
BM: An Iterative Algorithm to Learn Stable Non-Linear Dynamical
Systems with Gaussian Mixture Models

S. Mohammad Khansari-Zadeh and Aude Billard
Ecole Polytechnique Federale de Lausanne, LASA Laboratory
{mohammad.khansari,Aude.Billard}@epfl.ch

Abstract— We model the dynamics of non-linear point-to-
point robot motions as a time-independent system described by
an autonomous dynamical system (DS). We propose an iterative
algorithm to estimate the form of the DS through a mixture
of Gaussian distributions. We prove that the resulting model
is asymptotically stable at the target. We validate the accuracy
of the model on a library of 2D human motions and to learn
a control policy through human demonstrations for two multi-
degrees of freedom robots. We show the real-time adaptation
to perturbations of the learned model when controlling the two
kinematically-driven robots.

I. INTRODUCTION

We consider robot tasks that can be decomposed into
sequences of point-to-point motions, i.e. movements in
space stopping at a given target [1]. Modeling point-to-
point motions thus provides basic components, so-called
motion primitives, for robot control [1], [2]. These motions
primitives can be seen as a basis, from which multiple desired
robot tasks can be formed. As an example, consider the
standard ”pick-and-place” task, which can be decomposed
as follows: First reach to the item, then after grasping move
to the target location, and finally return home after release.
Programming by Demonstrations (PbD) can be used to learn
such motion primitives from a few demonstrations1 of the
motions performed by a trained agent (human or robot) [1],
[3]–[5]. In this paper, we focus on learning point-to-point
motions using PbD. When learning point-to-point motions
several desiderata should be taken into account: the system
should be robust to temporal and spatial perturbation2, it
should autonomously adapt its parameter to suit change in
the motion dynamics and in the complexity of the path, and
it should generalize to be applicable to contexts not seen
during training.

Dynamical systems (DS) have been recently advocated
as a powerful means of modeling robot motions [5]–[7].
In this paper, we take such an approach and represent a
demonstrated motion as an autonomous (time independent)
non-linear first order Ordinary Differential Equation (ODE).
Autonomous ODE models have the advantage of being
inherently robust with respect to temporal perturbations. Fur-
thermore, these models are flexible in terms of generalizing a

1A demonstration is composed of a set of time sequenced points in either
cartesian or joint space that forms a motion.

2Temporal perturbation causes the robot execution to be delayed (e.g.
when slowed down because of friction in the gears) while spatial pertur-
bations causes the robot to depart from its original trajectory (e.g. when
slipping or hitting an object).

motion to parts of space not seen before, and can immediately
adapt to spatial perturbations. We first show that though
existing regression techniques can be used to estimate the
underlying ODE, they fail to handle the classical problem of
ODE functions that has been posed repeatedly in the field
of dynamics, i.e. stability. Therefore, we propose a learning
procedure, called Binary Merging (BM), that tackles the
problem of estimating (identifying) an unknown non-linear
dynamical system from a few demonstrations while ensuring
its global stability.

In comparison, classical approaches such as spline-based
methods [8], [9] or a range of alternative techniques using
non-linear regression techniques that have been proposed
over the years [2], [3] suffer from explicit time-dependency,
which makes them sensitive to both temporal and spatial
perturbations. To compensate, one needs a heuristic to re-
index a new trajectory in time, while optimizing a given cost
function that measures how well the new trajectory follows
the desired one. Finding a good heuristic is highly task-
dependent and a non trivial problem, and thus it becomes
particularly no intuitive when considering high-dimensional
state spaces [5].

This paper is structured as follows. In Section II, we first
formalize the problem as a stochastic system composed of a
mixture of Gaussians. In Section III, we briefly review the
shortcomings of existing methods. In Section IV we develop
conditions for ensuring stability of stochastic systems, and in
Section V we describe an iterative method to build a Gaus-
sian Mixture that satisfies these conditions. In Section VI,
we present the experimental validation of the method, and
finally we devote Section VII to summary and discussions.
Further materials on BM are available at:

http:// lasa.epfl.ch/sourcecode/

II. PROBLEM STATEMENT

Definition 1 Let the set of N demonstrations
{ξt,n, ξ̇t,n}N,Tn

n=1,t=1 be instances of a global motion
model governed by a first order autonomous ordinary
differential equation (ODE):

ξ̇t,n = f(ξt,n) (1)

where ξt,n ∈ ℜd, its time-derivative ξ̇t,n ∈ ℜd are vectors
describing completely the robot’s motion3, and f : ℜd → ℜd

3E.g. ξ could be a robot’s joint angles or the position of an arm’s end-
effector in the Cartesian space, and ξ̇ the first order derivative of the latter.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2381



is a non-linear continuous and continuously differentiable
function with a single equilibrium point ξ̇∗ = f(ξ∗) = 0 4.

Based on the set of demonstrations, one can build an
estimate f̂ of f (we will further use the symbol (̂.) to denote
estimation values).

