
 
 

 

  

Abstract—The integration of industrial robot systems into 
the manufacturing environments of small and medium sized 
enterprises is a key requirement to guarantee competitiveness 
and productivity. Due to the still complex and time-consuming 
procedure of robot path definition, novel programming 
strategies are needed, converting the robotic system into a 
flexible coworker that actively supports its operator. 

In this paper, a learning-from-demonstration strategy based 
on Hidden Markov Models is presented, which permits the 
robot system to adapt to user- as well as process-specific 
features. To evaluate the suitability of this approach for small-
lot production, the learning strategy has been implemented for 
an arc welding robot and has been evaluated on-site at a 
medium sized metal-working company.     

I. INTRODUCTION 
ODAY’S industrial robot systems perform at high 
accuracy and efficiency levels, guaranteeing a constant 

product quality. In order to stay competitive on their market, 
more and more small and medium sized enterprises (SMEs) 
consider the use of industrial robots to partly automate their 
production. In the end, a significant number of SMEs decide 
against the acquisition of a robot system due to the time-
consuming and rather complex process of programming, 
which is still required in conventional robots [1]. SMEs 
typically deal with small lot sizes in the range of 50-200 
pieces, so reprogramming the robot will be necessary 
frequently. Furthermore, the workers in producing 
workshops might be highly experienced process experts, but 
are usually not trained in operating complex technical 
systems. 
 The most suitable robot system fitting into the given 
context would be instructed similarly to a new apprentice 
boy: for the first time you explain to him a task, you will 
have to mention every single detail before you leave him 
alone with the task. By the next time, he will already 
remember the special cases seen in the first task. Over time, 
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the apprentice will gain enough experience to operate the 
task on his own after a short introduction to the workpiece. 
 As discussed in [2], Programming by Demonstration 
(PbD) is a promising approach to fast and intuitive robot 
programming. The key idea of PbD is that the operator 
shows and explains to the robot its next task without the 
need to have explicit programming knowledge. This 
technique is well-known and can be defined in a number of 
different ways (for a full classification see [3]). There exist 
lots of interesting approaches using different learning 
strategies to model human skills as in [4], the building of 
state/action memory maps to model observed actions as in 
[5] or learning household tasks decomposed into a sequence 
of actions from human demonstrations as in [6] and [7]. 
Most of these studies are conducted at a rather theoretical 
basis, using simulation technologies or laboratory test 
platforms for evaluation purposes.  
 Human-robot interaction for industrial robots in 
manufacturing environments, in contrast, forms an area of 
research that is only now emerging. The current 
developments concentrate on the design of interfaces for 
multi-modal human-robot communication specialized for 
online programming as in [8] and [9] or on the intuitive 
definition of workspace constraints to cope with the 
mismatch between virtual and real worlds for offline path-
planning as in [10]. Although these methods are intuitive to 
learn and significantly faster than conventional methods, the 
robot systems keep performing at a constant level no matter 
how many demonstrations they have seen, as there are no 
suitable interfaces able to extract relevant knowledge in 
order to generalize over the given task. 
 In this paper an approach to learn programming strategies 
as well as process knowledge from human demonstrations 
will be presented. The approach is based on Hidden Markov 
Models (HMM) and aims at actively supporting the operator 
in the programming process. As an application example, an 
arc welding robot equipped with an intuitive programming 
environment based on PbD is used, which will be shortly 
introduced in section II. Section III and IV present the 
general modeling approach as well as the calculation of 
observable environment parameters, whereas the following 
section details the concrete procedure used to generate 
predictions. The learning strategy has been evaluated in an 
authentic manufacturing environment. The results are 
summarized in section VI, followed by a conclusion and 
outlook to future work. 
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Fig. 1. Programming procedure using the intuitive programming 
environment for industrial robots developed at Fraunhofer IPA. 

