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Abstract— The opto-acoustic scene analysis is an extremely
important as well as a challenging task for a humanoid robot.
By the opto-acoustic scene analysis, the guided and autonomous
exploration of the environment by means of acoustic and/or
visual perception is meant. On the one hand, the perception
ability is necessary to interact with humans in a humanoid
way. On the other hand, the proximity of the robot has to be
analyzed continuously, in order to enable the robot to fulfill its
everyday tasks. Thereby, the greatest challenge lies in the wide
variety of different perception tasks, e.g. detection, tracking,
and identification of persons and different types of objects. This
leads to the need of adapted, both, task- and context-dependent
perception modules with specific requirements and abilities.

Taking these considerations into account, the paper presents
a hierarchical, knowledge-oriented concept of a framework
for the opto-acoustic scene analysis. The focus of the work
is put on formal conditions on one side and the practical
realization of a real-time system on the other side. The proposed
framework is modular structured and consists of a number of
specialized perception modules. To reflect the knowledge-based
structure of the framework, an object-oriented environment
model is used for continuous inserting, updating and removing
the information about the proximity of the robot.

Besides the task of analyzing the scene with the reference
to already known objects (and persons1), the proposed concept
enables the robot to explore a (partially) unknown environment,
with the focus on the creation of multimodal signatures for
unknown objects and persons. These signatures are used to
build an unique representation of the explored objects and
enable the robot to recognize them at a later time.

Index Terms— Opto-acoustic scene analysis, knowledge-
oriented exploration of known and unknown objects.

I. INTRODUCTION

The opto-acoustic scene analysis is an extremely important

as well as a challenging task for a humanoid robot. Related

research work is done in every project, which has to handle

such kind of tasks, for example OpenHRP (Open Architec-

ture Humanoid Robotics Platform) [5] or ASIMO (Advanced

Step in Innovative Mobility) [7], to name just a few.

Since the perception ability is necessary for the robot to

interact with humans in a humanoid way and to fulfill its

everyday tasks, the entire proximity of the robot has to be

continuously analyzed and explored. However, the process of

the exploration cannot be restricted to few independent tasks

1It should be noticed, that in some cases, persons and different kinds of
everyday objects like kitchen appliances, cups, books etc. are summarized
as ”objects”.

like ”follow the person” or ”recognize the object”. It consists

rather of a wide variety of different, partly cross-linked

perception tasks (for example, ”identify the blue object on

the left table”). Therefore, both, task- and context-dependent

perception modules are required. These modules have spe-

cialized perception abilities (e.g. for detection, tracking, or

identification of persons and different types of objects).

Furthermore, each module can have specific requirements,

which have to be fulfilled prior to its execution. For example,

a module for the estimation of the height of a person does

not require unprocessed video stream, but the output data of

the tracking module with 3-d positions of the detected object

as well as the knowledge from the environment model that

the detected object is really a person.

The multimodal scene analysis intends to integrate all

perception modules in a consistent and modular framework

applicable on a humanoid robot. In doing so, among others,

two goals are to be considered: the choice of the most appro-

priate module for a current task as well as the consideration

of possible dependencies of perception modules between

each other. As a logical consequence, in order to coordinate

the variety of perception modules and their abilities, a

perception-oriented framework becomes obligatory.

To respond to the above mentioned challenges, the frame-

work for the opto-acoustic scene analysis has been developed

in our research group in the last years. This paper describes

the proposed framework and introduces an experimental,

real-time capable realization in form of the OPASCA (OPto-

Acoustic SCene Analysis) system [8].

The proposed framework and implementation has been de-

veloped within the scope of the Karlsruhe humanoid research

project SFB 588 [12] and is applicable on the Karlsruhe

Humanoid Head [1], shown in Fig. 1.

This paper is organized as follows: In Section II, the

proposed hierarchical approach for the object exploration is

introduced. Hereby, the object-oriented modeling of collected

information and handling of new and known objects are

described. Some important aspects regarding the exploration

of unknown objects are given separately in Section III.

