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Abstract— This article presents advances in optimal exper-
iment design, which are intended to improve the parameter
identification of nonlinear state space models. Instead of using a
sequence of samples from one or just a few coherent sequences,
the idea of identifying nonlinear dynamic models at distinct
points in the state space is considered. In this way, the placement
of the experiment points is fully flexible with respect to the set
of reachable points. Also, a method for model-based generation
of prediction errors is proposed, which is used to compute an a-
priori estimate of the sample covariance of the prediction error.
This covariance matrix may be used to approximate the Fisher
information matrix a-priori. The availability of the Fisher
matrix a-priori is a prerequisite for experiment optimization
with respect to covariance in the parameter estimates.

This work is driven by the problem of parameter identifi-
cation of hydraulic models. There are methods for hydraulic
systems regarding the estimation of parameters from experi-
mental data, but the choice of experiments has not been treated
adequately yet. A hydraulic servo system actuating a stewart
platform serves as an illustrative example to which the methods
above are applied.

I. Introduction

There is consensus that model-based control of nonlin-

ear actuators improves the control performance of complex

systems considerably [1], [2], [3]. Inherently the successful

application of such control laws relies heavily on the quality

of the models involved. This article adresses the problem of

experiment design for parameter identification of nonlinear

systems.

In this work hydraulic servo-systems are considered as

an exemplary realization for this class of problems. Here,

the model structures are well established in the literature.

Unfortunately, due to the physics of hydraulics, the most ac-

curate model types are highly nonlinear [4], [5], [6]. Hence,

when modelling such a system, one has to choose a model

complexity that describes the system as accurate as possible

on one hand and that is simple enough so that the parameters

can be identified on the other hand. In related research

publications that are concerned with the determination of

model parameters in practice nonlinear models are used, but

only to a certain degree. The models are simplified in such

a way that parameters may be estimated with acceptable un-

certainty in heuristically designed experiments. For example,

model structures may be obtained which are linear w.r.t. their

parameters. In such cases the identification problem may be

tackled by least squares analysis [6].
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The simplifications mainly consist of neglections of non-

linear terms or on experiment strategies that require decou-

pled experiments in specific test beds. Unfortunately these

simplifications decrease the prediction quality of the model

considerably, as will be shown in a later section. This effect

becomes most important when the system to be controlled is

designed for highly dynamic applications what means that it

has powerful hydraulic drive systems that move low inertias.

Consequently the control performance will suffer from the

decreased model quality.

In the following section the class of models that is studied

and a suitable estimator is introduced. Also a proposal for

an experiment strategy for nonlinear state space models is

stated. The design procedure that determines the experiments

relies on the optimization of the Fisher matrix and therefore a

novel method to obtain this matrix a-priori is explained here

in detail. A procedure that is based on the Fisher matrix

is chosen and adapted. It may be used to find optimum

experiments. In order to illustrate the ideas a model of a

hydraulic servo system is presented and a procedure for

experiment optimization is proposed.

II. Model Structure and Estimator

A. Model Structure

We consider a continouos state space model structure in

the multi-variate case:

ẋ(t) = f (x, u, θ) , x(t0) = x0 (1a)

y(t) = g (x(t), u(t), θ) (1b)

The functions f and g may be nonlinear but must be

piecewise differentiable with respect to the parameter vector

θ and the state space vector x. We assume that a model

equation for f (x, u, θ) and g (x(t), u(t), θ) is already set up

and that there exists an a-priori estimation of θ. Also a rough

estimate of the variance of the parameter estimation error can

be made.