II. PROGRAMMING ENVIRONMENT 
 A PbD strategy has been implemented by way of example 
for a KUKA KR16 industrial robot equipped with a JR3 
force-torque sensor (FTS), a handle, a welding device and a 
two-axis positioner. The general programming procedure is 
shown in Fig. 1.  
 Programming, i.e. the definition of a sequence of points 
on the robot path is conducted using manual guidance and 
speech interaction. Manual guidance is realized using 
admittance algorithms as described in [11]. For the robot, 
two different movement modes are implemented which 
differ in the number of degrees of freedom (DoF) that are 
activated. In 3 DoF mode only translational movements are 
activated. The 6 DoF mode allows the user to change the 
tool orientation as well as to guide the robot arm 
translationally as in 3 DoF mode. Additionally, a table mode 
has been implemented to change the orientation of the 
workpiece fixed on the positioner via the same interface. 
The speech interface, which is described in detail in [12], is 
used to activate commands from the set 
 , , , ,    (1) 

 

with the following practical impact: 
- : switch to robot movement mode 
- : switch to table movement mode 
- : enable / disable 6DOF robot movement 
- : increase the scaling factor of the FTS-values 

resulting in faster robot movement 
- : decrease the scaling factor of the FTS-values 

resulting in slower robot movement. 
 

At the end of the programming step, one point has the form 
[X Y Z A B C currSpeed currDist], where X, Y, Z, A, B, C 
define the position and orientation of the welding torch. The 
variables currSpeed and currDist monitor the speed of the robot 
while being guided to the current position and the distance 
between tool and workpiece respectively. An exact 
definition follows in section IV. 
 During the post-processing step, the programmed robot 
path is loaded to a graphical user interface (GUI) and 
visualized in a 3D-view. Here each point of the robot path 
can be complemented with additional information taking the 
form [X Y Z A B C currSpeed currDist finalSpeed welding]. The 
variable finalSpeed sets the movement speed for the final robot 

program. The welding variable defines the functional role of 
the according point for the welding process and takes one of 
the values from set 
 , , ,            (2) 

 

which correspond to the following types of movement 
commands  in the final robot program:  

- : linear movement in free space with the welding 
torch switched off. 

- : starting point of the welding seam, including 
necessary preparation information for the turning-on 
of the welding torch. 

- : last point of the welding seam, including all 
relevant process parameters. 

- : a point on the welding seam, including 
changes in the movement/process parameters. 

Instead of  post-processing a point, it can also be deleted if 
it has been programmed accidentally and is not needed in the 
final program. 

During the last step the post-processed path is 
automatically converted to an executable robot program 
using a template header and footer and translating each point 
into the according robot command set. Further details about 
the programming environment can be found in [13].   

III. MODELING THE LEARNING PROBLEM 
 Programming as described in section II contains repetitive 
and therefore predictable operations: a robot programmer 
will develop his individual procedural method for path 
definition. Likewise, a work process like welding requires a 
defined order of actions to produce high quality results. To 
model and predict the sequential data sets, i.e. points in a 
robot path, HMMs are considered a promising methodology 
[14]. 

A. Model Training 
 The proposed model for the learning problem is based on 
all data seen by the system at usage time. It starts with zero 
information and is updated every time a new robot path has 
been programmed and saved. To ensure a high confidence of 
the model, the learning strategy is fully supervised by 
comparing the data in the preliminary robot path to the 
command sets of the final robot program (see dashed arrows 
in Fig. 2).  
 To avoid unexpected actions, the system requires the user 
to accept or decline all predictions generated by a trained 
model. The information obtained from this user feedback 
can be used to reinforce the model parameters as indicated 
by the dotted arrows in Fig. 2. 

B. Formal description 
 Following the HMM definition given in [15] it is 
necessary to define a set of internal states   as well as a 
set of emissions . In the present case, an internal state 
describes the functional role of a single point within a 
programmed robot path. Every internal state produces an 
emission depending on its current context. An emission in 
that case describes the collectivity of observations associated 
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with the individual program point, whereas the context of 
the internal state means the characteristics of its 
predecessors and their emissions. The final goal of this 
approach is the stepwise prediction of the internal states in a 
robot path from the observations, i.e. the emissions. Precise 
examples will be given in the next sections. 
 