Definition 2 f̂ is a stable estimate of f in ℜd if 1) it has
a single attractor ξ∗: f̂(ξ∗) = 0 and 2) if any trajectory
{ξt, ˆ̇ξt}Tt=1, generated by f̂ converges asymptotically to ξ∗:

lim
t→∞

f̂(ξt) = ξ∗ ∀ξt ∈ ℜd (2)

Non-linear dynamical systems are prone to instabilities.
Ensuring that the estimate f̂ results in asymptotically stable
trajectories, i.e. trajectories that converge asymptotically to
the attractor as per (2), is thus a key requirement for f̂ to
provide a useful control policy. A second key requirement is
that the estimate follows closely the dynamics of the demon-
strations, see Figure 1 for an example illustrating the above
two desiderata. We evaluate the latter through a measure
of the accuracy e with which f̂ approximates the overall
dynamics of the underlying model f . This can be quantified
by measuring the discrepancy between the direction and
amplitude of the estimated and observed velocity vectors
for the Tn training points of each demonstration trajectory
{ξt,n, ξ̇t,n}N,Tn

n=1,t=1:

e(ξ̇n,
ˆ̇
ξn) =

(
1
Tn

∑Tn

t=1 r(
ξ̇t,n.

ˆ̇
ξt,n

∥ξ̇t,n∥∥ ˆ̇ξt,n∥+ϵ
)2 +

q (ξ̇t,n− ˆ̇
ξt,n)T (ξ̇t,n− ˆ̇

ξt,n)

∥ξ̇t,n∥∥ξ̇t,n∥+ϵ

) 1
2

(3)

where r and q are positive scalars that weight the relative
influence of each factor. ϵ is a very small positive scalar.

Note that the dynamics can be accurately estimated only
in an area around the demonstration datapoints. Such an area
is illustrated in green in Figure 1. Outside this region, lack
of precise information regarding the original dynamics of the
motion leads the system to follow a default dynamics that is
asymptotically stable at the target.

A. Problem Formulation

To construct f̂ from the set of demonstration trajectories
{ξt,n, ξ̇t,n}N,Tn

n=1,t=1, we follow a statistical approach and
define f̂ as a non-linear combination of a finite set of
Gaussian functions.

Definition 3 Consider a finite set of k = 1..K Gaussians
G1 through GK . Let µk and Σk be the mean and covariance
matrix of Gaussian Gk. For a set of N demonstration trajec-
tories {ξt,n, ξ̇t,n}N,Tn

n=1,t=1, each point [ξt,n, ξ̇t,n] is associated
a probability p(ξt,n, ξ̇t,n):

4Motions defined as per Eq. 1 should be used in conjunction with a low-
level controller to compute the required force/torque for a robot to execute
a motion trajectory.

−50 0 50 100 150 200 250 300

−100

−50

0

50

100

150

ξ 2
(m

m
)

ξ1(mm)

0 510
0
5

10

 

 

Target

Demonstrations

µ

Σ

D

Reproductions

Fig. 1. Given a set of demonstrations, we build an estimate of the
underlying dynamics of motion such that it is asymptotically stable at the
target while following accurately a specific path with a particular dynamics.
The green area highlight the region of the demonstrations, where the
dynamics is known and followed accurately.

p(ξt,n, ξ̇t,n) =
1

K

K∑
k=1

Gk(ξt,n, ξ̇t,n;µk,Σk)

{
∀n ∈ 1..N
t ∈ 1..Tn

(4)
and

µk =

(
µk
ξ

µk
ξ̇

)
& Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(5)

The probability density function of the model
Gk(ξt,n, ξ̇t,n;µk,Σk) is then given by:

Gk(ξt,n, ξ̇t,n;µk,Σk) =
1√

(2π)d|Σk
ξ
|
e−

1
2 ([ξ

t,n,ξ̇t,n]−µk)T (Σk)−1([ξt,n,ξ̇t,n]−µk) (6)

To generate a new trajectory from the Mixture of Gaus-
sians, one can then sample from the probability distribution
function given by Eq. 4, by computing the expectation on
the posterior of the distribution, i.e. ξ̇ = f̂(ξ) = E{p(ξ̇|ξ)}.
This can be expressed as a weighted sum of linear dynamical
systems given by:

ˆ̇
ξ =

K∑
k=1

hk(ξ)(Akξ +Bk) (7)

where Ak = Σk
ξ̇ξ
(Σk

ξ )
−1, Bk = µk

ξ̇
− Akµk

ξ , hk(ξ) =
p(ξ;µk

ξ ,Σ
k
ξ )∑K

k=1
p(ξ;µk

ξ
,Σk

ξ
)
, hk(ξ) > 0, and

∑K
k=1 h

k(ξ) = 1.

The non-linear weighting terms hk in Eq. (7) give a
measure of the relative influence of each Gaussian locally.
The projection through Akξ+Bk is equivalent to performing
a local linear fit onto data assigned to each Gaussian. Each
weighting term hk is inversely proportional to the variance
of the data locally: the more variance (the less accurate the
demonstrations), the less influence. Such a rewriting will
prove useful to study the stability of the estimate as will
be discussed in Section IV.