B. Experiment Procedure

The task is to find the best estimate θ̂ of the parameter

vector θ. Classically one would carry out an experiment

where an input sequence u = [u(0), . . .u(kT )]T is given to

the system and the reaction of the system is observed via

measurement of the output. Out of this output measurements

sequences of samples are picked to form the matrix of

measured outputs Ŷ = [ŷ1 . . . ŷL]T . Then an estimator that

uses the prediction error matrix W = Y − Ŷ may determine

the parameter vector.
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Usually optimal experiment design for dynamic models

is concerned with optimal parametrization of input signals

in the time (e.g. pseudo-random binary signal, chirp, infer-

ence of multiple sine-functions) or the frequency domain

(optimum shaping of random signals in frequency domain)

[7]. For nonlinear systems this strategy may not be suit-

able because establishing criteria and optimizing them to

receive an optimum input sequence is likely to fail due to

the nonlinearities in the model. Practically that means that

finding a single coherent input sequence from which all

parameters may be estimated with acceptable precision is

rather complicated or even impossible. This problem might

be tackled by releasing the prerequisite that the samples in Ŷ

belong to a coherent experiment. For the realization of this

relaxation an experiment is described by the tupel

E = {x0, u,∆t}. (2)

Consequently, the k-th measurement ŷk is taken from the k-th

experiment, which begins at the start condition (x0)k. ŷk is

sampled at the time instant (∆t)k. During (∆t)k the system is

fed by the constant input (u)k
1. This means that each sample

ŷk may be obtained from an individual experiment situation.

Consequently Ŷ is assembled from the set of experiments E:

E = {[E1, . . . ,EL}. (3)

In this way flexibility is added to the choice of the ex-

periments, which means that subsequent samples are no

longer tied to obey the system’s equations of dynamics.

The consequent application of this scheme to a state space

model means that L distinct points in the state space of

the system (experiment points) are picked for parameter

identification. Each experiment point Ek represents a short

piece of trajectory on which the system travels in a short

period of time ∆t.

C. Estimation Accuracy

The k-th measurement point ŷk contains some noise νk

ŷk = yk + νk, k = 1, 2 . . .L. (4)

We consider a maximum likelihood estimator which opti-

mizes the conditional probability density

p
(

Ŷ|U, θ̂
)

= max
θ

p
(

Ŷ|U, θ
)

. (5)

The lower bound of the covariance of an unbiased estimator

θ is given by the Cramér-Rao inequality [7]:

cov (∆θ) = E

{[

θ̂ − E{θ̂}
] [

θ̂ − E{θ̂}
]T

}

≥ F−1, (6)

where the parameter estimate is denoted by θ̂ and E{·} is the

corresponding expected value. Therefore, the Fisher matrix F

or its inverse are studied and used to indicate the information

which is contained in a given set of experiments [8], [9], [10].

The approximation of the Fisher matrix may be computed

1Note: One could also think of the generalization where u is an arbitrary
function of time. We choose to restrict the input to a constant value for the
sake of simplicity here.

upon the equation given in [7] (due to numerical reasons it

is not adviseable to compute the exact of the Fisher matrix):

F ≈ 2

L

L∑

k=1

(

dwk

dθ

)T

D(θ̂)−1 dwk

dθ
. (7)

Based on the relation wk = ŷk − yk the differentiation of wk

with respect to θ yields

dwk

dθ
= −dyk

dθ
= −

(

∂g

∂xT

dx

dθ
+
∂g

∂θ

)

k

. (8)

The state sensitivity dx/dθ may be computed via integration

of the differential of ẋ

d ẋ

dθ
=
∂ f

∂xT

dx

dθ
+

d f

dθ
. (9)

The initial condition x0 is given by the experiment point Ek,

the integration interval is given by (∆t)k.

D. A-priori Estimation of Measurement Covariances

The covariance matrix D(θ̂) may be approximated a-

posteriori by the sample covariance matrix:

D(Ŷ, θ̂) =
1

L

L∑

k=1

wkwT
k

=
1

L

L∑

k=1

(

ŷk − g
(

xk, uk, θ̂
)) (

ŷk − g
(

xk, uk, θ̂
))T

(10)

There is a dilemma which the experiment designer faces: The

sample covariance matrix D(Ŷ, θ̂) is not computable until the

measurement data from experiments is available. Hence the

information that is provided by a given sample may only be

computed a-posteriori, which is in contrast to the interest of

the experiment designer who requires the information content

a-priori. In order to solve this dilemma we propose a method

which yields an a-priori estimate of the seeked covariance

matrix D.