Section IV presents the system architecture of the developed

framework with focus on both, data flow and knowledge

orientation of different kinds of perception modules, as

well as their handling within the framework. In Section
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(a) front view (b) lateral view

Fig. 1. Head of the humanoid robot ARMAR-III.

V, an exemplary real-time implementation of the proposed

framework in form of the OPASCA system for the opto-

acoustic scene analysis is described. Finally, in Section VI,

a concluding summary is given and future work is described.

II. HIERARCHICAL EXPLORATION APPROACH

In this section, our approach for the hierarchical ex-

ploration of objects in the environment of the robot is

presented. Hereby, the object-oriented modeling of collected

information as well as the phases of the object exploration

are described.

A. Object-oriented environment model

Like a human being, the humanoid robot needs a memory

capability, which is constantly used for acquiring, saving, and

recalling information about the robot’s environment. Since

every human is able to classify the world into objects and

relationships and also tag them, e.g. by adding attributes,

the robot’s environment model needs similar capabilities.

Thereby, the information may be provided by sensors of the

robot, but may also result from knowledge generated earlier,

or from the completely predefined a-priori knowledge.

Within the scope of the humanoid research project SFB

588, an approach for such an environment model was

formally proposed in [4]. Taking those considerations into

account, an environment model was developed and imple-

mented. One of the core properties of the environment model

is the object-oriented knowledge handling, which allows to

set up a hierarchical representation of an object on different

abstraction levels. These levels are defined by the degree

of detail expressed by the attributes of the object. The

more detailed they are, the lower the abstraction level is.

Exemplary, the corresponding relations are shown for the

object COFFEE MACHINE in Fig. 2.

New information, which is acquired by the sensors of the

robot or is given by a human guide, may result in adding new

attributes to already defined objects or in changing values

of them. As a consequence of generating a new attribute,

the abstraction level may change. The idea of different

objects
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Fig. 2. Abstraction levels of the object COFFEE MACHINE in the environ-
ment model.

abstraction levels can be visualized by a class hierarchy

based on inheritance, similar to object-oriented programming

languages. All objects within the environment model are

represented as instances of the basic class POINT. Depending

on their associated characteristics, the individual instances

can be specialized, e.g. in form of the class OBJECT. It

inherits the spatial position attribute hasPosition from the

POINT, but in addition, it might have some class specific

attributes like hasSpatialExtent or hasOperatingState.

However, the availability of attributes always depends on

the specialization of the class POINT. While the attribute

hasHeight can be assigned to the class POINT specialized

as a PERSON, the knowledge property hasFillingLevel can

be used to specify the instance of the class POINT specialized

as CUP.

Another important ability of the proposed environment

model is the fact that each information attribute in the

model contains a statement about its uncertainty, which

quantifies the quality of the information. For example, the

information provided by the sensors of the robot contains

general measurement uncertainties, in contrast to predefined

a-priori knowledge, which is usually very reliable. In so

doing, each information in the model is accompanied by an

uncertainty statement in a probability notion interpreted as

a degree-of-belief (DoB). A detailed description of the DoB

theory can be found in [10].

B. Object exploration

The exploration of the robot’s environment is based on

the perception of known and unknown objects, of which it

consists. As soon as an object is detected by the sensors

of the robot, the object exploration starts automatically.

Subsequently, the corresponding information will be added

to the environment model (see also [4]).

The life cycle of an object in the environment model is

roughly characterized by three phases:

1) Detection and instantiation: In the case that new

information gathered by the sensors of the robot cannot be

associated with an already existing object in the environment

model, a new object is instantiated in the environment model

of the robot.
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Fig. 3. Example for the typical exploration of an object.

2) Specialization: If the new information is associated to

an existing object in the model, it will be fused with the

information, which is already available in the model for this

object. Thereby, two cases are to be distinguished: the new

information can be either used to update an existing attribute,

or it results in a new attribute, which is added to the object,

changing in this way its abstraction level. In any case, the

new information manipulates the DoB for the existence of

the object in the model. This phase of the object exploration

is continuously repeated as long as new sensor data are

available.