 
 
Fig. 2.  Overview of the proposed adaptive interface. The dashed arrows 
mark the influence of supervised learning strategies, the dotted arrows mark 
the influence of reinforcement learning. 
 
 To train the desired model, transition probabilities  and 
emission probabilities  have to be calculated. At the 
creation of a new model, it will contain no valuable 
information, so 
 INIT_VAL  ,  ,        (3) 
 
where INIT_VAL represents some small initial value (here 
set to 0.1) in order to avoid numerical problems. With every 
robot path seen, the probability matrices will be updated 
according to the following equations: 
 1  |   ,  .     (4) 
  |    ,  .   (5) 

IV. OBSERVATIONS 
 The robot system used in the presented approach is 
equipped with a force torque sensor as well as a realtime-
interface, which allows the monitoring of the current set-
positions. No further sensors are integrated into the system 
in order to keep it cost-efficient as well as suitable for rough 
environment conditions. Based on the available information 
the following observations are obtained: 

A. Velocity calculation 
Due to the used control strategy the movement velocity of 

the robot during manual guidance scales with the applied 
forces and torques. During every control cycle the forces and 
torques measured by the sensor are summed up and stored in 
a data vector. With every added program point, the mean 
value of all sums obtained since its predecessor-point, will 

be stored as the associated speed parameter  
 ∑      

    (6) 
 

where  is the number of control cycles between the 
predecessor-point at time 1 and the novel point at time . 

B. Distance calculation 
 Due to the reasons discussed above, the exact position and 
shape of the workpiece are unknown to the robot system. 
Nevertheless, a rough estimation about the relative distance 
between tool and workpiece can be obtained from the 
movements already performed during the current 
programming cycle. It can be assumed that the workpiece is 
fixed on some known kind of attachment (in this case the 
two-axis positioner), so for every programmed point it is 
monitored if the tool has moved closer towards the 
attachment or not: 
  1         (7) 
 

where  describes the distance between the robot tool 
center point and the center of the attachment at time . 

C. Parameter Scaling 
 The absolute values obtained in (6) and (7) will vary not 
only depending on the workpiece and the operator, but also 
from day to day. To extract relevant and comparable 
information from the absolute parameters, they are scaled to 
the range observed during the current programming cycle: 
  .         (8) 
with max min       (9) 
 

According to their relative values, the parameters are 
classified into discrete categories: 
  0     0.15              1   0.15 0.152    0.15                               (10) 

 

 0     0.15                  1   0.15 0.012   0.01 0.01    3    0.01 0.15         4    0.15                                (11) 

 

The observation space used in the following sections can be 
summarized as   
 , .                    (12) 

V. GENERATING PREDICTIONS 
 Two different learning problems are addressed in the 
presented approach: on the one hand, time-consuming steps 
concerning the path post-processing are sought to be 
eliminated. To achieve this, a model describing the work 
process under consideration is needed. On the other hand, 
the path definition procedure is assumed to be accelerated by 
continuously updating a model of the programming 
strategies of the known operators.  
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A. Process Model 
The process model determines the functional role of every 

program point in order to predict the process parameters and 
therefore inherit the task of post-processing step by step 
from the operator. The internal states for arc welding equal 
the set  given in (2).  

As can be reasoned from the welding example, the 
functional role of many program points already provides 
information about the order in which the internal states 
typically occur. The process model stepwise adapts to the 
specific relationship between the internal states and how 
they correspond to the observation parameters. The structure 
of the process model is shown in Fig. 3: 

 

 
 
Fig. 3.  Overview of the process model architecture. 
  
 The model training is conducted according to the formulas 
given in (3) - (5). As the predictions from the process model 
are used for post-processing, the decoding can be conducted 
offline on the complete robot path permitting the application 
of the viterbi algorithm [16]: for every program point with a 
given observation , and for every internal state  
the viterbi variables are calculated as 

  max 1          (13) 
 

with  the transition probability according to (4) and  
the emission probability according to (5). For every viterbi 
variable a pointer is set to the most probable predecessor of 
the associated internal state:  

 arg max 1           (14) 
 

 Having stored all viterbi variables and their associated 
pointers, the most probable path of internal states is 
determined starting from the highest viterbi value obtained 
for the last program point in the sequence and successively 
following the pointers to the most probable predecessors in a 
backward manner: 
                   (15) 
 

with  the most probable internal state at time . 

