
Intuitive Human Skill Reconstruction for Compliance Control

Samuel Okodi, Xin Jiang, Satoko Abiko, Atsushi Konno and Masaru Uchiyama
Graduate School of Engineering, Tohoku University

Aoba-yama 6-6-01, 980-8579 Sendai City, Japan Fax: +81-22-795-6971,
e-mail: okodi, jiang, abiko, konno, uchiyama@space.mech.tohoku.ac.jp

Abstract— This paper presents a robust and efficient method of
generating manipulation motion skill for non-force-feedback high speed
constrained compliant robot motion. Using a non-structured teaching
environment, the inherent task in the captured demonstration force
and position data is estimated and reconstructed from three sets of
complimentary models, including analytical mathematical modelling,
empirical modelling and human skill demonstration modelling. The
approach addresses task specification accuracy deficiencies, and involves
outward interface simplifications, with embedded rigorous analytical
methodologies that enable users to realise complex and robust con-
strained compliant robot motion without dealing with the low level
motion generation aspects. Function based task representation supports
an intuitive approach to generate robust constrained motion by skill
superimposition, as exemplified by peg-in-hole with crank turning.

I. INTRODUCTION

A general efficient method of generating non-force-feedback
compliant robot manipulation motion skill for control is addressed
in this paper. Prior motion creation for high speed, accurate 6-
DOF motion with dexterous intuitive skill required long setup times,
with discrete and heuristic human inputs. That is a strenuous and
unproductive process [1]. Demonstrative teaching [2], [3] replaced
discrete parameter specification [1] to provide a fast trajectory [3]
and a fast initial task shape [2], albeit with little flexibility. Im-
plementing fast, efficient, flexible and robust task reconstruction
eluded the teaching methods. Generating consistent robot motion
in [1]–[3] required an inflexible similar structured external teaching
task-specific workspace; the teaching required human involvement
to provide the teach-to-robot workspace transformations; [2] was
not general and required human input at one stage.

Task data representation from human demonstrations as a regular
function leads to: using statistical approaches to estimate the data
trend as an a priori regular function, application of mathematical
operations to the regular functions to achieve complex tasks,
estimation methods to recover from irregular demonstration and
non-structured workspaces, and flexible virtual environments. This
work lays a foundation for simultaneous force, position and stiffness
from the same external task demonstration.

In the preceding work [2], task representation was amorphous.
In this work, representation is solved by estimation and regular
function fitting. Estimation of highly irregular demonstration trajec-
tories lays a foundation on which position, force and stiffness are
simultaneously estimated efficiently from the same demonstration
setup.

Much work on robot force control applies hybrid force-position
control [4], compliant robot motion, applying adaptive control, and
analysis of contact formation [5], [6]. Blind searching strategies [7]
and geometric analysis strategies implement feedback force control.
Faster motion capability is achieved in this work by enhancing the
task without force feedback [1]. Direct drive (DD) actuated parallel
robots achieve constrained compliance control using the task frame
formalism with no environment force sensing, set stiffness of each
DOF is selected for the robot. Motion from human demonstration

using “atomic” motion macros has been presented [8]–[10], such
macros ease motion generation, but inefficiently represent dexterity
from expert demonstrations.

A multiple-model task reconstruction (MMTR) approach is used,
it is a fast and reliable method to augment human motion, dexterity
and skill techniques acquired from task demonstration, use intuition,
apply analytic mathematical estimation to represent the tasks, and
determine heuristic model based parameters. The independent mod-
els collectively used are sufficient to completely reconstruct a robust
constrained motion task. By feed-forward reference position, force
and stiffness of the end effector, robust and high speed constrained
robot motion is achieved without force feedback. To regulate the
contact force, a combination of motion technique, stiffness, accu-
racy and force are used. An algorithm implements an artificial mind
on the multiple models to reconstruct the inherent assembly task
from the demonstration data. Augmented with intuitive human skill,
synthesis of complex robot skills is semi-autonomously achieved,
saving time from dealing with the data level underlying aspects of
the process. The peg-in-hole with crank turning task is used for
validation.

In the paper, Section II presents the robot system and the heuristic
empirical model emulated and generalised by the algorithm, which
is also used to evaluate the compliance and trajectory following re-
sult. Section III presents the task models used to reconstruct human
demonstration skills, experimental parameters, skill reconstruction
and the intuition integration algorithm. Section IV discusses the
results of reconstructing human demonstration data with algorithmic
logic to emulate the empirical heuristic skill, and improvements by
analytical methods to further estimate and replace amorphous posi-
tion data with regular function, augmenting a regular function with
intuitive skill and the effect on constrained motion performance. A
conclusion and future work concludes the paper in Section V.