3) Deletion: When objects are propagated over the time,

the DoB will decrease for the existence of those objects,

which were not updated with new information. In the case

that the DoB for the existence of an object drops under a

predefined threshold, the instance of this object is deleted

from the environment model.

An example for the typical exploration of an object is

shown in Fig. 3. There, the process is initiated by detections

of an acoustic event and/or a face of a person in the

real world. Thereby, an instance of the basic class POINT

is created in the environment model, with two manda-

tory knowledge properties isPoint and hasPosition (detec-

tion/instantiation phase). In the subsequent specialization

phase, at first, the decision for a PERSON class is made,

which leads to the corresponding specialization and adding

the attribute isPerson. Based on this knowledge, person-

oriented algorithms (acoustic and visual person identification,

estimation of the height) are applied in the next step and

result in a further specialization (hasIdentity, hasHeight) of

the object instance in the environment model.

III. EXPLORATION OF UNKNOWN OBJECTS

Besides the task of analyzing the scene with the reference

to already known objects, there is a need for the robot to

be able to explore a (partially) unknown environment. The

necessity of such exploration is given every time, when the

robot leaves its usual proximity (e.g. kitchen) and enters a

new one (e.g. living room). But already the appearance of a

new object inside the known environment leads to the need

of updating the robot’s knowledge with new information.

For this purpose, an exploration process is needed, which is

particularly focused on the collection of new information

about both, known and unknown objects. For example,

such kind of information could be color histograms for the

characterization of a new object, or the information about

the height of an already known person.

A. Multimodal signatures

Like a human being, the humanoid robot can continuously

acquire new information about its environment and use it

to update the stored knowledge. This allows the robot to

gather more and more information about the objects in

its proximity in a natural and humanoid way, particularly

without supervised learning. It is rather a question of time,

how long it will take to explore all unknown objects just

carrying out the everyday tasks, for which the perception

units of the robot are employed.

Having this in mind, it is necessary to know how the

acquired knowledge can be transformed to a representation,

which is geared to be stored in the environment model. Such

kind of representation is given by unique signatures of the

object, which are generated from its typical characteristics.

Due to the fact that both, many objects and persons can be

perceived by more than one modality of the robot, the corre-

sponding signatures are typically multimodal. For example,

a signature for a coffee machine consists of corresponding

acoustic and visual features. However, the visual features

could comprise of color histograms, dimensions, and shape

information. Taking all this information together, an unique
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multimodal signature can be generated and stored for the

object coffee machine. Exactly these signatures are used in

combination with Classifier modules, described in Section

IV-A, to recognize the detected object at a later time.

B. Assisted exploration

The generation of multimodal signatures is not a trivial

task. Due to the fact, that an object is not mandatory

observable all the time by every modality, several unimodal

signatures can be created for one and the same object, which

should be fused to a multimodal signature. Besides this,

the uncertainty of the Classifier modules could lead to the

generation of a completely new signature for an already

known object. As a consequence, several signatures would

characterize one and the same object.

However, for the robot, it is very difficult to resolve this

situation on its own. Therefore, the assistance by a human

guide can be helpful. This person could advise the robot to

fuse redundant signatures or correct the wrong ones, on the

one hand, but also tag autonomously generated signatures

with labels, which can be easily interpreted by humans (e.g.

”Person Anja” instead of ”object #11”), on the other hand.

IV. ARCHITECTURE OF THE FRAMEWORK

To realize the hierarchical exploration described above,

this section proposes a modular, data flow-oriented concept.

In the following, the structure of the framework as well as

dependencies between different stages of the process of the

object exploration are described.

A. Module categories

Modules within the framework are organized in cate-

gories, which represent various types of tasks. Thereby,

seven categories can be characterized: Initiator, Classifier,

Fusion, Attribute, Tracking, View, and all further modules,

summarized in the General category.

a) Initiator: Modules of the Initiator category provide

the ability to create an instance of an object in the envi-

ronment model. This initial object is always of type POINT

and have two mandatory properties isPoint and hasPosition.

