freely and thus experiencing a natural fee-

ling of locomotion [22]. A combination of admittance-type

haptic interfaces providing arm force feedback [23] and hand

exoskeletons for finger force-feedback enables realistic inter-

action with the remote environment. Parameters of bilateral

control algorithms are selected to guarantee stable interaction

even in the case of closed kinematic chains over objects.

By using special augmentations of the visual, auditory, and

haptic feedback channel the feeling of telepresence can be

significantly improved.

One of the projects, e.g., implements location unbound

views and predicted video information to assist the human

operator in performing certain tasks, see [24], [25]. For this

purpose 3D scene information is captured by using a PMD

sensor mounted on top of the telerobot. Combining these

images, a 3D representation of an arbitrary scene can be

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1092



produced. Combining these images, a 3D representation of

the teleoperator’s immediate surrounding can be produced.

Combining color information retrieved by two video cameras

with the created 3D model a quite immersive representation

is obtained. To enable the teleoperator to react on sudden

changes, the system projects live video data onto the 3D

model in real-time while recent depth data from the PMD

Sensor is integrated perpetually.

3D audio information significantly enhances the feeling

of telepresence. The teleoperator used in the experiments is

a humanoid robot equipped with an artificial head and two

silicon ears. Microphones are accurately inserted inside the

ear canals. Using this hardware setup a sound localizer has

been developed which is able to detect randomly moving

sound sources in space. Using real-time binaural sound

synthesis over headphones these sound sources are displayed

to the human operator in a spatially correct manner, see [26],

[27] for more information.

Finally, also haptic augmentation is used to improve the

sensation of physically interacting with the remote environ-

ment [28]. An actuated data glove has been built to display

object properties like surface roughness and weight. As the

technical system is restricted in its rendering capabilities,

human perception processes are studied with special focus

on intra-modal dependencies. Appropriately modified visual

and auditory stimuli are adopted to increase immersion when

haptically interacting with a virtual environment. Performed

studies finally lead to new design guidelines for future

teleoperation systems [29].

In the collaborative research center institutes of the Tech-

nische Universität München, the German Aerospace Center,

the University of Armed Forces, as well as the Ludwig-

Maximilians Universität München collaborate in creating

High-Fidelity Telepresence and Teleaction systems.
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