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Abstract— When robots leave industrial settings, they have to
be designed allowing intuitive communication with the humans
they interact with. The current paper focuses on collaboration
in kinesthetic tasks. Herein, we investigate decision situations.
This way, the need of communication between partners can be
addressed. The current paper introduces for the first time an
experimental paradigm which allows studying the effect of deci-
sion making in haptic collaboration. Because reciprocal haptic
feedback is challenging to provide, we analyze its efficiency in
human-human collaboration to understand when it is worth
to invest in this additional modality. A one degree of tracking
experiment with two human partners revealed that the addi-
tional physical effort accompanying reciprocal haptic feedback
is directly transformed into higher performance (compared to
a control condition without reciprocal haptic feedback). Thus,
the presented results motivate further research on the nature
of the haptic negotiation between human partners to achieve
the same performance benefits in kinesthetic collaboration with
robotic partners.

I. INTRODUCTION

When two humans physically interact with each other

in joint kinesthetic tasks such as object manipulation (e.g.

carrying and placing heavy objects) or guidance (e.g. rehabil-

itation, training) reciprocal haptic feedback between partners

is inevitably present. This, however, is not necessarily the

case when physical interaction occurs in technology me-

diated systems like virtual or remote environments. Then,

depending on the used human-system interface, collaboration

is influenced by the type, number, and quality of the provided

feedback channels. Similarly, reciprocal haptic feedback can

vary when interacting with autonomous assistant robots, e.g.

the full capacity of the haptic communication channel may

not be addressed when the robot behaves only as passive

follower [14].

The current paper strives to understand the benefits of

haptic feedback as communication channel in collaborative

interaction tasks. We investigate the overall-hypothesis that

the partners not only interact via haptic signals (the bilateral

exchange of force and position signals) but that collaboration

takes place. Collaboration implies that intention recognition

between partners is made possible [6]. Intentions consist of

goals and action plans to achieve them [19]. To investigate

the role of haptic feedback in the negotiation of action plans,

we study human-human collaboration (HHC) as a reference

with the aim of obtaining design guidelines for multi-user
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Fig. 1: One approach to design intuitive technical partners in
kinesthetic tasks is to substitute one human partner of the interacting
dyad. The knowledge gained on HHC in controlled experiments
(here: shared decision making) can enhance HRC in practical
applications (here: obstacle avoidance).

telepresence systems, collaborative virtual environments, and

the interaction with autonomous robots. This approach, see

Figure 1, is in line with recent investigations in this field [4],

[5], [7], [8], [15], [17], [18].

A. Haptic Shared Decision Making

Whenever the environment or capabilities of interacting

partners (whether humans or robots) offer several action

plans to achieve a shared goal, shared decision making

plays a key-role. Decision making is generally defined as

the act of choosing one available option out of several

possibilities which have different trade-offs between benefits

and costs. Some researchers refer to decision as the ”forming

of intentions before acting” [10] whereas others define the

exact time-point as decision [11]. In shared decision making

two partners have to agree on a solution. Even though, they

may prefer different action plans due to different information

bases or perceived options. Shared decision making is the

interactive process to negotiate action plans to reach the

shared goal. Thus, shared decision making is one form

of collaboration and allows to study intention recognition

between partners i.e. the building a mental model of the

partner’s decision state. For a general overview on shared

decision making see [3]. In kinesthetic tasks haptic shared

decision making (HSDM) may be required. Therein, joint

decisions on the shared trajectory of the interaction point (or
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manipulated object) need to consider individual workspace

restrictions or other physical constraints. A typical scenario

of binary HSDM is obstacle avoidance (compare Figure 1).

In the context of HRC, the information which varies between

the human and robotic partner can be diverse. Generally

the human planned trajectory may be more adaptable to

environmental changes whereas the robot is more accurate

in trajectory repeatability and may be faster in calculating

optimal solutions. In [10] it is proposed that robots should

generally be able of decision making. We transfer this claim

to human-robot interaction and suggest enhancing haptic

collaboration by technical partners able of HSDM.

B. Efficiency in Haptic Collaboration

Taking into account the challenges to implement mutual

haptic feedback (e.g. instabilities in systems involving bilat-

eral energy exchange [1], [12]) it is of high advantage to

be able to judge if intentions can be communicated via the

haptic channel, leading to higher overall performance in a

given task.