III. BUILDING AN ESTIMATE OF THE DYNAMICS

Existing approaches to the statistical estimation of f̂ use
either Gaussian Process Regression (GPR) [10], Gaussian
Mixture Regression (GMR) [4] or Locally Weighted Pro-
jection Regression (LWPR) [11]. GPR builds an accurate

2382



estimate of non-linear functions, but the method is ill-suited
for applications requiring fast computation because GPR’s
computational costs scale cubically with the number of train-
ing examples. LWPR in comparison offers a cost-efficient
method for non-linear function approximation; see [12] for
a comparison. LWPR describes the system through a finite
combination of Gaussians. Parameters are estimated in one-
shot learning through linear regression. LWPR, however, is
very sensitive to the choice of parameters at initialization and
relies on manual tuning to achieve high accuracy. Attempts
at combining both approaches to achieve high-precision at
bearable computational costs provide a promising route [13].
However, they remain computationally costly as the iteration
steps increase linearly with the number of data points.
Parametric techniques such as Gaussian Mixture Regression
using Expectation Maximization learning (GMR-EM) pro-
vide an alternative method to modeling non-linear trajecto-
ries. GMR-EM usually requires much fewer parameters than
the other mentioned methods, but is less accurate. Critical
concerns with GMR-EM are that it requires a heuristic to
find the optimal number of Gaussian kernels, and the final
results are sensitive to initialization.

Irrespective of whether these methods are accurate, fast,
etc., they cannot be used to estimate dynamical systems as
per Eq. 1, mainly because they do not take into account
the stability of the dynamical system they model5. They
often result in unstable estimates of the function f . This
is illustrated for GMR-EM and LWPR in Figure 2.

To address the instability issue, the Dynamic Motor Prim-
itive (DMP) method [6] was proposed. DMP couples the
estimate of f̂ learned through Locally Weighted Regression
(LWR)6 with a stable linear dynamical system. Global stabil-
ity is ensured by giving precedence to the linear dynamical
system when approaching to the target, so that the dynamics
are then dominated by the stable linear dynamical system.
This method, however, has two drawbacks: First, modulation
between the two dynamics (the dynamics inferred from the
demonstrations and the linear DS) is done using a phase
variable which decreases exponentially as time passes by.
This phase variable makes the system time dependent and
hence sensitive to temporal perturbations. For example, if
a perturbation causes some delay in the execution time,
this results in having a considerable error in the estimation
(see Figure 2). Second, modeling multi-dimensional systems
with DMP is done by learning one DS for each dimension
separately, hence neglecting the combined effect of all the
dimensions in the motion. As a result, a heuristic is required
to synchronize the DS controlling for each dimension. The
recent modifications on DMP [14] do not address these
issues.

In this paper, we introduce an iterative method, Binary
Merging (BM), for building a multi-dimensional Gaussian

5GMR-EM and GPR optimize the likelihood that the complete model
represents the data well. LWPR minimizes the mean-square error between
the estimate and the data.

6LWR was used here because learning was performed on each dimension
separately and thus did not require the local projection performed by LWPR.

−50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

ξ1

ξ 2

 

 

Demonstrations BM GMR−EM LWPR DMP Target x
0

−20 0 20

−20

−10

0

10

Fig. 2. An example of two-dimensional dynamics estimated on the basis
of three training examples, using four different methods: BM, GMR-EM,
LWPR, and DMP.

Mixture Model (GMM). The method minimizes the number
of Gaussians required for achieving both asymptotic stability
at the target and high accuracy in estimating the dynamics of
motion (Figure 2). Next, we formalize the conditions for such
a mixture to provide stable dynamics, as per Definition 2.

IV. STABILITY ANALYSIS

We start by defining conditions for the estimate f̂ to
be asymptotically stable in ℜd and to accurately follow
demonstrations within a region D of the state space (that
covers entirely the part of the state space spanned by the
demonstrations). We proceed by first determining a partition
of D. We then define the effect of the Gaussian Mixture in
each partition and determine conditions in each partition for
ensuring stability in D. Then we extend these conditions to
ensure global stability of the dynamics on ℜd.

First, without loss of generality, we can assume that ξ∗,
the unique stable attractor of f , is located at the origin, so
that f(ξ∗) = f(0) = 0 and by extension f̂(ξ∗) = f̂(0) = 0.
Let us then reverse the temporal ordering of datapoints in the
demonstrations {ξt,n, ξ̇t,n}N,Tn

n=1,t=1, such that t = Tn refers
to the onset of the motion and t = 1 to the end of the motion.
The motion then evolves in time from ξT

n → ξt → ξ1.
Let D ⊂ ℜd be the region where the demonstrated motion

can be estimated accurately through f̂ :

Definition 4 Consider a set of scalars δk ≥ 0, k = 1..K:

δk = α min
ξt,n∈Ωk

(p(ξt,n)) (8)

where p(ξ) is the probability of ξ estimated from Eq. 4 and
0 < α ≤ 1 is a constant. Then the region D such that

D = { ξ ∈ ℜd : p(ξ) ≥ δk} (9)

defines a partition of the space that comprises all training
datapoints. D̃ = ℜd \D is the complement of D in ℜd.

This definition of δk ensures that all training datapoints
are included in D. As α decreases, the width of D increases;
however, at the cost of depreciating the accuracy of the model
over D.

To study the stability of f̂ , we partition D into K
pairwise disjoint continuous subregions Ωk via hyperplanes

2383



ξ1

ξ 2

 

 

D

µ

Σ

v3

v4

v7

Φ7

Ω6

Ω5

Ω4

Ω1

Φ2

Φ6

Φ5

Φ4

Φ3Ω2

Ω3

v5

v6

Φ1

v1

v2

Ω7

Fig. 3. Representation of subdomains Ωk(ξ) for a sample 2-D model.
Please see the text for further information.