II. SETUP AND EXPERIMENTS

A. Human Motion Capture System

Raw human task position data for a structured environ-
ment demonstration is captured at 50 [Hz] by a Xeon 3.2GHz
NexusTMserver and 8 ViconTMMX cameras for markers placed
around a force-torque sensor, force is captured at 115200 [baud] by
BL Autotec 10kg-f/100kg-f-cm force-torque sensors (FTS), running
on an embedded Pentium III 750 MHz CPU running a VxWorks 6.2
TMsystem, the VxWorks remote controls the Nexus motion capture
system for start and end synchronisation.

B. Virtual Motion Generation

The virtual motion generation and kinematics simulator runs on a
CentOS 4.5 Linux Pentium IV 3.2GHz CPU with a C++ integrated
glade GUI for parameters specification; an SGI-OpenInventor 3D
for virtual simulation; and MatLab 2006a.
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C. Experiment Robot

The experiment robot is a Pentium IV 2.4GHz VxWorks 6.1
real time control embedded computer for a HEXA parallel robot.
HEXA is a 6-degree-of-freedom high speed position, force and
compliance mode controlled parallel robot, capable of constrained
motion control without force feedback in the control law [1], [2].

III. THE MULTIPLE TASK MODELS

To robustly enhance constrained compliance motion required
heuristic human input, making the method strenuous and unpro-
ductive. In this work, instead of discrete specifying or computing
the entire robot trajectory, teaching is used, which reduces trajectory
generation complexity by providing a starting general task shape,
upon which analytical methods are applied to enhance the shape,
profile and flexibility of the resultant task.

Among the difficulties to overcome without force feedback
control is initial mating, where a substantial amount of time is
required to set the control of the end effector when initiating tight-
tolerance constrained motion. An operator specifies the motion
primitives of the task, the amount of compliance necessary for a
particular task is not known and is determined through heuristic
actual robot trials, such a solution is initially time consuming, and
since flexibility is the basis of such robots, long setup times hamper
automated productivity.

An example of a complex human manipulation task is used
to evaluate human skill reconstruction from multiple task models.
Using multiple task models provides an approach of modelling the
task, with each model optimised for estimation of certain particular
model parameters, parameters that can not all be estimated from a
single task model.

Instant robot position and force data is obtained from motion
capture setups. The demonstrated raw data trajectory can not be
replayed by the robot, because: 1, the data from disparate sensors
in unsynchronised; 2, the precision of the position measuring
equipment is less than the robot precision; 3, there is no distinction
between constrained and unconstrained trajectory segments; 4, the
task is amorphously defined by position data; 5, the position data is
an ensemble of marker positions on objects; 6, the demonstration
task does not necessarily represent the same meticulous structure
of the targeted robot task. These factors necessitate: 1, a recon-
struction of the task to synchronise that data; 2, to resolve accuracy
deficiencies; 3, segment the motion into sections of constrained and
unconstrained motion; 4, resolve ambiguities in task representation
and define the task is terms of functions subject to estimation
and mathematical analysis to facilitate concise representation and
estimation analysis; 5, resolve the position of the object from its
marker positions; 6, define a priori functions that estimate the task
geometry of best fit on the demonstration data and define or estimate
parameters necessary to ignore the meticulous demonstration space
to the robot workspace structural fidelity.

A. Mathematical Methods for the Models

The mathematical models applied include the forward and inverse
kinematics models [11], the least squares data geometry estimation
methods, and the virtual inverse kinematics motion generation
interface model [1] These models will be described where they
apply.

B. The Virtual Kinematics Model (VKM)

This is an offline teaching system for generating trajectory paths
in a 3D kinematics simulator. Depending on the size of force on the
end effector during playback, stiffness values are assigned, so as, to

accommodate deviations and deflections to minimise the anticipated
contact forces. Careful construction of a task is conducted [1], [2]
and optimal empirical stiffness values that minimise the reaction
forces during constrained motion are heuristically determined.