We introduced an efficiency measure for haptic interac-

tion relating performance to physical effort [8]. Based on

this measure, decisions of when to provide mutual haptic

feedback in the three scenarios described above can be

taken: the possible disturbances for the individual dealing

with the partner’s applied forces (effort) are related to the

dyadic performance benefits. In our previous study [8] we

found that mutual haptic feedback leads to lower efficiency

compared with a control condition without such feedback in

a 1 DoF (degree of freedom) tracking task. This was due to

the fact that performance was equal in both conditions but

interaction forces between partners (as one of the investigated

effort components) were increased with haptic feedback. We

explain the inefficiency of haptic feedback with the low task

complexity which reduces the necessity of communication

between partners. Hence, the advantages of an additional

channel for information exchange (haptic interaction) did not

become clear.

The current paper investigates efficiency of mutual hap-

tic feedback in kinesthetic binary shared decision making

between two humans, which requires action plan negotiation

between partners. Therefore, we propose that shared decision

making in kinesthetic tasks will profit from the haptic

communication channel in addition to indirect information

exchange based on visual signals only.

To our best knowledge shared decision making has not yet

been directly addressed in haptic interaction research. Hence,

this paper is the first introducing a paradigm which allows

experimental control of the complexity, respectively the need

for negotiation, in a haptic interaction task.

II. HYPOTHESES

In an interactive tracking task, executed by two human

partners, including binary shared decision situations, we

investigate the effect of mutual haptic feedback by comparing

it to a vision-only feedback control condition. We contrast

three different types of decision: 1) decisions where the

experimentally instructed preferences of the two human

partners on the two options are equivalent 2) decision types

where only one partner has a preference whereas the other is

undetermined 3) decisions where the preferences of the two

partners are opposite. We consider the need for negotiation

between partners increasing in the order of the presented

decision types (details see Section III-A).

We raise the following hypotheses:

H1: Performance decreases with the need for negotiation

in the decision situations, representing an upward trend in

task complexity. In addition, haptic feedback should lead

to higher performance (especially in decision type 3 where

the task is most challenging) because of the additional

communication channel.

H2: Effort (measured as energy) is higher when decision

preferences between partners are less compatible, expressing

the negotiation activities. Furthermore, haptic feedback is

assumed to cost generally higher effort in accordance with

our previous study [8].

H3: Efficiency, meaning the relation (within the given

sample of participants) between performance and physical

effort, is higher for decision types with low need of ne-

gotiation (type 1 and 2) than in decision type 3. This is

expected because task execution should be easier and no

effort necessary to communicate. The relation of the assumed

performance benefit of haptic feedback compared to the

effort costs cannot be predicted due to missing previous

knowledge. Thus, we formulate the effect of haptic feedback

on efficiency as open research question.

III. EXPERIMENT

We consider haptic interaction as a negotiation regarding

the trajectory of an interaction point or the jointly carried

object. In contrast to the measurable object trajectory result-

ing from negotiation between partners, planned individual

(desired) trajectories are latent cognitive constructs which

are not accessible for measurement. A key feature of the

tracking task paradigm is that it externalizes these latent

desired trajectories by means of the tracking paths. The

path serves to instruct the participants about the desired

trajectories (compare Figure 1), so the deviation from the

desired and the actual shared trajectory can be objectively

defined and studied.

A. Experimental Setup

In the present experiment, participants were asked to move

a virtual mass, visually presented by a red cursor, along given

reference paths which partly involved binary shared decision

situations as introduced in Section III-B. Each participant

saw an individual path on a separate screen and the cursor

which was jointly controlled, see Figure 2. The paths were

displayed as a white line on black screens and scrolled down

in z-direction with a constant velocity of 15 mm/s. One trial

took 190 s. Participants had to follow the reference tracks

with the cursor they jointly manipulated. The cursor renders

the horizontal position of the two haptic interfaces.

These interfaces have 1 DoF and allow movements along
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Fig. 2: The experimental setup consists of two screens and two
haptic interfaces which allow linear movements. The picture shows
a decision situation of type 2 (graphic on screens is not original
size; motion of path in negative z-direction). In the experiment a
wall was placed between the two devices / monitors.

the x-axis. Each interface uses a linear actuator (Thrusttube)

equipped with a force sensor (burster load cell 8542-E) and a

hand knob. Their control is implemented in Matlab/Simulink

and executed on the Linux Real Time Application Interface

RTAI. The graphical representations of the paths run on

two other computers and communication is realized by an

UDP connection in a local area network, so time delay

is negligible. The position-based admittance control of the

haptic interfaces is designed to model a jointly carried virtual

object, with the dynamics

fsum(t) = f1(t)+ f2(t) = mẍvo(t) (1)

where fsum is the sum of the forces applied by the participant

which can be measured separately ( f1 and f2), m is a virtual

mass and ẍvo is the acceleration of the virtual object (for

details please refer to our previous work [5]).