B. Command Model 
The command model represents the programming strategy 

of the known users, i.e. the typical sequence of actions (as 
defined in , see (1)) carried out during a programming 
task. 

The command model supports the operator by suggesting 
the next action necessary for an efficient programming 
procedure. In contrast to the process model, the command 
model is used online with only the first part of the robot path 

available at the time of predicting. Another challenge this 
set-up presents is to find not only the appropriate succeeding 
action, but also the most suitable time-window for the 
suggestion. To accommodate this problem specification, a 
cascade of two individual HMMs is proposed (depicted in 
Fig. 4).  

 

 
 
Fig. 4.  Overview of the command model architecture. 

 
A decision model is constantly monitoring the 

observations. Considering the observation as well as the 
time elapsed since the last command has been set, this model 
first decides whether it is time for a suggestion at all. 
Formally speaking 

 ,                   (16)  
 
The observation space corresponds to the one already 

defined in (12). Model training is conducted as defined in 
(3) – (5) with the difference that a higher HMM order is 
needed to take into account the time elapsed since the last 
command. Hence (4) is reformulated to  

 | , ,     , , ,                     (17) 
 

As the predictions are required in an online manner, the 
viterbi algorithm is not applicable in this case. Since a 
binary result is adequate, a simple threshold is defined as 
    | |  | | 0.5             (18) 
 
permitting a binary classification according to  

           (19) 

 
If  is false the model ignores the current step, staying 

passive until the next parameter set is available. If, however, 
the decision is true the underlying command model is 
activated. 

Some of the commands defined as internal states in (1) 
change the overall system status in a manner that makes 
specific commands useless as long as the state is not 
changed back. For example, it is useless to switch to robot 
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movements if the system is already in robot movement mode 
as well as a two-axis positioner will never be able to perform 
6 DOF movements, whereas the movement speed can be 
increased several succeeding times until a maximum value is 
reached. To represent all such coherences within the model, 
it would be necessary to adapt the order of the HMM to the 
number of points already programmed. To avoid 
exaggerated computational effort, an additional observation 
space is introduced for keeping track of relevant changes to 
the system status:  

  || , 3 ||6     (20) 
 

The model training is generally conducted according to 
(3)-(5) with the following change in the calculation of the 
emission probabilities: 

 ,  ,   |       ,  ,               (21) 
 

For the prediction of internal states, the viterbi variables 
as defined in (13) are calculated using the definition in (21) 
to represent the emission probability term. As the 
predictions are needed online, the viterbi variables are used 
directly to obtain the most probable next state: 

 arg             (22) 
 

The estimated internal state is communicated to the user 
via the speech interface. The user is asked to accept or 
decline the suggestion. If he accepts it, the command takes 
effect immediately. Whereas in the latter case, the model is 
updated in a reinforcement manner and the command is 
discarded. A more detailed description of the user interface 
can be found in [17]. 

VI. RESULTS 
The proposed learning strategy is evaluated using a data 

set consisting of 15 robot programs defined with the 
programming environment described in section II. The 
programs have been recorded by five different operators in a 
manufacturing workshop on original workpieces. The data 
hence represents a rather hard benchmarking set. The robot 
programs will be referred to as trials in the following. 

The preferred evaluation method used in this section is a 
leave-one-out cross validation. Applying cross validation to 
the whole data set, i.e. using 14 trials for model training and 
the remaining one for testing, a mean accuracy of 85.02% of 
internal states correctly predicted is obtained for the process 
model and 75.97% for the command model respectively. For 
the performance on the individual trials see Fig. 5. 