C. Heuristic Parameters Model (HPM)

These are empirically determined parameters during constrained
VKM-motion experiments. The parameters determine the condi-
tions under which typical constrained robot tasks are executed
by the robot. Heuristic experiments for the practical handling of
the control mode transitions, and the representation of tasks in
the robot workspace were established. This empirical work laid
the foundation of generating similar data autonomously from task
demonstrations. Ideally, by analysing the force and position data,
constrained and unconstrained trajectories could be established. In
the unconstrained trajectories the problem involved determining
optimum trajectory paths to ensure kinematic consistence and
minimise adverse contact phase instability through projecting the
momentum of the end effector along the insertion axis. And
determining the control mode switching distance in the vicinity of
contact.

D. The Direct Teaching Model (DTM)

This is a direct (forward) kinematics application to determine
locations of objects in the HEXA robot workspace. This recursive
approach is built from the Newton-Raphson formulation. A Carte-
sian position p = [ x ψ ]T ∈ R6 is determined from its joint-space
angular position θ = [ θ1 θ2 ... θ6 ] by (1).

pk = pm+1 : lim
(pm+1−pm)→ε

pm+1 = pm + J (θk − θm) (1)

where θm = f−1(pm) (2)

The iteration Equation (1), (2) converges within index m ≤ 200.
Several position data θk : k = 1, 2, 3, ..., n where index k,
taken when the end effector is constrained, is used to estimate
the geometry of the constraint in the workspace by least squares
approximation to simple geometric functions that define the contact
surfaces during compliance control. J is the joint space to task
space Jacobian matrix, (2) is the inverse kinematics function. An
object (Fig. 1(a)), is defined by its initial position po and its
orientation is recovered from the principal component analysis
(PCA) of the points k. For a matrix X = [x1...xn]T , of Cartesian
position data, xi = [xiyizi]

T their data covariance matrix, A, is
given by A =

ˆ
[(x1 − x) · · · (xn − x)]T [(y1 − y) · · · (yn −

y)]T [(z1 − z) · · · (zn − z)]T
˜

and U S V T = A (3)

V , is the orientation matrix of the data principal components, C is
an eigenvector corresponding to a singular value, the largest singular
value in this case σmax

where C(σmax) = [ a b c ]T = V (σmax) (4)

xtf = xo + μC(σmax) (5)

ForA, V is a matrix of the orthonormal basis vectors that define the
distribution of the data X about the data mean x. The line vector
fit with the least total square error to the data is the eigenvector
corresponding to the maximum singular value, the converse is true
for the least singular value. Constrained motion is equivalent to
end effector alignment with the line function (5), moving toward
po. Determining this workspace geometry calibrates the workspace
with respect to the robot base reference frame Σb, and provides
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an accurate basis to transform data from an external demonstration
workspace into the robot workspace. The variable scalar μ makes
trajectory positions xtf from position and direction vectors xo and
C(σmax) respectively for the task frames ptf .

E. The Human Demonstration Data Model (HDM)

The human demonstration data model involves analysing the
demonstrated data in order to reproduce a task similar to the real or
virtual teaching model, where human decision making is replaced
with algorithmic logic derived from analysing the force and position
task demonstration data. To synchronise the force and position data
from disparate sensors, the denser force data (1.0 [KHz]) is sampled
at the corresponding position frequency 50 [Hz].

1) p and F synchronisation: The raw force and pose data, F i =
[Fx Fy Fz τz τy τx] i = 1, 2, ..., n, and pi = [px py pz α β γ] i =
1, 2, ..., m, is synchronised into Ni. i specifies a discrete data point
for the nth data interval, i = nΔt, such that, pi = p(nΔt).

N i = N ( pi,F i) = [ pi,F i ] (6)

i = 1, 2, 3, .., k: k = min{m, n}
2) Trajectory segmentation: Constrained and unconstrained seg-

ments are deduced from the measured forces, for unconstrained
segment the force measured is less than a set threshold.

N c1,c2 :

j
c1 = min(i) ∀ F i ≥ Fmin

c2 = max(i) ∀ F i ≥ Fmin
(7)

3) Insertion task-frame: Three spaces Σt, Σd and Σwt define:
a demonstration task aligned reference; the base; and the robot
worktable reference frames. For peg-in-hole insertion, a rigid hole
is used to determine the static position bounds, these bounds are
applied to the general case when the hole is not static, as is the
case for crank turning. For a depth of insertion D into a hole of
depth H , the orientation of the hole and D : DCH < D < H is
recovered by applying (3)-(5). For a rigid tight insertion, the peg is
fairly aligned to the hole axis after several millimetres of insertion,
otherwise D should be sufficiently large to ensure that the peg is
constrained inside. The data w.r.t the hole task frame txi is:

txi = V xi (8)
txi − x = σvi (9)

the mean value of σvi for pi inserted to a depth D:

σv = σvi : DCH < tx3i < D (10)

When the hole is not rigidly fixed, as it is for inserting into a crank,
the same analysis applies, but the lateral error Δxi does exceed
σv . Three cases are identified for checking what case obtains,
namely: constrained vertical, constrained lateral or unconstrained
free motions. For consecutive segments of position data between
i = ke, ke + 1, ..., ke + l

xj =
1

l + 1

i=ke+lX
i=ke

xji j : 1, 2, 3 (11)

ΣΔxj =

i=ke+lX
i=ke

|x2
ji − x2

j | (12)

where l is an integer, scalar thresholds W set depending on σv are
used to detect significant deviation from the current task frame of
x and V , and compute a new task frame.`

ΣΔtx1 ≥ W or ΣΔtx2 ≥ W
´

and ΣΔtx3 ≤ Wz (13)`
ΣΔtx1 < W or ΣΔtx2 < W

´
and ΣΔtx3 > Wz (14)

Constrained lateral motion (13), and constrained vertical motion
(14) is analysed segment by segment for a set interval of position
data. Insertion into a rigid hole produces point pc3 which corre-
sponds to the minimum point of insertion, and a tight value of σv ,
however if the hole is replaced by a crank, pc3 may occur anywhere
around the cranking circle, and the maximum depth of insertion D
is determined from D + DCH ≈ pzc1 − min(pzi).

4) Constrained lateral motion: Using the crank turning example,
(13) is satisfied for the start of cranking i = cs to the end of
cranking i = ce. Over the interval i = cs : ce the radius, r of
the crank circle, the centre xo and the circle orientation matrix
Rc = V , are estimated [12]. The normal to the crank plane n̂ is
the vector corresponding to minimum singular value from the PCA
of the covariance matrix A for X = [xcs...xce]

T

n̂ = V (σmin) (15)

Robot skill is a combination of position, force and stiffness,
therefore to maintain the velocity profile, the demonstration data
down-sampling preserves the velocity profile in the subsequent task
reconstruction. n = O +1 the number of points between pj+1 and
pj must be sufficient for the maximum order of interpolation O
necessary to preserve p, ṗ, and p̈.

5) Task geometry reconstruction: Demonstration positions are
not precisely accurate, for example: the jerky chamfer crossing
position data is ill-suited for re-use. During insertion for cranking
the peg may significantly move from its initial position, and the
free space trajectories may not be kinematically consistent. Thus:
the chamfer crossing section together with the insertion motion are
reconstructed using the plane estimated normal. From the direct
teaching model, the orientation of the table and the centre of the
crank were determined as dR and dpc respectively.

txi = dRT xi (16)
wtxi = wtRT txi + dxc (17)

The orientation of the end effector is computed from the vector
between xc, xo and the normal to the plane n̂, and is denoted as
θo. The subsequent points along the curve make a vector ûi. The
angle about the circle normal between ûi and ûi−1, θi is given
by (21). The points wtxi are projected onto a geometric estimation
of the cranking task as the function (22). Equation (18)-(22) are
illustrated on the right of Fig. 7.

û = (xo − xc)/(‖xo − xc‖) (18)

v̂ = n̂ × û (19)

ûi = (xi − xc)/(‖xi − xc‖) (20)

θi = atan(ûi × ûi−1, û
T
i ûi−1) (21)

xi = rcosθi û + rsinθi n̂ × û + xc (22)

6) Path concatenations and deletions: The task data is no longer
an amorphous set of positions and forces, but definite geometric
functions that are modified, scaled, abstracted, purged, combined or
transformed. For the insertion and extraction optimum trajectories,
new paths are added to close gaps of deleted irregular demonstration
data for example: the back and forth cranking during insertion
and extraction, jerking and wiggling during chamfer crossing and
extrapolation to the robot datum. Using the task space descriptions
and their known orientations, task features with fixed or relative
reference provide a basis of handles used for spatial transformations.