We provided two different conditions regarding the feed-

back between partners:

1) Vision-haptic condition (VH): The partners get visual

feedback of the tracking scenario and are also connected

via the haptic channel. In addition to feeling the mass of the

virtual object (m = 20 kg), they also feel the forces applied

to the object by the partner. This is achieved by introducing

a virtual rigid, very stiff connection between the interacting

partners, i.e. xvo(t) = x1(t) = x2(t).
2) Vision condition (V): Again, visual feedback is provided.

The mass (m = 20 kg) of the cursor is divided into two parts,

such that each partner has to carry 10 kg, which presents an

equal sharing of workload. The participants feel the mass, but

not the forces applied by their partner. The cursor position is

defined as the mean of the two individual device positions:

xvo(t) = (x1(t)+ x2(t))/2. Each partner can only infer what

the other is doing from inconsistencies between his or her

own movements and the resulting cursor position (for further

research on these inconsistencies see [9]).

To standardize the test situation we undertook the fol-

lowing arrangements: a wall was placed between the two

participants so they did not gain visual information about the

partner’s movements and individual path (details in Section

III-B); participants used their right hand to perform the task

(all of the participants are right-handed); participants were

not allowed to speak to each other during the experiment;

white noise was played on headphones worn by participants,

3s

1s2s

Decision: 2s

Decision

Type: 21 3

x

z

Fig. 3: Exemplary paired reference tracks which scroll down
the negative z-axis, see also Figure 2. The instructed individual
preferences (thickness of the path) are varied between partners
to make action plan negotiation necessary. The enlarged section
depicts which part of the decision is analyzed (2s). This is identical
for all three decision types.

such that the noise of the moving haptic interfaces would

not distract; the position (left or right seat) was randomized

with the order of experimental condition.

B. Experimental Design

To embed shared decision making to the tracking task

paradigm introduced in [8], it is necessary to fork the track

to offer available options in decision situations. Separated by

intermediate no-decision track sections the decision sections

are introduced in the form of squares, see Figure 3, leading

to binary decision situations.

Part of the definition of shared decision making is intention

recognition or in other words the building of mental models

from the partner’s preferences. When approaching the de-

cision, participants do not know the partner’s intentions in

terms of the preferred path and thus, negotiation of the shared

trajectory is required. However, there are two challenges in

the experimental design of such situations: A) the dyad could

agree on one of the two options (either left or right track) at

the beginning of the trial, stick with this solution and thus

make no decisions in the remaining trials. B) one of the

partners could behave passively in decision situations - then

we would no longer study shared decision making.

To overcome these challenges, we externally introduce

preferences to the decision situation. Hence, partners do not

receive the same visual representation of the path. Although,

the general form is the same, the thickness in the analyzed

decision types varied: a track segment could be depicted

in normal path thickness or in forty times the normal path

thickness. In Figure 3 one paired path is shown as an

example. The variation of the path thickness introduces

individual preferences into the tracking task because the

path was easier to track when thicker. These preferences

are equivalent to different information between partners in

real scenarios. We had to make sure that participants were

motivated to consider the shared performance to be the goal

with the highest priority. Thus, we informed participants

beforehand that they would be paid performance-related.

This, however, was not true; all participants gained the same

amount.

We differentiate three decision types (compare Figure 3):
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Decision type 1 requires no negotiation of action plans as

both partners prefer the same option (instructed via the

individual path thickness). In decision type 2 a preference

is instructed to only one partner. Negotiation of action plans

may be necessary because it is unpredictable how the partner,

who has no instructed preferences, may individually prefer to

accomplish the task to stay on the track. In decision type 3 the

negotiation of the executed trajectory is inevitable because

we instruct opposite preferences. To answer a possible side

bias in decision situations, each decision type was presented

in all possible left / right combinations. That leads to 8 an-

alyzed decision situations (2 (decision type 1) + 4 (decision

type 2) + 2 (decision type 3)).

Summarizing, our experiment allows investigating two

factors which may have an effect on the efficiency of

interacting dyads in kinesthetic tasks: A) the three decision

types, representing the need for trajectory negotiation and B)

the presence of reciprocal haptic feedback. This results in a

3x2 experimental design which we conducted as repeated-

measurement study, meaning that all participants provided

data for each of the six conditions. Whereas the decision

types varied within one trial, the feedback conditions were

investigated in different trials. Each trial was executed with

one of 8 different tracks. The tracks varied in relation to the

presented order of the path sections including the 8 analyzed

decision types. In this way we prevented learning-effects

through track repetition. In addition, we randomized the

sequence in which the feedback conditions were presented

to the participants.

