
 
 

 

  

Abstract—A linear-quadratic-Gaussian regulator is proposed 
for the torque control of flexible robotic joints with built-in 
torque sensor. The regulator requires the joint-torque sensor 
information only and features: 1) a Kalman filter that, beside 
reducing the noise and evaluating the derivative of the torque 
sensor measure, is able to estimate all the external and internal 
torques acting on the joint; 2) a controller that optimizes 
system stability, responsiveness, accuracy and effort. The 
regulator is implemented on a flexible joint of a rehabilitation 
exoskeleton. Simulation and experimental results are provided 
which demonstrate regulator performance and efficacy.  

I. INTRODUCTION 
HE reduction in motor functionality of upper extremities 
is one of the most common impairments resulting from 

spinal cord injuries, occupational and sport accidents, 
strokes and other disease processes. In these cases, partial or 
full sensorimotor recovery can be achieved trough intense 
and constant rehabilitation protocols based on active and 
highly repetitive exercises [1, 2]. In the last decade, Robotic 
Assisted (RA) and Virtual Reality Based (VRB) 
rehabilitation have been proposed [3] for improving 
treatment outcomes, mitigating therapists’ workload and 
reducing overall healthcare expenses (for both patient and 
providers). Pilot studies demonstrated that RA and VRB 
rehabilitation are more effective for the recovery of upper 
limb function as compared to usual manual therapies [4-6]. 

On the basis of the experience gained at PERCRO 
laboratory during the clinical evaluation [6] of the L-EXOS 
[7] in the rehabilitation of stroke patients, a novel 
exoskeleton prototype, hereafter called RehabExos, has been 
conceived for the rehabilitation of upper extremities [8]. The 
RehabExos (shown in Fig. 1) has a serial architecture that is 
isomorphic with the human kinematics and comprises: a 
shoulder joint which is fixed in space and composed by 
three active joints J1, J2 and J3; an active elbow joint J4; 
and a passive revolute joint J5 allowing for wrist pron-
/supin-ation. The RehabExos is aimed at generating 
controlled contact forces not only at the exoskeleton end-
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link handle, but also at some intermediate link. This makes it 
possible to apply forces to selected joints or limbs of the 
patient upper extremity (e.g. arm, forearm, shoulder, elbow 
and wrist) and to modulate their magnitude depending on 
patient deficiency and exercise type. 

 
For this purpose, the patient can be constrained to the 

RehabExos links at the level of his/her hand, arm and 
forearm. Other RehabExos features are: exercisable force at 
the end-effector of 100N (in every direction and in each 
point of the workspace); back-drivability of the system at 
motor power-off for safety and good transparency at motor 
power-on; possibility of easily changing configuration for 
the right and left extremity; modular design for affordability 
and maintenance ease. Actuation of the RehabExos is 
provided in loco via identical custom made actuation groups 
(hereafter indicated with AG1) for J1, J2 and J4, and via a 
different custom made actuation group (hereafter indicated 
with AG2) for J3. Both AG1 and AG2 comprise an electric 
motor, a geared transmission with rather large reduction 
ratio (which optimizes the actuation group torque-to-weight 
performance) and unavoidable compliance, a motor-side 
rotary encoder and a joint-torque sensor. For a more detailed 
description of both RehabExos and actuation groups please 
refer to [8].  

Internal joint-torque sensors have been included in AG1 
and AG2 in order to enhance overall exoskeleton control. 
Indeed, although augmenting the group compliance, the 
availability of such a sensor enables: closing a stable high-
bandwidth torque inner loop around the joint which is 
scarcely affected by the robot link variable inertia [9, 10]; 
suppressing the robot vibrations produced by the inherent 
transmission compliance [11-13]; reducing internal

Linear-Quadratic-Gaussian Torque Control:                       
Application to a Flexible Joint of a Rehabilitation Exoskeleton 

R.Vertechy, A. Frisoli, M. Solazzi, A. Dettori and M. Bergamasco 

T 
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disturbance torques caused by actuator and reducer (for 
instance friction losses, actuator torque ripples and gear 
teeth wedging actions [14]); measuring externally applied 
forces/moments and complex nonlinear dynamic interactions 
between the joint and the other robot links [15]. Owing to 
the significant compliance of both mechanical transmission 
and internal joint-torque sensor, AG1 and AG2 must be 
regarded as flexible robotic joints. 

 
In this context, the present work deals with the joint-

torque control of AG1. The problem of controlling the 
output torque of flexible robotic joints has been addressed 
extensively in the literature. For instance: proportional or 
Proportional-Derivative (PD) Joint-Torque-Feedback (JTF) 
laws, eventually integrating compensators for internal motor 
disturbance, which are based on either feed-forward models 
or minimum order observers, have been proposed in [16-
20]; an acceleration-controller-based torque regulator 
integrating a compensator for the internal motor 
disturbances, which is based on a minimum order observer, 
is proposed in [21]; a H∞ torque control based on empirical 
system models obtained through experimental frequency 
response estimates is proposed in [22]. Here, by resorting to 
a state-space approach, a novel Linear-Quadratic-Gaussian 
(LQG) JTF regulator is presented. It features a PD JTF law 
that integrates a compensator for all the internal and external 
forces/torques acting on the system (and not for the internal 
motor disturbances only). The regulator gains are selected 
by ensuring system stability and compromising between 
system responsiveness, accuracy and motor effort. The 
regulator comprises also a Kalman filter which: 1) makes it 
possible to clean optimally the torque sensor measurement 
from the significant noise that is induced by the electronic 
switching of the motor driver and that usually degrades JTF 
controller performances; 2) by making use of a mathematical 
artifice based on the properties of the stochastic Wiener 
process, is also capable of estimating all the internal and 
external forces/torques acting on the flexible joint. All these 
features are not offered by currently available JTF schemes.  