Φk, k = 1..K (see Appendix I). Each hyperplane Φk forms
a boundary between the two adjacent subdomains Ωk and
Ωk+1 (see Figure 3). In each subdomain Ωk ⊂ D we
truncate the estimate given by Eq. 7 so that the dynamics
are driven solely by the two dominant Gaussians Gk and
Gk+1. Because hk(ξ) decays asymptotically as one moves
away from the center of the associated Gaussian, the effect
of truncating the influence of non-adjacent Gaussians is in
practice negligible7.

Since training is based on data covering only a subpart
of the domain (the domain D), outside D the resulting
estimate f̂ of the dynamics may not have the same attractor
landscape and basin of attraction as the original system, even
if it approximates with high accuracy the original system
locally8. In other words, outside D, the dynamics may be
unstable and have local attractors that are different from the
origin of the system. Thus, to ensure that f̂ has a single
attractor on ℜd, outside D the value of f̂ depends on the
Gaussian G1 given by Eq. 10-b. We will show later in this
section how we can construct this Gaussian to ensure that
ξ∗ is the sole attractor of the system driven by Eq. 10-b.


(a-1): ˆ̇

ξ = f̂(ξ) = hk+1(ξ)(Ak+1ξ +Bk+1)+

+hk(ξ)(Akξ +Bk) ∀ξ ∈ Ωk & k ∈ 1..K − 1

(a-2): ˆ̇
ξ = f̂(ξ) = AKξ +BK ∀ξ ∈ ΩK

(b): ˆ̇
ξ = f̂(ξ) = A1ξ ∀ξ ∈ D̃

(10)

According to Eq. 10, the system follows the demonstra-
tions accurately for all points ξ ∈ D (i.e. Eq. 10-a). For
points outside of D the system moves toward the target
following solely the dynamics derived from the Gaussian
G1 (Eq. 10-b).

Theorem 1: Assume that the state trajectory evolves accord-
ing to Eq. 10. Then the origin of Eq. 10 is asymptotically

7This is especially true if the distance between the centers of the
Gaussians is much larger than the variance of each Gaussian. Note that
this formulation makes ˆ̇

ξ discontinuous at the boundaries between the
subregions. This however does not affect the proof of Theorem 1, since
the conditions Eq. 11 do not require continuity at the boundaries [15], [16].

8This is true irrespective of the technique (e.g. GMR, LWPR, GPR, etc)
used for estimating f̂ .

stable if the parameters of f̂ (i.e. µk and Σk, ∀k = 1..K)
are constructed such that



(a) B∗ = h1(0)B1 + h2(0)B2 = 0 ξ = 0 ∈ Ω1

(b)


(ξ − µk+1

ξ )T (Σk+1
ξ )−1 ˆ̇ξ > (ξ − µk

ξ )
T (Σk

ξ )
−1 ˆ̇ξ

∀ξ ∈ Ωk & ξ ̸= 0 & ∀k ∈ 1..K − 1

(ξ − µK
ξ )T (ΣK

ξ )−1 ˆ̇ξ < 0 ∀ξ ∈ ΩK

(c) (υk)T
ˆ̇
ξ > 0 ∀ξ ∈ Φk & ξ ̸= 0 & ∀k ∈ 1..K

(d) starting from any point ξ0 ∈ D, the trajectory
remains in D, i.e. {ξt}∞t=0 ∈ D

(e) Σ1
ξ̇ξ
(Σ1

ξ)
−1 is negative definite

(11)

To elaborate more, condition (a) puts a constraint on Eq.
10 to force the origin to be an equilibrium point. Condition
(b) defines criteria to ensure that starting from any point
ξ ∈ Ωk, the energy of the system (i.e. Lyapunov Function)
asymptotically decreases as motion evolves. Condition (c)
ensures the transition of motions from one partition to
another partition at the boundaries Φk (in this equation, υk

correspond to the normal vector of the hyperplanes Φk).
Condition (d) is necessary to avoid possible cyclic behavior
in the system defined by Eq. 10. Putting together conditions
(a)-(d), the system becomes asymptotically stable at the
origin for all trajectories inside D, i.e. Eq. 10-a. Condition
(e) constructs the Gaussian G1 such that all eigenvalues of
A1 become negative, and hence make f̂ asymptotically stable
at the origin for all points outside D, i.e. Eq. 10-b.

Proof: See Appendix II.

V. LEARNING ALGORITHM

Section IV provided us with conditions whereby the
estimate, produced according to our state evolution paradigm
(Eq. 10), is asymptotically stable at the origin in ℜd. It
remains now to determine a procedure by which we can
construct a mixture of Gaussians to satisfy the conditions
given in Eq. 11. Not only should the estimate be stable ac-
cording to our earlier definition, but it should also provide an
accurate estimate of the overall dynamics. Given a maximal
accepted error emax, estimates of the dynamics are accurate
if

ē =
1

N

N∑
n=1

e(ξ̇n,
ˆ̇
ξn) ≤ emax (12)

where e is given by Eq. 3.
BM proceeds in two steps. First it initializes a model with

the maximum possible number of Gaussians. Then it incre-
mentally reduces the number of Gaussians to a minimum
number (locally), which satisfies the stability criteria while
keeping the error of the estimates below a certain level.
Algorithm 1 shows the pseudocode of the BM procedure.
Next, we briefly explain the main steps.