In other words, the class POINT represents the existence

of an object instance in the environment model. However,

alternatively new sensor data can be associated to previously

created objects.

b) Classifier: The main task of the Classifier modules

is to perform the specialization of the basic class POINT.

The particular characteristic of these modules is their nesting

ability. It is possible to execute one classification process

after another one or to activate more than one module in

parallel. Thus, the class POINT is specialized in a repetitive

process. For example, the class POINT can be specialized

as an OBJECT in the first step, and as a CUP in the next

step. Usually, classifier modules operate on various statistical

models which build the basis of the classification process. For

example, Gaussian Mixture Models (GMMs) can be used to

distinguish between different kitchen appliances based on

their characteristic acoustic signatures [11].

c) Fusion: The Fusion category consists of modules,

which are specialized on the consolidation of the corre-

sponding classifier results. In this way, the results of two or

more classifiers are combined to one decision, e.g. outputs

of the modules for acoustic person identification and face

identification to the global identity of a person ([10], [6]).

d) Attribute: Modules of the Attribute category repre-

sent the further specialization of a class and can extend it

with various attributes. As mentioned before, the availability

of attributes depends on the specialization of the class

POINT. While the class POINT specialized as PERSON can

be characterized by the attribute hasHeight, the attribute

hasFillingLevel could be a typical property for an object

specialized as CUP.

e) Tracking: The Tracking category consists of special

modules for the attribute hasPosition. The peculiarity of this

attribute is that it has to be generated and updated by only

one of the Tracking modules exclusively. For example, while

a cup is tracked by a generic median based tracker, a particle

filter based approach can be used for a person.

f) View: Modules of the View category are not manda-

tory for the execution of the system. They rather provide

various representation possibilities of the knowledge in the

environment model to the outside world. For example, a GUI

module can be integrated to give a human user an overview

about the acquired and stored knowledge, but also about the

available statistical models for the classification task.

g) General: Finally, modules in the General category

provide global functionalities like data acquisition or self-

localization.

Regarding the life cycle of an object in the environment

model described in Section II-B, the above module categories

can be assigned to the three phases of the object exploration.

While modules in the Initiator category provide the abilities

for the detection and instantiation phase, all other modules

- excepting the View and General categories - belong to the

specialization phase. Especially, the General modules cannot

be assigned to a specific phase due to their generality.

B. Reflecting the principle of hierarchical object exploration

The idea of the hierarchical object exploration given in

Section II ensures that only perception tasks are executed

which make sense on the current representation level of

the object to be explored. In particular, that means that

modules for analyzing the object at the lower abstraction

level are always executed subsequent to modules which are

operating on the higher abstraction level. For example, a

module which is specialized on the face identification task

cannot be executed until the current object has been tagged

as a PERSON (e.g. based on acoustic sensor data) with a

degree-of-belief (DoB) above a certain threshold.

C. Module dependencies

Taking into account the above mentioned considerations,

two kinds of dependencies between the modules can be

derived for the system architecture – the data dependence

and the knowledge dependence.

2392



The data dependence reflects the data flow-oriented aspect

of the system. Thereby, the acquired sensor data have to be

processed over several stages within the system, following a

defined processing chain. This chain is implicitly determined

by available modules within the framework as well as their

perception abilities. In doing so, the system has to ensure that

prior to the execution of a module, all required input data

for this module were generated as output of one or more

previously executed modules. For example, the module for

the acoustic person identification requires acoustic features,

which are generated by the module for the acoustic event

detection. An example for the data dependence is given by

the graph in Fig. 4 and represents the data flow between the

modules.
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Fig. 4. Example for data dependencies between modules for the exploration
of a person.