Fixed task reference define physical features and objects acquired
from the DTM such as motion terminals, datums and insertion
frames. Relative features, define task features that modify a task
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Fig. 1. The constrained demonstration data interpretation is shown in (a) [2]. The demonstration workspace superimposed on the teaching workspace (b),
and it shows the necessary transformation to align the two in (c) (17). The objective, to reconstruct the task in the robot reference frame, is shown in (d).

and satisfy local constraints. Trajectory segments are added to the
task for stability and to achieve optimal spatial properties, with
the emphasis on reconstructing the original profile of the task.
On the contrary, concatenation and deletion of a task feature is
done to de-emphasise the original profile and prioritise the goal
objective. Intuitive human skill superimposition of dexterous motion
falls under this.

A nascent motion path concatenation and deletion is based on
the assumption that task reference features defined over a region
of a task, remains valid in the vicinity of that region provided it
describes a function of motion that satisfies P ∀ { p, ṗ, p̈ } at the
motion boundaries where segment points are sequentially added or
removed. A task concatenation is defined by (23) and (24), for linear
motion from a known feature pn, along the vector of direction n̂,
and at Δθ from pn along a curvature of radius, r, respectively. At
the boundaries the task satisfies (25) and (26) for an added segment
and a removed segment respectively.

qk = μkn̂ (23)

qk = rΔθk (24)

pn+k = pn + qk (25)

pn−k = pn − qk (26)

Here, k = 1, 2, ..., end defines a new segment that satisfies the
local spatial constraints, the kinematics and continuity. Specifying
the local spatial constraints ensures that non-spatial parameters such
as force and stiffness of features in the vicinity are applied to the
nascent feature patches, or purged.

IV. DEMONSTRATIONS AND INTUITIVE SKILLS

Analysis of position and force task data for: contact presence, the
type of constrained contact, the motion trend under the constraint,
accuracy, and estimation of regular structure in the data; consistent
representation across the disparate specific objective oriented mod-
els; and simple motion combinations to create complex skill, consti-
tute the bulk of the algorithm. This approach is used to reconstruct
the inherent demonstrated motion objective from a highly irregular
demonstration. Intuitive skill represented as: position, reference
force and stiffness is used to improve contact. Task representation is
re-cast as geometric regular functions, and intuitive motion skills are
superimposed on the plain motion. Constrained and unconstrained
paths in the trajectory are identified, task frame estimation, task
space disambiguation, inverse kinematics data analysis, optimal
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Fig. 2. Position and force data from the demonstration, three types of
purple vertical lines are used: the lines 0-20 indicate the fixed features:
start of contact, start of cranking, the lowest insertion point, the end of
cranking and the end of extraction; the shorter lined 0-15 indicate free
motion sampling nodes; the shortest lines 0-5 show the moving task frames
under constrained motion.

path substitutions, intuitive skill integration are implemented and
evaluated.

A. Intuitive Task Reconstruction

From the human demonstration data, Fig. 2, to the reconstruction
of the task result, Fig. 1(d): 1, raw data synchronisation (6); 2,
motion fragmentation into constrained and unconstrained trajec-
tories (7); 3, identification of types of constrained motion (13),
(14); 4, replacement of inaccurate motion, estimation of optimum
linear geometries (3),(4),(5) and (15); 5, replacing the amorphous
position data with definite analytic functions (22); 6, replacement of
unusable motion data and interpolation between the purged sections
with analytic functions (23)-(26) are done. The resulting data in
Fig. 1(d) has been fitted onto an accurately calibrated worktable
(1)-(5), and is pre-experimental-evaluated for consistence Fig. 3(b).

B. Human Skill Evaluation

The reconstructed robot data in Fig. 3 was subjected to tests to
evaluate the effect on the measured experimental force and exper-
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Fig. 3. From the markers m1 to m4 the demonstration position of the
end effector pe is computed. The intuitive algorithm reconstructs the raw
position data (a) into the accurate robot task data (b).

imental errors, when the reference force, stiffness, and accuracy
before insertion of the end effector are altered. The effect of force
is instrumental in reducing the contact forces by setting an opposing
reference force F d in [1]. The effect of increasing the stiffness K
reduced the forces since it improved trajectory following. Since ac-
curacy was rigorously eliminated in the calibration, this observation
is consistent with the theory of the method. Altering the positioning
accuracy along the end effector presented interesting findings.
Insertion into a rigid hole was shown earlier, however using a
movable crank hole with the same parameters was not directly
successful. By superimposing clockwise and counter clockwise
oscillations on the insertion motion segment, a more compliant
insertion motion was realised Fig. 6, and snapshots of the task are
shown in Fig. 8. The two motion segments of insertion (time 1.0-
2.0 [s]) and extraction (time 4.0-5.0 [s]) was reconstructed from the
same geometric function of the form (23) and this must have similar
force profiles without human skill. Comparing the two segments on
the force and torque graphs, there is a substantial reduction in the
force and torque. The intuitive human skill is inspired from the
physical skill displayed by performing the task by hand. Although
the clearance is sufficient to insert the peg freely, moving the robot
end effector mounted peg is more prone to jamming. Jamming is
eased by twisting around the insertion axis. While the robot has
higher positioning accuracy, unlike humans, during insertion the rate
of motion slows down due to adverse contact, slight misalignment
and friction, if the static friction threshold is crossed, the slip-stick
effect sets in to change the dynamics of insertion. Fig. 7 (left), shows
the limiting friction behaviour of the robot model, the superimposed
twisting motion maintains the velocity at both the constrained
surface and the robot motors above the static friction threshold to
achieve lower sliding friction.