A. Evaluation of the Process Model 
 Besides the overall performance of a model trained on 

the complete data set, another interesting measure is how 
fast the model learns from scratch, when seeing new data 
similar to the known training basis or even data containing 
new features never seen before. As the  

 
Fig. 5. Performance of the process and the command model on leave-one-
out cross validation for the individual trials.  
 

command is only present in 8 out of the 15 recorded trials, a 
splitting of the data set into two subsets (one with 

, one without it) can be used to visualize this 
learning process.  
 The solid line in Fig. 6 shows the development of a new 
process model without the use of the  command. 
On the X-axis the number of trials used for model training is 
given. The accuracy drawn for the training data sets of 
increasing size is calculated as the mean value of the k-fold 
cross validation on the subset lacking the  
command. The figure describes nicely the learning progress, 
i.e. the accuracy increasing by about 10% during the first six 
trials seen. Additionally, the standard deviation over the 
single evaluation cycles decreases with every additional trial 
seen, showing that the model is stabilized. The dashed line 
in Fig. 6 shows the progress of learning a new internal state, 
when already trained on different data. For training, the 
whole subset lacking the  command has been 
used in each case. The number of new trials containing the 
unseen internal state that are added one by one to the 
training data set is given on the X-axis. The evaluation is 
based on the remaining robot paths containing the 

 command that are currently not used for training 
purposes. 

 

 
Fig. 6. Learning progress for the process model. Shown are the mean value 
and standard deviation for training data sets of different sizes.  
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B. Evaluation of the Command Model 
 As the command model consists of two cascaded 

HMMs, i.e. a decision model and the actual command 
model, the evaluation has to be examined separately for the 
two models. The command model can be evaluated in a 
similar way as described for the process model, whereas the 
decision model performance highly depends on the 
individual preferences of the operator. Some users 
appreciate frequent suggestions which can be easily rejected 
using the speech interface. Others might prefer few 
suggestions with a high significance that can be 
complemented with traditional user input. To meet the 
preferences of the individual operator, the threshold for the 
decision model as given in (18) can be adapted by a scaling 
factor. 

The command model has been evaluated by leave-one-out 
cross validation as described for the process model above 
with at an average of 9% worse performance compared to 
the process model (see Fig. 5). This difference can be 
explained by two factors: first, the sequence given by the 
nature of the welding process is more rigid than a user’s 
programming strategy. Aside from that, the predictions of 
the command model are needed in an online manner, thus 
eliminating the backward step of the viterbi algorithm. 
Nevertheless, the acceptance of incorrect predictions from 
the command model is relatively high due to the fact that the 
user is required to react to every prediction anyway. It is 
expected that the performance of the command model 
increases significantly if it is trained by only one user, which 
will be the standard case in the final application. 

VII. CONCLUSION 
In this study, a systematic approach for building an 

adaptive user interface to ease the programming effort for 
industrial robots has been presented using a concrete 
example, which was set up and evaluated on-site due to the 
application scenario. The given example can be understood 
as a proof of concept study as it consists of rather small 
models implementing a limited number of internal states.  
 The approach is scalable concerning the number of 
internal states as well as the observation of the environment. 
An interesting extension in the post-processing step would 
be the integration of workpiece data in order to gather more 
exact distance data and such improve the accuracy of the 
programmed path. Such data could be provided e.g. by the 
integration of CAD models of the workpiece or from an 
optical sensor. The absence of such data in the current 
programming environment is caused by the clear 
specifications of the underlying application scenario. In 
many SMEs CAD data are not available for all kinds of 
workpieces and optical sensors are either susceptible to the 
rough environment conditions at the productional workshop 
or too expensive compared to the rest of the equipment.  
 As a next step the presented concept will be extended to 
be applied to a variaty of different working processes, 
strengthening the application of industrial robots as a multi-
purpose tool. To further improve the accuracy of the 

generated predictions, the usage of operator specific profiles 
is considered to better model individual preferences of the 
different workers. 

The results presented in the previous section which are 
based on a rather small first data set already indicate that 
welding as an example process as well as the programming 
strategy of different users can be modelled by the proposed 
method and the model is able to adapt to new data. 
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