We assume that a rough estimate θ̃ of the parameter vector

is known a-priori (in case nothing is known about θ, only

heuristic choices for the experiment design can be made)

[11]. Also we assume that the uncertainty in θ̃ may be

approximated by a Gaussian distribution with covariance σ
θ̃
.

For many practical problems the most simple case where

σ
θ̃

may be reduced to a diagonal matrix is a promising

assumption:

σ
2

θ̃
=





σ2(θ̃1) · · · 0
...

. . .
...

0 · · · σ2(θ̃N)





. (11)

The multivariate probability density that an estimate of the

parameter vector is equal to the best possible estimate is then

given by

p(θ, θ̃, σθ) =





√

(2π)N

N∏

n=1

σθ̃n





−1

exp





N∑

n=1

(θn − θ̃n)2

2σ2

θ̃n




.

(12)
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Based on this knowledge the parameter space in the proxim-

ity of θ̃ may be discretized. We propose the discretization in

equidistant steps of ∆θ1, ..∆θN . The number of points wich is

distributed over the parameter space of interest is the product

of the number of discretization points of each parameter:

R = R1 ·..·RN . Then the r-th discretization point r
θ is assigned

to a corresponding probability rP.

P(r
θ, θ̃, σθ) =

rP =

rθ1+∆θ1/2∫

rθ1−∆θ1/2

· · ·

rθN+∆θN/2∫

rθN−∆θN/2

p(θ, θ̃, σθ)dθ1 · · · dθN

(13)

Alternatively one might prefer to choose discretization in

non-equidistant steps, e.g. to receive a more dense coverage

of the area near the center of the Gaussian function. Then

the integral limits need to be adjusted individually for each

discretization point. In order to simplify the notation we will

concentrate on the equidistant case.

For each discretization point r
θ the corresponding model

output is computed. In order to obtain such meaningful

model output, a short piece of the trajectory of x(t) is

computed by solving the model eq. (1a) numerically. For this

simulation the desired experiment point Ek yields the initial

condition (x0)k, and (u)k is used as constant input vector:

ẋ(t) = f
(

x(t), (u)k,
r
θ
)

, x(t = 0) = (x0)k, t = 0 . . . (∆t)k

(14)

The model output of this simulation at t = ∆t is denoted by

r y(∆t) = g
(

x(∆t), (u)k,
r
θ
)

(15)

In the same way the trajectory of x(t) for the parameter

estimate θ̃ is calculated. Here the model output at t = ∆t

is denoted by ỹ(∆t) = g
(

x(∆t), uk, θ̃
)

Then the sample covariance matrix of the model output

under the assumptions stated above may be summed up over

the weighed output deviations
(
r y − ỹ

)

:

σ̃
2
k

(

(xk, uk), θ̃,∆t
)

=

1
∑R

r=1
rP

R∑

r=1

rP ·
[(r y − ỹ

) (r y − ỹ
)T

]

∆t
(16)

Similar to the sum of squares of the prediction errors in

eq. (10) the modelled measurement covariances σ̃2
k

of the L

experiment points can be summed up to retrieve the a-priori

sample covariance matrix. This matrix may be treated as an

approximate of the sample covariance matrix in eq. (10):

D̃a-priori =
1

L

L∑

k=1

σ̃
2
k

(

(xk, uk), θ̃
)

≈ D̃a-posteriori (17)

III. Optimization of Experiment Points

The inverse Fisher matrix, which is based on the

experiment points and the modelled measurement errors,

expresses the accuracy that a parameter identification based

on the corresponding data would deliver. Hence, in order

to maximize the precision of the parameter estimates, the

inverse Fisher matrix should be minimized. For this purpose

multiple criteria are available that derive a quality index of

the Fisher matrix. It is quite common to minimize det(F−1)

[11], [12], which is in the considered case equivalent to the

maximization of

Φ(F) = det
(

F
(

(xk, uk), θ̃,∆t
))

. (18)

We propose to employ an exchange strategy that contains

randomizing elements. Such algorithms are recommendable

because they can easily be established although the quality

criterion may be nonlinear, discontinuous and may have

many local minima. A practical implementation is shown

in algorithm 1.

