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Abstract— In this paper we study online gait opti-
mization for modular robots. The learning strategy
we apply is distributed, independent on robot mor-
phology, and easy to implement. First we demonstrate
how the strategy allows an ATRON robot to adapt to
faults and changes in its morphology and we study the
strategy’s scalability. Second we extend the strategy
to learn the parameters of gait-tables for ATRON
and M-TRAN robots. We conclude that the presented
strategy is effective for online learning of gaits for
most types of modular robots and that learning can
effectively be distributed by having independent pro-
cesses learning in parallel.

I. INTRODUCTION

Modular robots are often designed with a distributed
and flexible morphology. The modules may be combined
in various ways to construct different robot configu-
ration and each module is controlled by it own local
microcontroller. These design characteristics entails that
conventional centralized control strategies are not always
a convenient choice for modular robots.

Instead we study distributed control strategies which
generally may have several advantages over centralized
strategies, e.g., in terms of ease of implementation, ro-
bustness, reconfigurability, scalability, biological plausi-
bility, etc. Specifically, for the purpose of online locomo-
tion learning, we study distributed adaptive strategies
where each module itself optimizes its own behavior
based on its local context and local interactions and
thereby indirectly optimizes the global behavior of the
robot. We hypothesize that such strategies may be more
robust and flexible since it may be indifferent to the
robot’s morphology and can online adapt to module
failures or morphology changes. Ultimately, we anticipate
that by studying such distributed strategies we may gain
insights into how adaptive sensory-motor coordination
can emerge and self-organize from billions of individual
cells in biological organisms.

In previous work we proposed and studied a dis-
tributed learning strategy appropriate for gaits optimiza-
tion in modular robots [2]. The strategy was simple
to implement and independent on the robot’s specific
morphology. We validated the strategy both in simula-
tion and on physical ATRON robots and found that the
strategy was sufficient to learn quite efficient locomotion
gaits for a large range of different morphologies up to
12-module robots. A typical learning trial converged in
less than 15 minutes depending on the size and type of

the robot. In this paper we give additional experimental
validation in simulation and propose an extension to this
previous published strategy. In Section III we summa-
rize the basic strategy and extend it to optimization
of gait-tables, which makes it applicable to most mod-
ular robots. The rest of the paper presents simulated
experiments. First with the basic strategy to study its
robustness and scalability and then with the extended
strategy for online optimization of gait-table controlled
ATRON and M-TRAN robots. Fig. 1 illustrates some
of the simulated robots we use for experiments in this
paper.

II. RELATED WORK

Here, we review related work on evolutionary adap-
tation and online learning of modular robots for the
task of locomotion. Karl Sims pioneered the field in the
early 90’s by co-evolving the morphology and control of
simulated modular robots [12]. Later works succeeded
in transferring the co-evolved robots from simulation to
hardware [6], [8]. An example of adaptation by evolution
in modular robots was conducted by Kamimura et al.,
who evolved the coupling parameters of central pat-
tern generators for straight line locomotion of M-TRAN
self-reconfigurable robots [4]. Although appealing, one
challenge with evolutionary approaches is to bridge the
reality gap and once transferred the robot is typically
no longer able to adapt. To solve this limitaiton opti-
mization of locomotion gaits can be performed online.
This was studied by Marbach and Ijspeert on the YaMoR
modular robotic system [9]. Their strategy was based
on Powell’s method, which performed a localized search
in the space of selected parameters of central pattern
generators. Parameters were manually extracted from the
modular robot by exploiting symmetries. Follow-up work
by Sproewitz et al. demonstrated online optimization of
7 parameters on a physical robot in roughly 15 minutes
[14]. As is the case in our paper, they try to realize
simple, robust, fast, model-less, life-long learning on a
modular robot. The main difference is that we seek to
automate the controller design completely in the sense
that no parameters have to be extracted from symmetric
properties of the robot. Further, our approach utilizes
a form of distributed reinforcement learning. A similar
approach was taken by Maes and Brooks who performed
distributed learning of locomotion on a 6-legged robot [7].
The learning was distributed to the legs themselves. Sim-
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Fig. 1. Various simulated ATRON and M-TRAN robots used in experiments.