While the data dependencies are focused on the consistent

data processing flow (determination of the order/sequence

of the processing chain), from the knowledge-oriented point

of view, additional dependencies related to the abstraction

level have to be considered. This is what we call knowl-

edge dependence. In particular, the knowledge dependence

implies, that the ”knowledge flow” (that is, the level of

abstraction) starts with the object representation on a high

abstraction level (POINT) and ends on a lower level of

abstraction (e.g. detailed description of an object). Translated

to the module processing chain, this means that modules

on a lower abstraction level are always executed subsequent

to modules which are operating on the higher abstraction

level. Furthermore, the processing chain based on knowledge

dependencies takes into account, that modules for a more

detailed object description (lower level) are only executed,

if the reliability (or degree-of-belief) of the higher level

results fulfills minimum requirements (higher than a given

threshold). For the above mentioned example in Fig. 4, the

detected object has to be specialized as a PERSON prior to the

execution of the modules for the acoustic and visual person

identification. The corresponding example is shown in Fig.

5.

D. Module execution

Considering the above described dependency kinds, each

module defines its own data and knowledge dependencies. In

order to execute a module, the system has to guarantee the

fulfillment of all corresponding dependencies. This results

in a non-random executing order of the modules. It is rather
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Fig. 5. Example for knowledge dependencies between modules for the
exploration of a person.

a question of the appropriate dependencies when a module

has to be executed by the system. Based on this constraint, a

hierarchical structure of the entire framework can be derived.

Fig. 6 shows the corresponding module executing order,

on the basis of the dependency examples given in Fig. 4

(data dependence) and Fig. 5 (knowledge dependence).
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Fig. 6. Example for the module executing order based on data dependencies
in Fig. 4 and knowledge dependencies in Fig. 5.

The automatic determination of the module executing

order in combination with the modular structure of the

framework allows to add and replace modules in a very

comfortable way, in particular without changing the system

architecture itself.

V. OPASCA SYSTEM

In this section, an exemplary implementation of the pro-

posed concept for the opto-acoustic scene analysis is pre-

sented. Taking into account the considerations and require-

ments for such a framework described in previous sections,

we built a real-time system for the opto-acoustic scene

analysis in a proof of concept way. The system is called

OPASCA (OPto-Acoustic SCene Analysis) [8].

A. Sensor setup

Although the proposed concept is not branded to any

special sensor setup, a humanoid sensor arrangement was

used in this work (see also Fig. 1). Therefore, a stereo camera

with 6 mm focal length as well as a microphone array were

mounted on a pan-tilt-unit. Thereby, the microphone array

consisted of six condenser Lavaliere microphones. Two of

them are placed on the positions of the human ears with
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a distance of 19 cm. Two further microphone pairs are

placed on the median planes of the head at the vertical level

of the nose as well as at the level of the forehead, both

with a distance of 23 cm. The distance between both front

microphones is 6 cm. Two microphones on the back of the

head are mounted with a distance of 4.5 cm.

B. Module overview

As mentioned before, the scene analysis consists of a

variety of perception tasks, e.g. detection, tracking, and

identification of persons and different types of objects. The

framework modules and corresponding tasks, which can be

currently addressed by the OPASCA system, are summarized

in Table I. By analogy with Section IV-A, the modules in

the OPASCA system can be sorted into seven categories.

However, this compilation shows only a selection of some

exemplary implementations trying to tackle the primary

perception tasks of a humanoid robot. When required, further

modules can be integrated into the system at any time.

C. Selected evaluations

In the following, some selected abilities of the OPASCA

system are evaluated in real scenarios.

a) Life cycle of an object: Addressing the hierarchical

object exploration, described in Section II-B, an exemplary

real life cycle of an object is shown in Fig. 7. Thereby, the

scenario consists of a person, who appears in the field of

view of the robot, speaks to the robot, and finally leaves the

field of view. The figure shows the DoB for the attributes of

the explored object at different exploration stages.

At first, a new object is instantiated at time t0. The

instantiation is caused by an acoustic event, which has been

detected by the Initiator module iAcoustics. Simultaneously,

the attributes isPoint, hasPosition, and isAcoustic are added

by the Fusion module fInitiator to the created instance of the

object in the environment model.