C. Stiffness Estimation

Hand stiffness is determined by linearising the measured hand
force and displacement [13], a least sqaures polynomial fit of the
force data provides a global approximation of the force data used in
the linearisation. At each perturbation the stiffness is computed by
integration over the interval and the maximum stiffness is extracted.
Perturbation data for computing the stiffness Fig. 4, and the stiffness
model generated Fig. 5 estimate the task model stiffness.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In order to demonstrate the robustness of intuitive human skill
motion on constrained control, a comparison of skillful and plain
accurate geometric task data were used for the same tasks. A faster
and easier motion generation method was presented, embedding an
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Fig. 4. 24 perturbations at 8 equally spaced points along a horizontal
circular trajectory, in the directions ±x,±y,±z, half in the clockwise, and
half in anti-clockwise cranking direction are shown for the x, y and z axes.
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intuitive algorithm before the GUI, its use mitigates the difficulties
and time spent in building the various sections of the trajectory data
when using only the simulated virtual environment. The stiffness
model for the insertion task, determined experimentally (HPM),
was used to avert reliance on complex mathematical models, which
are difficult to create. The stiffness model was abstracted to the
cranking task using an intuitive task motion generation algorithm. 1,
the intuitive algorithm adds a level autonomous decision control to
the teaching system and does not necessitate a precisely structured
demonstration environment; 2, task motion segmentation, parameter
specification and estimation and geometric optimisation of the
teaching data is achieved and was verified practically; 3, the task is
reconstructed into analytic geometric functions with the possibility
of mathematical operations, and abstractions; 4, to isolate the effects
of other factors, and limiting adverse contact forces depended on an
accurately configured workspace using the DKM; 5, position errors
and force measured from HPM were used in a comparative analysis
of a more autonomous motion generation algorithm (HDM); 6,
Contact force was used to analyse the effect of intuitive human
skill reconstruction, mimicking dexterous skillful motion which
showed a substantial reduction in constrained contact forces, and
overcoming larger errors preceding contact.

B. Related and Future Work

Motion capture of the hand postures and applying a method [13]
of analysis to determine hand stiffness has been done. Three
parameters, position, force and stiffness form the major inputs
to the constrained motion phase. This paper has dealt with the
first and second parameters, by the replacement of the amorphous
teaching position data with explicit geometric functions, functions
subject to geometric mathematical methods. This is most useful
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Fig. 6. In the sub-figures shown, 1. shows the reference velocity superimpo-
sition of dexterous skill between time 1-2 [s]. Originally the motion between
1-2 [s] and 4-5 [s] was linear, but the force during insertion exceeded the
safe working limits, by skill superimposition the forces and torques in sub-
figures (6) and (9) are substantially reduced between 1-2 [s]. The insertion
was more robust to insertion errors with a 100% insertion success rate. Sub-
figures (2), (3), (4) and (7) show the experiment position, force, linear and
angular stiffness reference values respectively
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Fig. 7. Stick-slip friction behaviour at low motor velocities (left). A regular
function (circle) estimated from an irregular trajectory (right). Trajectory
perturbation nodes, red circle above, blue green circles below a least squares
estimation projection circle (regular function)

when the demonstration data significantly deviates from the a priori
geometric function. This approach is useful when dealing with
estimation of the third parameter, stiffness. In the model to estimate
the stiffness, an active teaching environment is setup using a 6-DOF
haptic device to give perturbations to the hand which distorts the
measured geometric data, but the inherent task, as a regular function
(shown to the right of Fig. 7), is recovered by the algorithm of this
paper and simultaneous estimation of position, force and stiffness
is achieved.
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