ilarly, in the context of multi-robot systems, distributed
reinforcement learning has been applied for learning
various collective behaviors [10]. Our strategy is inde-
pendent on the robot’s specific morphology. Similarly,
Bongard et al. demonstrated learning of locomotion and
adaptation to changes in the configuration of a modular
robot [1]. They took a self-modeling approach, where
the robot developed a model of its own configuration by
performing basic motor actions. In a physical simulator
a model of the robot configuration was evolved to match
the sampled sensor data (from accelerometers). By co-
evolving the model with a locomotion gait, the robot
could then learn to move with different morphologies.
Our work presented here is similar in purpose but dif-
ferent in approach: Out strategy is simple, model-less
and computational cheap to allow implementation on the
small embedded devices that modular robots usually are.

III. ADAPTATION STRATEGY

A. Basic Learning Strategy

We utilize a simple stateless reinforcement learning
strategy where each module in the robot is controlled by
Algorithm 1. Initially each module executes all possible
actions, A, in random order and initializes its action
value estimation, Q[A], with the rewards received. After
this initialization phase, in a learning iteration, every
module will perform an action and then receive a global
reward for that learning iteration. Each module estimates
the value of each of its actions with an exponential
moving average, which suppress noise and ensures that
if the value of an action changes with time so will its
estimation. The algorithm can be categorized as a TD(0)
with discount factor γ = 0 and with no representation of
the sensor state [15].

A module can perform a small fixed number of actions.
Each module independently selects which action to per-
form based on a ǫ-greedy selection policy, where a module

Algorithm 1 Basic Learning Strategy.
/*
* Q[A] is expected reward R of choosing Action A.
* α is a smoothing factor
* 1 − ǫ is the proportion of “greedy” action selections.
*/
Initialize Q[A] = R, for all A evaluated in random order
loop

if max(Q) < R then

Repeat Action A
else

Select Action A with max Q[A] with prob. 1− ǫ, otherwise
random action

end if

Execute Action A for T seconds
Receive Reward R
Update Q[A]+ = α · (R − Q[A])

end loop

selects the action with highest estimated reward with a
probability of 1 − ǫ and a random action otherwise.

Performance of a module is highly coupled with the
behavior of the other modules in the robot. Therefore,
the best action of a module is non-stationary. It can
change over time when other modules change their ac-
tion. Hence, the learning speed is limited by the fact
that it must rely on randomness to select a fitter but
underestimated action a sufficient number of times before
the reward estimation becomes accurate. To speedup the
estimation of an underestimated action we use a heuris-
tics to accelerate the learning: If the received reward after
a learning period is higher than the highest estimation of
any action, the evaluated action may be underestimated
and fitter than the current highest estimated action. Note
that this is not always true since the fitness evaluation
may be noisy. Therefore, a simple heuristic is to repeat
the potentially underestimated action, to accelerate the
estimation accuracy and presumably accelerate the learn-
ing, see Algorithm 1. In our previous work we found that
this heuristic could significantly increase the convergence
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Fig. 2. Illustration of gait-table based learning strategy for a
single module. Independent and parallel learning processes learn
each entry in the gait-table. Therefore, each module learns its own
column of the gait-table.

speed [2].

B. Learning Strategy Extended to Gait Tables

In the basic learning strategy each module learns to
always perform a single action, e.g. rotate clockwise. To
enable a more versatile learning strategy which may work
on any module type we combine the strategy with gait
control tables. Originally proposed by Mark Yim [16],
gait-tables contains set-points for the actuator where the
columns represent actuators and the rows time intervals.
To learn the set-points in a gait-table we let each module
learn the set-points of its own columns in the gait-
table. Each module runs one parallel learning process,
i.e. Algorithm 1, per entity in its columns. Each learning
process selects a set-point amongst a set of predefined
set-points. The learning processes learn independently
and in parallel based on a shared reward signal. This
extended strategy is illustrated in Fig. 2. To utilize this
approach for a given system we must define the set of
set-points that can fill the table and the number of rows
in the table, the number of columns is indirectly auto-
matically adjusted when adding or removing modules.