Few moments later, the object is specialized as a person

(by the Fusion module fPoint) and the attribute isPerson is

added at t1.

As soon as the DoB for isPerson reaches a certain

threshold, various person-specialized modules are executed.

This includes the Classification module cPersonAcousticID

with the corresponding Fusion module fPerson, but also the

Attribute module aPersonHeight for the estimation of the

height. Consequently, two further attributes hasIdentity and

hasHeight are created at t2.

Few seconds later, the detected person enters the field of

view of the robot. This event is noticed by the Initiator

module iVisualPerson and results in the creation of the

corresponding attribute isVisual at t3. Due to the availability

of visual data and the classification as person, the Clas-

sification module cPersonVisualID can be executed. From

now on, the classification results of cPersonAcousticID and

cPersonVisualID are fused by the Fusion module fPerson.

At time t4, the person stops talking and leaves the field of

view of the robot. As a result, there are no new detections,

neither acoustic nor visual. Thus, the DoB for the attributes

TABLE I

OVERVIEW OF INTEGRATED MODULES IN THE OPASCA SYSTEM WITH

A SHORT DESCRIPTION OF THEIR SPECIALIZED TASKS

category module name description of task

Initiator iAcoustics acoustic event detection and
localization [2]

iVisualPerson face detection and localization [13]
iSurfaceObject segmentation of objects on

a-priori known surfaces

Classifier cAcoustics GMM based acoustic event
classification [11]

cVisualPerson detection based classification
for the class POINT

cSurfaceObject detection based classification
for the class POINT

cObjectColor color histogram based classifi-
cation of objects

cObjectShape shape based classification of
objects

cObjectState HMM based estimation of operat-
ing states of an acoustic observ-
able object (e.g. coffee machine)

cObjectVolume volume based classification of
objects

cPersonAcousticID UBM based acoustic identification
of persons [9]

cPersonVisualID local DCT features based face
identification [3]

Fusion fInitiator calculation of the DoB for the
class POINT (existence)

fObject fusion of classification results
for the class OBJECT

fPerson fusion of classification results
for the class PERSON

fPoint fusion of classification results
for the class POINT

Attribute aObjectPose stereo information based estima-
tion of dimension and pose
(length, width, height, rotation
angles) of an object

aPersonGesture marker based estimation of point-
ing gestures of a person

aPersonHeight 3-d position based estimation of
the height of a person

Tracking tDefault default tracker for classes POINT

and OBJECT

tPerson particle filter based tracking for
the class PERSON

View vGui representation of the knowledge in
the environment model

General gDataAcquisition interface to physical sensors of
the robot

gSelfLocalization marker based self-localization and
pose estimation of the sensor head

isVisual, isAcoustic, and hasPosition decreases continuously.

This entails the decrease of the DoB for isPoint at the same

time.

Finally, at time t5, the DoB for isPoint reaches the

predefined threshold for the deletion. As a result, the instance

of the object is deleted from the environment model and the

life cycle of this object is over.

b) Multimodal fusion: As an example for the fusion of

different information sources, the multimodal identification

of a person is shown in Fig. 8 (a). On the ordinate, the mean

probability for the correct recognition is given. Additionally,

all results are presented for different signal acquisition dura-
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Fig. 7. Example for the typical life cycle of an object, showing the DoBs of
attributes in the environment model, which are created during the exploration
process by the real-time system.

tions. That means that the classification result is available as

soon as a sensor data block of a specific length is acquired.

The x-axis shows the corresponding acquisition time. For this

setup, a database with six multimodally recorded persons was

used.

It can be seen that the unimodal classification results,

acoustic only and visual only, are partially significantly worse

than the fused multimodal classification result. Additionally,

the standard deviation between different persons is given in

Fig. 8 (b). The fusion process results in a significant lower

standard deviation, which indicates the improved robustness

of the classification.

c) Multimodal signatures: As pointed out in Section

III-A, the new sensor information acquired by the robot

during the exploration process can be used to create and

update the unique signatures of objects in the environment

model. Fig. 9 (a) shows the mean quality of generated

signatures for six persons after the acquisition time, given

on the x-axis. The quality of a signature, which is used for

the classification in combination with Classifier modules, is

determined by the acquisition time, which has to be passed,

before the corresponding signature is generated.