Initialization: First, demonstration trajectories are aligned
using a sample alignment method [17]. These trajectories
usually differ in length, as they may have been performed at

2384



different speeds. With sample alignment, demonstrations are
aligned such that data points with the same time stamp have
the most similarity based on a specified fitness function. The
output of sample alignment is N demonstrations all of length
T . Sample alignment differs from Dynamic Time Warping
in that it does not distort the temporal transitions between
datapoints in a demonstration. Figure 4-(a,b) illustrates the
sample alignment procedure.

We use the time stamps that result from sample alignment
to initialize the Gaussian mixture9. Let {ξt,n, ˆ̇ξt,n}N,T

n=1,t=1

consists of the realigned set of demonstrated trajectories.
We build K = T Gaussians Gk with the time indices
tk = k and k = 1..K. The mean and covariance of a Gaus-
sian Gk is computed from a subset of the demonstrations
{ξt,n, ξ̇t,n}N,tk

n=1,t=tk−1+1
using:µk = mean

(
{ξt,n, ξ̇t,n}N,tk

n=1,t=tk−1+1

)
Σk = cov

(
{ξt,n, ξ̇t,n}N,tk

n=1,t=tk−1+1

) (13)

where t0 = 0 < t1 < · · · < tK = T . We will further use the
format Gk

(
{ξt, ξ̇t}tktk−1+1

)
to represent such a construction.

When tk−1 + 1 = tk we shorten the representation using
Gk
(
{ξtk , ˙ξtk}

)
.

Iteration: Iteration proceeds as follows. A pair {Gk,Gk+1}
of adjacent Gaussians is picked at random and merged into a
new Gaussian, by computing the new means and covariances
on the union of data points associated to each of the two
Gaussians using Eq. 13 (i.e. Gk

(
{ξt, ξ̇t}tk+1

tk−1+1

)
). If the

region defined by this pair satisfies the conditions in Eq.
11 and the error given by Eq. 12 does not increase, then
the merged Gaussian replaces the two selected Gaussians.
The new model is now composed of K − 1 Gaussians. The
procedure terminates when it is no longer possible to merge
any pair of Gaussians without decreasing the accuracy or
becoming unstable. The model converges within a maximum
T (T −1)/2 iterations10. Such a learning procedure results in
a higher number of Gaussians along curvatures in the motion
(e.g. observe that the straight parts in Figure 3 require fewer
Gaussians than the highly curved parts). Note that BM does
not ensure that the globally minimal number of Gaussians is
obtained (the algorithm finds the local minimum), and several
derivation of the model must be done to ensure that random
sampling leads to a better solution than the initial one.

VI. EXPERIMENTAL RESULTS

The algorithm was validated to control the point-to-point
motions of two kinematically driven robots: a 6 degrees of
freedom (DOF) Katana-T arm and the 4DOF right arm of the
humanoid robot Hoap-3. We also further examine the method
for 20 different dynamics through simulation data generated

9The distortions resulting from aligning the trajectories are negligible if
the sampling granularity is large.

10The maximum number of iteration happens when no merging is possible
at the initialization. Thus the algorithm stops after examining the stability
and accuracy criteria for all possible combinations of Gaussians.

(a)

ξ 2

 

 

Demo 1

Demo 2

Demo 3

µ

Σ

(b) (c)

(d)

ξ1

ξ 2

ξ1

(e) (f)

ξ1

Fig. 4. Binary Merging (BM) learning algorithm. (a) Data points from three
demonstrations. (b) Resultant trajectories after applying sample alignment.
Points corresponding to the same time index are connected by a line.
(c)Initialization step. (d) The GMM is updated by iteratively merging two
pairs of adjacent Gaussians (2 with 3 and 5 with 6). (e) Because the new
Gaussian resulting from the merging of 4 with 5 (shown in dark color)
violates the stability criteria Eq. 11, the model remains unchanged. (f) Final
model after termination.

using a Tablet PC. Training data was provided by a human
expert 3-5 times for each example. In order to demonstrate
the ability of the proposed algorithm to learn arbitrary
dynamics, we chose tasks displaying characteristics typical
of non-linear ODE dynamics with a single equilibrium point.

The first task, represented in Figure 5, consists of having
the robot draw lines in a constrained 2D area. This task
illustrates well the importance of having a stable controller
that closely follows the learned dynamics. The second task
requires the robot to move an object while avoiding an
obstacle11 (see Figure 6). The simulation results using a
Tablet PC are also illustrated in Figure 7 (4 out of a total
of 20 performed). In these tasks, inaccurate modeling may
result in 1) a trajectory departed from the demonstrated one,
2) having a velocity profile different from the demonstrated
one, or 3) the system converging to a spurious attractor.

We compared the performance of the proposed method
(BM) against those of three alternative methods 1) LWPR,
2) GMR-EM, and 3) DMP. We tuned all initialization
parameters of these methods so that they would, at least,
follow the desired motion, while achieving the best possible
performance in having the same velocity profile as the
demonstrations. Quantitative performance comparisons are
given in Table I. GMM with BM outperforms all other
methods in that it is able to converge asymptotically to the
target, while achieving comparable accuracy in following the
dynamics, as shown in Table I. Moreover, it does so using a
much smaller number of parameters than LWPR and DMP.
Note that because GMR with EM requires a fixed set of
Gaussians, we used the number of Gaussians found with BM
at initialization. Similarly, the number of Gaussians used in
DMP was initialized with that found with LWPR for the
same task.