IV. EXPERIMENTAL SETUP

A. Physics-based Simulation of Modules

Simulation experiments are performed in an open-
source simulator named Unified Simulator for Self-
Reconfigurable Robots (USSR) [3]. We have developed
USSR as an extendable physics simulator for modular
robots. Therefore, USSR includes implementations of
several existing modular robots, e.g., ATRON and M-
TRAN as utilized in this paper. The simulator is based on
Open Dynamics Engine [13] which provides simulation of
collisions and rigid body dynamics. Through socket con-
nections USSR is able to run module controllers which
can also be cross-compiled for the physical platform.

The ATRON module [11] is comprised of two hemi-
spheres that can rotate infinite relative to each other.
On each hemisphere a module has two passive female
and two actuated male connectors. The parameters of the
simulation model, e.g. strength, speed, weight, etc., has
been calibrated to match the existing hardware platform

Exp. Robot α 1 − ǫ T

SR & Faults ATRON 0.1 0.8 7
Scalability ATRON 0.1 0.8 7
Gait-Table ATRON 0.1 0.96 7
Gait-Table M-TRAN 0.0333 0.96 1.5

TABLE I

Learning Parameters

to ease the transfer of controllers developed in simulation
to the physical modules.

The M-TRAN module fills two cells in a cubic lattice
and has six connector surfaces. Each module have two
actuators which can rotate in the interval ±90o. We have
implemented a model of the M-TRAN III module in
the USSR simulator based on available specifications [5].
However, we do have access to the physical M-TRAN
modules. Therefore, although the kinematics is correct,
specific characteristics might be somewhat different from
the real system. We accept this, since our purpose is
to validate the gait-table based learning strategy on a
different system, not to find efficient locomotion gaits for
M-TRAN robots.

B. Learning Parameters and Reward Signal

In the following four experiments each module runs
identical learning controllers with parameters set as indi-
cated in Table I. In some experiments we compare with
randomly moving robots, i.e. we set 1 − ǫ = 0. Each
module in a robot share and optimize its behavior based
on the same reward signal. The reward is computed as
the distance traveled by the robots center of mass in the
duration of a learning iteration:

Reward = Distance traveled by robot in T seconds

The choice of T is selected to match the actuation speed
of the module type, α balances the amount of noise in the
reward signal against convergence time, and ǫ controls
the exploration/exploitation tradeoff as a function of the
number of parallel learning processes.

C. Action Space

The basic and extended learning strategy required
us to define a set of actions/set-points. We select
actions/set-points that are module type specific but
somewhat generic with respect to robot morphology.

The two experiments with the basic strategy utilize
ATRON modules that always perform one of the follow-
ing three actions: HomeStop (rotates to 0 degrees and
stop), RightRotate (rotate clockwise 360 degrees) and
LeftRotate (rotate counterclockwise 360 degrees). After
a learning iteration, a module should ideally be back
at its home position to ensure repeatability. Therefore,
the modules will synchronize their progress to follow the
rhythm of the learning iteration.

In the gait-table experiments, to study how the strat-
egy works on a system with a different kinematics, we will
use joint limited ATRON modules, i.e., which cannot be
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Fig. 3. Adaptation of gait after self-reconfiguration and module
fault. Initially the robot is of a crawler type, it then self-reconfigures
to a quadrupedal, then a module fails and finally the module again
becomes functional. In each new case, the learning enables the robot
to adapt to the new situation, by changing the locomotion gait. The
graph is the average of 10 trials, with standard deviation as error
bars. The bottom line is 10 trials of the equivalent robot moving
randomly.

rotated infinitely but is limited to a ±90 degree interval.
In effect, the gait-table based learning strategy must find
alternative gaits to move the robots, instead of gaits
based on continuous rotations. The gait-table has five
rows, so each module must learn five angle values from
the set-point set: {-60, -30, 0, 30, 60} degrees. The M-
TRAN module has two actuators. Therefore we let each
actuator be controlled by independent gait-tables. Each
gait-table has five rows, where an entry can contain one
of three set-points: {-30, 0, 30} degrees.