The number of experiment points should be chosen care-

fully. Each additional experiment point requires consider-

able extra experimental effort but might not decrease the

achieveable parameter uncertainty. In a practical context

it is adviseable to perform the optimization with different

numbers of experiment points in order to choose the most

appropriate number.

IV. Example: Hydraulic ActuatorModel

A. Actuator Model

The theoretical ideas presented above are illustrated by

the parameter identification problem of a servo-hydraulic

positioning cylinder. The experimental platform for our in-

vestigations is a hydraulic servo system which is part of a

6-DOF Stewart Platform for metal forming purposes (fig. 1)2.

This system contains six servo-hydraulic cylinders; we pick a

generic model of one cylinder as an example. Each cylinder

is controlled by a double-stage servo valve. A suitable state

space model is given in eq. (19). The model is single-input,

multi-output and highly nonlinear in both its input and its

parameters3.

ẋ =





q̇

q̈

ṗA

ṗB

ẋv





=





q̇
1

mq
· (AA · pA − AB · pB − τ f )

EOil

VA(q)

(

−q̇ · AA + QA + QL,A

)

EOil

VB(q)

(
q̇ · AB + QB + QL,B

)

− 1
T1
· xv





+





0

0

0

0

− 1
T1





· u

(19a)

y =
[

q pA pB xv

]T
(19b)

τ f = aτ · σ(q̇) + bτ · q̇ (19c)

2For more details we refer to our earlier work [13].
3The output does neither satisfy the superposition principle w.r.t. the input

nor w.r.t the parameters, cf. [11]
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QA = xvcd

√

2

ρ

√

∆pA (19d)

= xv cd

√

2

ρ
︸ ︷︷ ︸

Bv

√

(ps − pA) H(xv) + (pA − pt) H(−xv)

QB = −xvcd

√

2

ρ

√

∆pB (19e)

= −xv cd

√

2

ρ
︸ ︷︷ ︸

Bv

√

(ps − pB) H(−xv) + (pB − pt) H(xv)

QL,A = cL ·
(√

ps − pA −
√

pA − pt

)

(19f)

QL,B = cL ·
(√

ps − pB −
√

pB − pt

)

(19g)

VA(q) = AA · (q − qmin) + V0,A (19h)

VB(q) = AB · (qmax − q) + V0,B (19i)

q : Cylinder Position

pA, pB : Pressures inside Chambers

xv : Valve Spool Position

VA, VB : Chamber Volume

QA, QB: Oil Flow into Chambers

u : Valve Control Value

H(·) : Heaviside Function

τ f : Friction Force

m : Mass attached to Cylinder

AA, AB : Piston Areas

EOil : Oil Modulus

T1 : Time Constant of Valve

cd : Valve Coefficient

ρ : Oil Density

In the related research publications it is quite common to

simplify the the model in order to reduce the parameter space

and the nonlinearities, e.g. [14], [15]. For example, in [16]

the change of volume and the tank pressure are neglected.

In other contributions the leakage term is neglected, e.g.

[4]. Additionally the Heaviside function may be replaced

by the tanh(·)-function in order to obtain differentiability

in the whole state space. With these simplifications suitable

experiments that provide acceptable parameter accuracy may

be found heuristically [15], [4], [3].

The motivation for the work presented here is that these

nonlinearities shall explicitly be taken into account. In simu-

lations that were compared to experimental data it was found

that they increase prediction quality considerably. Figure 2

shows such a comparison. There, the response of the pressure

dynamics to a step of u is displayed. The upper plot shows

the valve position xv. In both, the middle and the lower

plot, the measurements of the pressures pA and pB in the

cylinder chambers are displayed (in black, see the vibrations

at t ≈ 0.45s). Additionally the plot in the middle shows

the pressures that were simulated with the model of full

complexity which is presented in eq. (19). In the lower plot

Fig. 1. 6-DOF stewart platform for flexible forming processes.
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Fig. 2. Measurement of pressures and prediction of complex (center plot)
and simplified model (lower plot).