C. Procedure and Participants

Participants were informed about the feedback condition

beforehand. Furthermore, they knew that the first curve of the

tracking path was for practice and would be excluded from

the analysis. Participants had an extended test run where they

could view both screens and, thus, gathered information on

the different types of shared decision situations. Therefore,

they knew that they had to recognize the partner’s intentions.

The tracking task was conducted by 32 participants forming

eight groups of four persons each. All participants were

randomly assigned to a group. During the experiment each

participant interacted with the three partners of the group

and also conducted an alone-condition of the described

experiment. The alone-condition is mentioned for the sake

of completeness and not part of the here reported analysis.

In the results presented here only independent dyads were

considered due to the independent error assumptions in

inference statistical analyses [13]. Thus, in this analysis,

32 participants (age mean: 25.38, std. deviation: 3.845)

forming 18 independent mixed-gender dyads are involved.

We consider the task intuitive enough so pre-knowledge on

haptic devices is not influencing the task.

D. Data Analysis

The results of this experiment are based on performance,

physical effort and a resulting efficiency measure which we

used in our previous work [8].

To allow a standardized data analysis, an interval of two

seconds around the parting of the track into two parallel

track segments to the left and right is defined as decision

situation independent of the decision type. The influence of

the decision types is analyzed using the mean values in effort,

performance and the resulting efficiency across the left/right

variations of preferences within each type. For each of the

three decision types the analyzed time interval requires a step

response of the cursor. Therefore, if the task is performed

perfectly the task execution alone requires the same effort in

all conditions. Differences in measures between the three

decision types, therefore, are causally determined by the

decision factor.

We define the involved performance and physical effort

for an interacting dyad as follows:

Performance was defined as a transformed (so high values

mean good performance) root mean square error (RMS)

based on the horizontal displacement between the desired

position and the actual position:

B = 1− RMS

RMSmax

(2)

where RMSmax = 0.0312 m is the maximum RMS found in

the given data set. The path thickness was not accounted for.

Physical effort was expressed in mean absolute power,

which results in the following measure for dyads:

MAP =
1

N

N

∑
k=1

|P1,k|+
N

∑
k=1

|P2,k| (3)

where P1,k and P2,k is the power at the respective interfaces at

a given time step k (k = 1 . . .N) which is defined as Pi = fi ẋi

with fi representing the applied force by partner i and ẋi the

velocity of his/her haptic interface.

Efficiency, as defined here, was first presented in [2], [16].

In the results section Figure 5 depicts the z-standardized

(sample mean = 0, standard deviation = 1) performance

and effort values as well as a reference line. Efficiency is

calculated as the Euclidean distance between a data-point and

the reference line and data points above this line represent

efficient values, below inefficient ones.

Λ =
Z(B)−Z(MAP)√

2
(4)

The z-standardization, Z(B) and Z(MAP), takes place over

all six experimental conditions. Note, that this efficiency

measure is relative, thus, only allowing comparisons within

a given data set: The dyadic values are related to the overall

z-standardized means (= 0 ) in the data set, see horizontal

and vertical lines in Figure 5.

Repeated measurement ANOVAs (analysis of variance)

for all three measures were separately conducted, results are

reported for a significance level of 5%.

IV. RESULTS & DISCUSSION

In Figure 4 performance and effort for the six experimental

conditions are shown:
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Fig. 4: Mean and standard error of performance (left) and effort
values (right) contrasting the two feedback and three decision condi-
tions: Increased decision complexity leads to lower performance but
higher effort. With reciprocal haptic feedback performance is higher
but effort increased compared to the control condition without such
feedback.

Performance is significantly influenced by the provided

feedback between partners (F(1, 15) = 6.761; p = 0.020;

partial η2 = 0.331): The positive performance measure

(transformed root mean square error) is higher when recip-

rocal haptic feedback is provided. In addition, the decision

type significantly affects performance (F(2, 30) = 3.421;

p = 0.046; partial η2 = 0.186): The mean performance across

both feedback conditions is lower with higher complexity

in decision types (However, only the difference between

decision type 1 and 3 reach significance as tested with

Bonferroni adjusted pairwise comparisons). Thus, the need

to negotiate a decision with a partner negatively influences

performance. Hypothesis 1 is strengthened. Descriptively

performance decreases less when decision complexity in-

creases and haptic feedback between partners is provided

compared to the control condition without such feedback.

However, the interaction between the two factors did not

reach significance. Judging from the effect size (partial η2),

feedback has a higher influence on performance than the

decision type.