Further, for each robot morphology we define an initial
pose that the actuation is performed relative to. Selecting
a pose is a tradeoff between high potential to move and
being stable so that the robot does not fall over while
learning.

V. EXPERIMENTS

A. Self-Reconfiguration and Faults

In this experiment, we study the basic learning strat-
egy’s ability to adapt to changes in robot morphology.
Initially we let a crawler type robot (8 modules) learn
to move, see Fig. 1(a). At learning iteration 250 (after
29 minutes), the robot is then programmed to self-
reconfigure into a quadrupedal type robot, see Fig. 1(b).
Afterwards the learning is continued without resetting
the learning system. After additional 250 iterations, we
simulate a module failure by stopping a leg module in
a non-home position. 250 iterations later we reactivate
the module and let the learning continue for another 250
iterations.

Fig. 3, shows the average results of 10 trials. After both
the self-reconfiguration and module fault, we observe a
drop in fitness as expected. In both cases, the learning
system is able to adapt to its changed morphology and
regain a higher velocity. In the case there a leg module
is reactivated there is no initial drop in fitness, but

afterwards the robot learns again to use its leg and the
average velocity increases again.

B. Scalability

To study the scalability of the learning strategy we
performed experiments with a scalable robot. We utilized
a millipede robot as shown in Fig. 1(d). This robot has
a best-known controller as indicated in the figure. In the
following experiments, we vary the number of legs from
4 to 36 in steps of 4 with 10 learning trials per robot.

We define the time of convergence as the time at which
85 % of the leg modules has learned to contribute to
the robot movement. That is, the leg module rotates
either left or right dependent on its position in the robot
and the direction of locomotion. The time to converge
is shown in Fig. 4(a). As expected, an increase in the
number of modules also increase the convergence time,
the relation is approximately linear for this robot in
the interval shown. The increase in convergence time is
rather slow, for each module added the convergence time
is prolonged with 52 seconds (based on a least square
fit: convergenceT ime = 52 · #modules + 182 seconds).
Beyond this interval of up to 60 modules, divergence
becomes the dominating factor, i.e. the robot forgets
already learned behavior.

We measure learning divergence as a major drop in
number of leg modules contributing to moving the mil-
lipede. The frequency of diverges of each robot is shown
in Fig. 4(b). We observe that the divergence frequency
increases with the number of modules. The reason behind
this is that as the number of modules increase the effect
that any individual module has on the robot decreases.
Therefore, for a given module the estimates for each of
its actions will almost be identical and small disturbance
can cause the divergence effect.

C. Gait-Table Learning with ATRON

In this experiment we use the extended learning strat-
egy to optimize gait control tables for a snake (chain
with seven modules), millipede-2 (two leg pairs, 10 mod-
ules), millipede-3 (three leg pairs, 15 modules) and a
quadrupedal (8 modules).

Fig. 5 shows the convergence as the average velocity
achieved over time compared with randomly moving
robots. Only the results for two of the robots are shown
but they are typical. Note, that a robot tends to quickly
learn a better than random gait, and that this gait grad-
ually improve over time. We, observe that the learning
strategy is able to find significantly better than random
gaits for the different robots. Compared to blind random
search optimization the convergence speed is similar but
the learning strategy finds significantly better gaits, e.g.,
on average 9.9 cm/sec and 13.3 cm/sec respectively
for the millipede-3 robot. Although, the robots moves
slower than if they could perform unlimited rotation,
the gaits found are quite efficient. Also, note that in the
case of the snake robot the basic learning strategy fails
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Fig. 4. (a) Convergence time versus number of modules. (b) Divergence versus number of modules. The robots are millipedes with 4 to
24 legs. Error bars indicate one standard deviation.

0 1000 2000 3000 4000 5000 6000 7000

0.005

0.010

0.015

0.020

Time HsecondsL

V
el

o
ci

ty
Hm

et
er

s�
se

co
n

d
L

(a) Snake

0 1000 2000 3000 4000 5000 6000 7000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Time HsecondsL

V
el

o
ci

ty
Hm

et
er

s�
se

co
n

d
L

(b) Millipede-3

Fig. 5. Convergence graphs for the two different robots assembled from joint-limited ATRON modules. For comparison the average
velocity of random moving robots is also shown. Each graph is the average of 10 trials. Errorbars indicate standard deviation.

to converge since the robot entangles itself, while this
extended strategy converges to undulation style gaits. All
the 40 experimental trials converged to good performing
gaits. Divergence happens in a few cases when a snake
robot rolls upside down during learning and then had to
learn to move from this state.