11Currently BM does not explicitly consider the constraints of these
examples in its learning procedure. However, BM is able to satisfy them
by accurately following demonstrations in the domain D. However, if a
trajectory starts outside D, it may violates the task’s constraint(s).

2385



TABLE I
PERFORMANCE COMPARISON OF THE MOTION GENERATION METHODS IN LEARNING 20 DIFFERENT POINT TO POINT MOTIONS

Method GMR-BM GMR-EM LWPR DMP
Average of ē 0.1887 0.1538 0.2013 1.6809
Range of ē 0.1489 - 0.2537 0.1142 - 0.2179 0.1371 - 0.3796 0.9893 - 4.8664

Average number of Gaussians 8 8 35 35
Range of number of Gaussians 3 - 15 3 - 15 8 - 62 8 - 62

The way the number of Gaussians is specified Automatic Manual Automatic Manual
Average number of parameters to encode the dynamics 10*8 = 80 11*8 = 88 21*35 = 735 2*(4+3*35)=218

Consider stability / Type of stability Yes / Global No / — No / — Yes / Global
Supporting multidimensional data Yes Yes Yes No

Adapt the model based on the dynamics complexity Yes Yes No No

Algorithm 1 Binary Merging (BM)

Input: {ξt,n, ξ̇t,n}N,Tn

n=1,t=1, r, q, and emax

1: Initialization
2: Transfer ξ∗ to the origin.
3: Apply sample alignment to get N demonstrations, all of

length T .
4: Reverse the order of the datapoints for all demonstra-

tions.
5: Define tk = k, ∀k ∈ 1..T

6: Create a GMM Γ = {G1..GK} using Gk
(
{ξtk , ˙ξtk}

)
as per Eq. 13.

7: Main Body
8: while K > 1 & further merging is possible do
9: Backup the previous model Γ̃← Γ

10: Randomly select an index k ∈ 1..K − 1

11: Replace Gk → Gk
(
{ξt, ξ̇t}tk+1

tk−1+1

)
by merging Gk

and its adjacent Gk+1.
12: Remove Gk+1 and correct the numbering of Gaussians

Gi−1 = Gi and time indices ti−1 = ti, ∀i ∈ k+1..K
13: K ← K − 1
14: if conditions of Theorem I are violated or if Eq. 12

is no longer satisfied then
15: Recover the previous model Γ← Γ̃
16: Set K ← K + 1
17: end if
18: end while
Output: Γ = {G1, ..., GK}

VII. SUMMARY AND DISCUSSION

In this work, we presented the Binary Merging (BM)
learning method for encoding point-to-point motions as a first
order autonomous non-linear ODE. The underlying assump-
tions for BM are: 1) there is only one point with zero velocity
in demonstrations, 2) all demonstrations are relevant, and
3) motions evolve according to Eq. 10. The main advantages
of BM are: 1) The estimate of the underlying dynamical
system is globally stable at the target. 2) It is robust to per-
turbations12. 3) The produced trajectories accurately follow
the motion dynamics for all points within the region covered

12This is a property of all stable single attractor dynamical systems. When
a perturbation disturbs the motion, the system automatically adapts itself to
the new condition and converges to the target.

−200 −100 0 100

0

50

100

150

200

ξ1(mm)

ξ 2
(m

m
)

 

 

−200 −100 0 100

0

50

100

150

200

ξ1(mm)

ξ 2
(m

m
)

Fig. 5. The Hoap-3 robot performing the experiment of drawing lines in
a constrained 2D area.

by demonstrations. 4) The number of required parame-
ters are automatically set based on the motion complexity.
5) The number of tweaking parameters needed to initiate the
learning procedure is small. 6) Fewer parameters are required
compared with competitive methods. 7) The learning method
is multi-dimensional and thus captures information about the
correlation across state dimensions.

However, it is important to emphasize that while BM
offers a relatively better performance than the other three
methods, it does so at the cost of being much more com-
putationally intensive than LWPR and DMP during training.
While LWPR and DMP’s training procedures increase with
the dimension of the data and are of order O(d) and O(d2)
respectively [11], BM is of order O(K ∗ N ∗ d). The
complexity of BM is however small compared to GPR, but
comparable to its novel extension [13] that increases linearly
in the number of data points for both training and retrieval.
Similarly to LWPR and DMP, and in contrast to GPR,
BM’s computational costs for the retrieval procedure are
low and increase linearly with the number of parameters13.
Since the Gaussian mixture trained with BM results in fewer
parameters, the computation time is usually lower, which
may be advantageous for real-time control.

13GMR with Expectation-Maximization is unbounded. Each maximiza-
tion step is however also of order O(K ∗N ∗ d).

2386



Fig. 6. The Katana-T arm performing the experiment of moving an object
while avoiding an obstacle.

An assumption made through this paper is that represented
motions can be modeled with a first order time-invariant
ODE. While the nonlinear function given by Eq. 10 is able
to model a wide variety of motions, the method cannot be
used for some special cases violating this assumption. Most
of the time, this limitation can be tackled through a change
of variable. For example a self-intersecting trajectory or a
motion for which the starting and final points coincide with
each other (e.g. a triangular motion) cannot be modeled
through Eq. 10 if ξ codes solely for the end-effector cartesian
position (i.e. ξ = x ⇒ ξ̇ = ẋ). But, if information about
velocity is added (i.e. ξ = [x; ẋ] ⇒ ξ̇ = [ẋ; ẍ]), the system
can disambiguate the direction of motion at the intersection
and hence successfully encode the dynamics of motion.