As it can be seen, the mean correct classification rate

increases slightly when more sensor data are used for the

generation of a signature, both, acoustic and visual. However,
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Fig. 8. Example for the fusion of unimodal classification results (acoustic
person identification and face identification) for the multimodal person
identification.

in this case, the standard deviation between different persons,

given in Fig. 9 (b), decreases significantly. This can be

interpreted as an indication for a more reliable classification.

Nevertheless, there is no need to collect a lot of sensor

data at once to get a high quality signature. The ability to

update an already existing signature (of a low quality) in

the environment model is implicitly provided by the system

and the Classifier modules. It is rather a question of new

matching sensor data: as soon as new data are available, an

already existing signature of the corresponding object can be

refined.

D. Real-time capability of the system

The OPASCA system operates on a single computer (Intel

Core 2 Quad with 2.67 GHz and 4 GB RAM). While a

maximum processing rate of 11.7 frames per second can be

achieved, the typical frame rate amounts about 9 frames per

second. This cycle is sufficient to perform the scene analysis

task and to keep the environment model in a state, which

continuously reflects the current proximity of the robot.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper presents the framework for the opto-acoustic

scene analysis. The hierarchical exploration approach for

the environment of a humanoid robot is described for both,

known and unknown objects. Thereby, three different ex-

ploration phases are characterized: detection/instantiation,

specialization, and deletion. The entire exploration process

is based on the object-oriented environment model, which

is constantly used for acquiring, saving, and recalling infor-

mation about the environment of the robot. In particular, the

environment model provides the ability to store and exchange
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Fig. 9. Example for the unimodal person identification using unique
signatures (both, acoustic and visual) of different quality. The quality of
a signature is determined by the acquisition time, which has to be waited
for, before the corresponding signature is generated.

knowledge generated and required by specialized perception

modules.

Additionally, a further type of knowledge can be stored in

the environment model. This information is given by unique

multimodal signatures of explored objects and can be used

to recognize these objects at a later time. The exploration

process can be supported by a human guide within the

assisted exploration.

For the realization of the described exploration process,

a hierarchical, knowledge-oriented, and modular concept of

a framework is proposed. Thereby, the focus is put on

formal conditions in form of dependencies between various

perception modules. In doing so, two kinds of dependencies

are distinguished. The data dependence reflects the data flow

of the acquired sensor data, which is processed over several

stages, following a certain processing chain determined by

the available modules within the framework and their spe-

cific perception abilities. By the knowledge dependence, the

knowledge-oriented point of view of the object exploration is

considered. Related to the abstraction level of the exploration

process, the knowledge flow starts with the object representa-

tion on a high abstraction level and ends on a lower one. For

both dependence types, each module within the framework

defines its own data and knowledge dependencies, which

implicitly restrict the execution order of the modules during

the exploration process.

Based on the formal proposed framework, the developed

highly integrated, real-time system for the opto-acoustic

scene analysis (OPASCA system) was presented. An eval-

uation scenario was exemplary shown in form of a typical

life cycle of an object during the exploration process. Ad-

ditionally, the benefit of the multimodal fusion was demon-

strated. A further example related the quality of multimodal

signatures depending on the amount of available sensor data.

B. Future Work

Future work will have to address the question of an

intelligent knowledge- and task-driven symbolic planning of

the entire process of exploration. In contrast to the current

design of the framework, which aims to collect the maximum

of knowledge at any time, a smart planning of the exploration

would only collect the information which is needed to fulfill

the current task of the robot. For example, the task to identify

the person near the robot does not inevitably require to

estimate the height of the person.

Therefore, different knowledge sources (e.g. a-priori

knowledge, current situation, input from interaction with

an user) as well as general restrictions and limitations (for

example, possible skills of the robot, competitive tasks) have

to be taken into account.
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