Some typical gaits found: The snake is moving with a
side-winding gait, with a traveling wave down the chain.
The snake lifts parts of its body off the ground as it
moves. A typical quadrupedal gait could use a back foot
partly as a wheel, partly as a foot. Its side legs moves
back and forward for movement, while the front leg is
used just for support. The millipede-2 has a trot style
gait, where the diagonal opposite legs move together. The
millipede-3 uses a similar gait with each leg oscillating
back and forward with some unrecognizable scheme of
synchronization between the legs.

D. Gait-Table Learning with M-TRAN

In this experiment we apply the gait-table based learn-
ing strategy on three simulated M-TRAN robots: A 6-
module caterpillar (12 DOF), a 4-module mini walker (8
DOF) and an 8-module walker (16 DOF).

Fig. 6 shows convergence graphs for two of the robots.
Notice, that the performance of the gaits quickly be-

comes better than random and that the gaits gradually
improves over time. The learning succeeds in finding
efficient gaits for all three robots. Because of the short
learning iteration (T=1.5 seconds) even a pose shift
can be measured as quite high velocity, why randomly
moving robots incorrectly seems to move quite fast. We
observe that the large learning space leaves room for
incremental learning.

A major challenge with learning M-TRAN gaits is that
the robot often falls over while learning. This happened
in 23 percent, 8 percent and 47 percent of the two hour
trials with the mini walker, caterpillar and walker respec-
tively. These trials were censored away in the presented
results, which is based on 10 completed trials per robot.

Some typical learned gaits: Typical gaits for the mini
walker consist of hopping movement, with two modules
producing movement and two modules creating stability.
For the caterpillar, the learning typically finds gaits
either with a horizontal traveling wave down the chain of
modules or gaits that uses the head and tail modules to
push on the ground. Successful gaits for the walker take
relative short steps, since the robot would otherwise fall
over. In one example trial the walker use three legs to
produce movement, while the forth leg is kept lifted off
the ground in front of the robot.
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(b) Walker

Fig. 6. Average velocity as a function of time for two M-TRAN robots. Each graph is the average velocity of 10 independent trials.
Average velocity of randomly moving robots is shown for comparison. Errorbars indicate one standard deviation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented simulated experiments
on distributed adaptation of locomotion for a range of
robots constructed from ATRON and M-TRAN mod-
ules. For our previously published basic strategy we
presented simulated experiments with faults and self-
reconfiguration that illustrated the advantages of utiliz-
ing a distributed and configuration independent learning
strategy. We saw that the modules after reconfiguration
were able to learn to move with a new morphology and
adapt to module faults. In simulation, we studied the
scalability characteristics of the learning strategy and
found that it could learn to move an robot with up to
60 modules (60 DOF millipede). However, the effects of
divergence in the learning would eventually become dom-
inant and prevent the robot from being scaled further up.
We also found that the convergence time increased slowly
approximately linear, with the number of modules within
the functional range.

We extended the basic learning strategy to learn the
set-points in a gait-table. This extended strategy is dis-
tributed, with several parallel and independently learning
processes running on each module. We experimentally
validated that the extended strategy was able to learn
effective gaits for the different robots and module types.
However, as anticipated, the increased size of the learning
space came at the cost of prolonged time to learn a gait.
Yet, even the most complex gaits are typically learned
within one hour. In conclusion, learning can effectively be
distributed by introducing independent processes learn-
ing in parallel. Further, the extended learning strategy
based on gait-tables is a simple to implement strategy,
which can be used on almost any existing modular
robotic platform.

Future work will improve our distributed approach by
optimizing floating point parameters of central pattern
generators instead of discrete action or set-points in gait-
tables. Further, we will replace the exponential moving
average with an more efficient stochastic gradient hill
climbing strategy.
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