Furthermore it should be noted that while the stability
condition given by Eq. 11-b should be verified for all points
inside D, in practice due to non-linearity of f̂ this verification
can only be checked numerically on a mesh of datapoints
defined over D [18]. The required granularity of the mesh
depends on the level of complexity of a motion. Using a low
granular mesh for highly non-linear function may result in
error in evaluating the stability of f̂ . Thus it is necessary to
tune the granularity of mesh such that it captures the non-
linearity of the dynamics while keeping the computation time
as small as possible.

As for future work, we are currently working extending
BM to encode point-to-point motions for force/torque driven
robots. This requires constructing the underlying dynamical
system as a second order ODE. We will also focus on
investigating a learning method that captures several different
dynamical motions into one single model. This idea is in-
spired by human body motion: humans often follow different
dynamics to execute a single task starting from different areas
in the task space, depending on the whether he is considering
his joint limits, the task constraints, or simply energy saving.

Target Demonstrations µ Σ D Reproductions

−200 −100 0 100 200

−200

−100

0

100

200

ξ1(mm)

ξ 2
(m

m
)

−200 −100 0 100 200

ξ1(mm)

0 50 100 150 200

−100

0

100

ξ1(mm)

ξ 2
(m

m
)

0 50 100 150 200

ξ1(mm)

0 50 100 150

0

100

200

300

ξ1(mm)

ξ 2
(m

m
)

0 50 100 150

ξ1(mm)

−400 −300 −200 −100 0

0

50

100

ξ1(mm)
ξ 2

(m
m

)
−400 −300 −200 −100 0

ξ1(mm)

(a)

(b)

(c)

(d)

Fig. 7. Performance evaluation of learning different non-linear dynamics.
Only 4 of 20 examples are shown here. Each row represents one motion.

ACKNOWLEDGMENT

This work was supported by the European Commission
through the EU Projects FEELIX-GROWING (FP6-IST-
045169) and ROBOT@CWE (FP6-034002).

APPENDIX I
DEFINITION OF HYPERPLANES AND SUBREGIONS

Definition 5 Consider a finite set of k = 1..K Gaussians
numbered G1 through GK . Let µk and Σk be the mean and
covariance matrix of Gaussian Gk, as given by Eq. 5. Let
the vector υk be the eigenvector of Σk

ξ forming the smallest
angle with µk

ξ̇
(i.e. υk is the eigenvector pointing towards

the direction of motion). Then Φk is the hyperplane through
µk
ξ and normal to υk:

Φk : υk · (ξ − µk
ξ ) = 0 (14)

Definition 6 The state-space domain D is partitioned into

K pairwise disjoint continuous subregions Ωk,
K∪

k=1

Ωk = D,

Ωk ∩ Ωj = ∅, ∀k, j ∈ 1..K and j ̸= k. Each subregion Ωk

is a part of D bounded by the hyperplanes Φk and Φk+1,
s.t.

2387





Ω̂k = { ξ ∈ D : υk+1 · (ξ − µk+1
ξ ) > 0 &

υk · (ξ − µk
ξ ) ≤ 0} ∀k ∈ 1..K − 1

Ω̂K = { ξ ∈ D : υK · (ξ − µK
ξ ) ≤ 0}

Ωk = Ω̂k∩D −
K∪

j=1,j ̸=k

(Ω̂k ∩ Ω̂j) ∀k ∈ 1..K

(15)

APPENDIX II
PROOF OF THE THEOREM 1

Proof for Eq. 11-b: We start by recalling the following from
[15], [16]. Suppose there exist a continuously differentiable
non-linear system for which a piecewise Lyapunov function
V k(ξ) is defined for each subdomain Ωk. If ∀ξ ∈ Ωk there
exist positive constants αk, βk, and s > 0 such that:

(a): αk∥ξ∥s ≤ V k(ξ) ≤ βk∥ξ∥s ∀ξ ∈ Ωk

(b): V̇ k(ξ) < 0 ∀ξ ∈ Ωk & ξ ̸= 0

(c): V k(ξ) < V k+1(ξ) ∀ξ ∈ Φk

(16)

then the origin is asymptotically stable in the sense of
Lyapunov14. Consequently, given a system described by Eq.
10, and a positive scalar bk, for every subregion Ωk, we
define a Lyapunov function V k(ξ) of the form:{

V k(ξ) = Ek+1(ξ)
Ek(ξ)

+ bk ∀ξ ∈ Ωk & k ∈ 1..K − 1

V K(ξ) = 1
EK(ξ)

+ bK ∀ξ ∈ ΩK
(17)

where Ek(ξ) = e−
1
2 (ξ−µk

ξ )
T (Σk

ξ )
−1(ξ−µk

ξ ), ∀k ∈ 1..K. Note
that by construction V k(ξ) is positive, bounded, continuous
and continuously differentiable in Ωk, ∀k = 1..K. It can be
easily shown that there always exist positive scalar αk and
βk such that condition Eq. 16-a is satisfied. Similarly, one
can find a set of positive scalar bk to satisfy condition Eq.
16-c. Taking the derivative of V k yields15:

V̇ k(ξ, ξ̇) =
Ėk+1(ξ, ξ̇)Ek(ξ)− Ek+1(ξ)Ėk(ξ, ξ̇)

(Ek(ξ))2
(18)

V̇ k(ξ, ξ̇) (Eq. 18) is negative definite in each subregion Ωk

if and only if:

V̇ k(ξ, ξ̇) < 0

⇔ Ėk+1(ξ, ξ̇)Ek(ξ)− Ek+1(ξ)Ėk(ξ, ξ̇) < 0

⇔ Ėk+1(ξ,ξ̇)
Ek+1(ξ)

< Ėk(ξ,ξ̇)
Ek(ξ)

⇔
∂Ek+1(ξ)

∂ξ ξ̇

Ek+1(ξ)
<

∂Ek(ξ)
∂ξ ξ̇

Ek(ξ)

⇔ −(ξ−µk+1
ξ

)T (Σk+1
ξ

)−1Ek+1(ξ)ξ̇

Ek+1(ξ)
<

−(ξ−µk
ξ )

T (Σk
ξ )

−1Ek(ξ)ξ̇

Ek(ξ)

⇔ (ξ − µk+1
ξ )T (Σk+1

ξ )−1ξ̇ > (ξ − µk
ξ )

T (Σk
ξ )

−1ξ̇

Similarly, in ΩK we have:

V̇ K(ξ, ξ̇) < 0 ⇔ 0 > (ξ − µK
ξ )T (ΣK

ξ )−1ξ̇

which verifies conditions Eq. 11-b.

14Regarding the system described in Section IV, the only possible
transitions are from subregions Ωk+1 to Ωk via hyperplanes Φk (see Eq.
11-c), which results in having only one transition through each Φk .

15Note that both V and E are a function of ξ while their derivatives are
a function of both ξ and ξ̇.

Proof for Eq. 11-a: Let us assume that the origin (i.e. target)
is the only point where ˆ̇

ξ = f(0) = 0, and 0 ∈ Ω1. Solving
Eq. 10 for ˆ̇

ξ = 0 and ξ∗ = 0 ∈ Ω1 yields:

B∗ = h2(0)B2 + h1(0)B1 = 0

Note that without having this condition, it is impossible to
find appropriate αk, βk, and s > 0 to bound the Lyapunov
function around the origin (recall ξ∗ = 0 ∈ Ω1).

Proof for Eq. 11-e: Following from Eq. 7, observe that
A1 = Σ1

ξ̇ξ
(Σ1

ξ)
−1. If A1 is a negative definite matrix then all

its eigenvalues are negative, and hence the dynamics driven
by A1 is asymptotically stable.

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[2] D. Kulic, W. Takano, and Y. Nakamura, “Incremental learning, clus-
tering and hierarchy formation of whole body motion patterns using
adaptive hidden markov chains,” The International Journal of Robotics
Research, vol. 27(7), pp. 761–784, 2008.

[3] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE transactions on
systems, man and cybernetics, vol. 37, no. 2, pp. 286–298, 2007.

[4] M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Transactions on Robotics, pp. 1463–1467, 2008.

[5] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions: Biological
Sciences (The Royal Society), no. 1431, pp. 537–547, 2003.

[6] J. A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings of
the International Conference on Robotics and Automation (ICRA),
2002.

[7] D. Grimes, D. Rashid, and R. Rao, “Learning nonparametric models
for probabilistic imitation,” in Proceedings of the Advances in Neural
Information Processing Systems (NIPS), 2006.

[8] J.-H. Hwang, R. Arkin, and D.-S. Kwon, “Mobile robots at your
fingertip: Bezier curve on-line trajectory generation for supervisory
control,” in Proceedings of the IEEE/RSJ IROS, 2003.

[9] R. Andersson, “Aggressive trajectory generator for a robot ping-pong
player,” IEEE Control Systems Magazine, vol. 9(2), pp. 15–21, 1989.

[10] C. Rasmussen and C. Williams, Gaussian processes for machine
learning. Springer, 2006.

[11] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-
sion: An o(n) algorithm for incremental real time learning in high
dimensional space,” in Proceedings of the Seventeenth International
Conference on Machine Learning (ICML), 2000.

[12] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online
learning in high dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[13] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Local gaussian process
regression for real time online model learning and control,” in Pro-
ceedings of the Advances in Neural Information Processing Systems
(NIPS), 2008.

[14] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International conference on robotics and automation (ICRA), 2009.

[15] S. Pettersson and B. Lennartson, “Exponential stability analysis of
nonlinear systems using lmis,” in Proceedings of the 36th IEEE
Conference on Decision and Control, 1997.

[16] P. Borne and J.-Y. Dieulot, “Fuzzy systems and controllers: Lyapunov
tools for a regionwise approach,” Nonlinear analysis, pp. 653–665,
2005.

[17] C. Myers and L. Rabiner, “A comparative study of several dynamic
time-warping algorithms for connected word recognition,” The Bell
System Technical Journal, vol. 60, no. 7, pp. 1389–1409, 1981.

[18] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard, “Learning
nonlinear multivariate dynamics of motion in robotic manipulators,”
submitted.

2388