the same simulation is shown, except for the difference that

the leakage term was neglected (cL = 0). We are especially

interested in the section t > 0.45s, where the valve is

closed again. It can be seen from the measurements that

the pressures of the real system tend from a very low level

towards a certain rest state. This tendency is mainly driven

by the leakage inside the valve. The model that includes

leakage is able to reproduce this effect properly (middle plot),

whereas the simplified model (lower plot) does not reproduce

this effect: As soon as the valve is closed the simplified

model remains in its actual combination of pressures pA

and pB. This shows that especially in regions where the

valve piston position xv is nearly closed the leakage term

becomes important. For model based control this means that

in situations where the actuator velocity is low the control

values will be distorted by errors of considerable magnitude.
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Algorithm 1 Optimization of Experiment Points

1: for k = 1 to L do

2: Create experiment point Ek = {x0, u}k
3: Calculate

dw(Ek ,θ̃)

dθ

4: Calculate σ̃2
(

Ek, θ̃
)

5: repeat

6: repeat

7: for m = 1 to M do

8: Create candidate E(C)
m = {x0,, u,∆t}E(C)

m

9: Calculate
dw(E(C)

m ,θ̃)

dθ

10: Calculate σ̃2
(

E(C)
m , θ̃

)

11: EL+1 = arg min
E(C)

1
,..E(C)

M





Φ

(

F
(

{E1, ..EL,E(C)

1
}
))

, . . .

Φ(F
(

{E1, ..EL,E(C)

M
]}
)





12: until Φ (F ({E1, ..EL,EL+1})) > Φ (F ({E1, ..EL}))

13: k = arg min
n=1..L+1

(

Φ

(

F
(

{E1, ..EL+1} r En

))
)

14: Ek = EL+1

15: until exitcondition== true

B. Implementation of the Fisher Matrix and Proposal for

Experiment Optimization

The vector of parameters to be estimated is

θ =

[

aτ bτ mq EOil pt Bv cL V0,A V0,B

]

. (20)

It is assumed that the remaining parameters in eq. (19) are

known due to their physical nature, e.g. piston areas that

are known with low uncertainty from data sheets. It can be

deduced from the model eqs. (19a) and (19b) that the iden-

tification problem may be decoupled into two identification

problems (θ1 = [aτ, bτ,mq], θ2 = [EOil, pt, Bv, cL,V0,A,V0,B]).

This is due to the presence of pA, pB in y, which allows

the pressure dynamics to be decoupled from the inertial

dynamics. In order to calculate the Fisher matrix, eq. (19)

requires differentiation with respect to θ. Points of the

differentials that are not defined or indefinite, e.g.

∂H(x)

∂x

∣
∣
∣
∣
∣
x=0

, (21)

are removed from the set of possible experiment points.

For the optimization of E we propose an exchange algo-

rithm, which is similar to the DETMAX algorithm described

in [11], see algorithm 1. Note, the computational capacity

limits the choice of L, M and R (e.g. eq. (19a) is evaluated

2R · M times per iteration, see step 4 and 10).

V. Conclusion and Future Perspectives

In this article we present advances in optimal experiment

design for parameter identification of nonlinear state space

models. Current design methods for the optimization of

experiments with respect to parameter accuracy are not

sufficiently capable of treating complex nonlinear models

of dynamic systems. These circumstances are illustrated

by a model for servo-hydraulic positioning cylinders for

precise tracking control. We consider the idea of identifying

nonlinear dynamic models at distinct points in the state space

instead of using subsequent samples in one coherent ex-

periment. Once these points are determined one experiment

is carried out per sample. This way the placement of the

experiment points is fully flexibile within the set of reachable

points.

Based on the samples taken at these experiment points, the

Fisher matrix gives an a-posteriori measure of the accuracy of

the estimate. We present a method for the a-priori modelling

of error covariances at the experiment points of interest.

With this method the Fisher matrix becomes available a-

priori what provides the opportunity of optimization of the

experiments involved. A hydraulic servo system serves as

an illustrative example. We propose a simple exchange algo-

rithm with randomizing elements. Though being able to cope

with nonlinearities, the effort for the implementation is rather

small. Ongoing work is occupied with improvements of the

convergence and a comparison against more sophisticated

optimization methods.
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