Effort is significantly affected by the feedback factor (F(1,

15) = 11.446; p = 0.004; partial η2 = 0.433) as with haptic

feedback the energy (MAP) used by the dyad to perform the

task is higher. Furthermore, the effort significantly increases

when the involved preferences in the decision types are

opposite, meaning that the effort in decision type 3 is

significantly higher than in the other two decision types (F(2,

30) = 10.676; p > 0.000; partial η2 = 0.416; Bonferroni

adjusted pairwise comparisons are significant for differences

between decision type 1 vs. 3 and 2 vs. 3). The effect of

these two factors on effort is similar as can be seen from

effect size. Hypothesis 2 can be accepted. Again, interaction

between the feedback and the decision type factor does

not reach significance. As the necessary effort to execute

the task is equal in all six conditions, any additional effort

is related to interaction between partners. Thus, the haptic

communication channel is actually used when provided,

and the effort is increasing with the need to communicate

intentions related to the decision types.

Efficiency values more than 4 standard deviations away

from the mean in one condition were excluded from analysis.

Therefore, the following results are based on data from 15
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Fig. 5: Scatter plots showing z-standardized performance and effort
of 15 dyads for both feedback conditions, separately for decision
type 1 (left) and 3 (right). The zero-line of each axis represents
the mean of the z-standardized values across all six conditions.
Efficiency is calculated as distance from the reference line which
represents an efficiency value of 0. Positive/negative efficiency
values describe efficient/inefficient behavior.

dyads only (instead of 16). Figure 5 shows scatter plots

visualizing the calculation of dyadic efficiency values based

on the z-standardized performance and effort values. Results

are depicted separately for decision type 1 (left side) and

decision type 3 (right side). The zero line of each axis

presents the mean of the z-standardized values across all

conditions. Whereas in decision type 1 (equal preferences)

the majority of values is above the reference line, for the

third decision type (opposite preferences) the distance to

the reference line is increased towards the area below the

reference line, illustrating inefficient behavior.

In Figure 6 we report the mean of these efficiency values

per condition. The value of zero efficiency is depicted as

reference line. Inference statistic tests (ANOVA) revealed

that we could not find evidence that the feedback factor is

influencing efficiency (answering the research question asso-

ciated with hypothesis 3): By the same relative amount that

reciprocal haptic feedback leads to a higher effort (compared

to the control condition), performance is also increased.

Efficiency values are affected by decision type (F(2,28) =

6.752; p = 0.000; partial η2 = 0.325). Bonferroni adjusted

pairwise comparisons show that decision type 1 leads to

significantly more efficient values than the other two decision

types, between which we cannot detect any difference. This

can be explained by the fact that in this decision type

performance is high due to low decision complexity and no

effort is, hence, needed for negotiation.

V. CONCLUSION

The presented tracking task experiment introduces shared

decision making in haptic interaction research to investigate

the role of reciprocal haptic feedback for intention recogni-

tion between partners.

We introduced three different types of decisions in relation

to the congruence of preferences between partners for either

one of the two presented options. It was shown that with

opposite preferences the amount of physical effort is in-

creased, which is interpreted as additional negotiation effort.

Performance decreases when executing this decision type.
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Overall, opposite preferences in decision situations lead to an

inefficient behavior compared to decision types of identical

preferences. We conclude that the task challenges related to

the negotiation of different individual preferences cannot be

compensated fully with negotiation effort in neither feedback

condition.

Compared to the visual only feedback condition, task

execution with haptic feedback evokes higher physical effort.

However, performance increases comparably, relatively to the

overall group mean. As a result, the efficiency of haptic

feedback is comparable to the efficiency of task execution

with visual feedback only, where effort was lower, but

even so performance. Hence, the additional effort related to

reciprocal haptic feedback pays off with better performance.

This is contrasting our previous work [8] on efficiency

of haptic feedback in no-decision tasks. There, effort was

also increased in the haptic feedback condition, but no

positive effect on task performance could be found. Thus, for

interaction between human partners in teleoperation systems

and virtual reality, and for human-robot interaction, the

here presented results implicate that in (binary) decision

situations the technical challenges in providing reciprocal

haptic feedback are worth to face - they pay off in better

performance when different individual action plans have to

be negotiated.

Though, in the current study the investigation of haptic

shared decision making is limited to binary decisions and

one degree of freedom movements, relevant results on the

benefits of haptic feedback could be found. These findings

encourage further experiments on the negotiation of inten-

tions in haptic human-robot shared decision making. Future

studies will strive to generalize the findings to tasks involving

more degrees of freedom movements and larger objects.

We assume that with further increased task complexity the

advantages of the additional communication channel due to

haptic feedback between partners will become even more

evident.
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