The proposed LQG regulator is employed for the torque 
control of AG1. Both simulation and experimental results 

are presented which show both the efficacy of the proposed 
regulator and the major differences with respect to the most 
popular JFT controllers.  

 

I. THE ACTUATION GROUP AG1 
As described, the three DOF of the RehabExos that are 

provided by joints J1, J2 and J4 are motorized through 
identical actuation groups identified as AG1. A dissected 
CAD view of AG1 is reported in Fig. 2. It consists of a 
custom-made frameless brushless torque motor integrating a 
very compact Harmonic Drive (HD) component set (its axial 
length is 50% of that of standard HDs), two redundant 
optical encoders, two thin output shaft bearings, and a 
torque sensor consisting of two fully balanced strain gauge 
bridges placed on different beams of a thin planar sprocket 
hub. The sprocket hub is connected to the HD output at one 
side and to the AG1 output shaft at the other. Such an 
architecture makes the torque sensor insensitive to non-
torsional components of the external loads acting on the 
output shaft. Despite the joint torque could have been 
measured by placing the strain gauges directly on the HD 
flexspline [23], here the addition of a sprocket hub has been 
preferred since the chosen HD is a very compact one, thus it 
is very difficult to instrument, and since HD-based torque 
sensing inherently introduce significant measurement errors 
(modulation errors) which require large numbers of strain 
gauges and appropriate filtering techniques for 
compensation [24, 25]. The sprocket hub is made of steel 
(AISI 630), while the motor housing and the non-
commercial components are made of aluminium alloy (Ergal 
7075 T6). The specifications and practical performance of 
AG1 are: transmission reduction ratio equal to 100; motor 
rotor maximum velocity equal to 1000rpm; encoders pulses-
to-revolution equal to 5000; nominal motor stall torque 
equal to 2Nm (motor side); limiting average joint output 
torque equal to 150Nm (joint output side); joint-torque 
sensor measurement range equal to ±120Nm (sprocket hub 
deformation is limited by mechanical stops); torque sensor 
variance W = 0.12Nm (measured with the motor driver 
turned on); overall weight equal to 3.7Kg; motor shaft 
inertia reduced to the joint output shaft Jm = 2.5Kgm2; 
overall joint torsional stiffness reduced to the joint output 
shaft k = 6.3kNm/rad. Owing to the adopted mechanical 
components, AG1 features limited joint back-drivability at 
motor power-off and limited mechanical complexity to ease 
maintenance as well as cost reduction. 

 
Fig. 3. Manufactured prototype of the Actuation Group 1 (AG1) and 
its test-rig.

 
Fig. 2. CAD section exploded view of the Actuation Group 1 (AG1) 
with the indication of the principal elements 
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For the sake of this work, an AG1 prototype is embedded 
in a test-rig. As shown in Fig. 3, such a test-rig consists of a 
fixed frame attached to the motor stator, a rigid link attached 
to the AG1 output shaft, and a handle. The rigid link inertia 
(reduced to the joint output shaft) is Jl = 0.7Kgm2. The 
handle has a single axis force sensor, which enables direct 
measurement of the external forces a user can exchange with 
the link (here, this sensor is not used for torque control but 
only for evaluation purposes).  

 

II. FLEXIBLE JOINT MODEL 
The design of a torque controller for the flexible joint 

shown in Fig. 3 requires an adequate model of the system 
dynamics. A lumped parameter model is given in Fig. 4. In 
the model, Jm and Jl are the overall moments of inertia of the 
elements which are fixed with respect to motor rotor and 
joint output link, ϑm and ϑl are the angular positions of 
motor rotor and joint output link, τm and τd are the internal 
commanded and disturbance (which accounts for friction 
and ripple effects of both motor and harmonic drive) torques 
acting directly on the motor rotor, τg and τl are the external 
torques acting directly on the joint output link which are due 
to the gravitational field and to the contact interaction with 
the environment (for instance with a human user), k and c 
are the overall stiffness and damping coefficients of the 
flexible joint (principally due to the harmonic drive and the 
torque sensor). Owing to the presence of a mechanical 
transmission (i.e. the harmonic drive), note that all the 
aforementioned quantities are considered as being reduced 
to the same moving shaft, for instance the joint output link. 

The dynamics of the system depicted in Fig. 4 is governed 
by the following equations 

 
( ) ( )

( ) ( )
m m m d l m l m

l l l g l m l m

J k c

J k c

ϑ τ τ ϑ ϑ ϑ ϑ

ϑ τ τ ϑ ϑ ϑ ϑ

= + + − + −

= + − − − −

⎧
⎨
⎩

 (1) 

  
Assuming that the flexible joint is equipped with an internal 
torque sensor capable of measuring the elastic torque τs 

(hereafter called sensor torque), which acts between motor 
rotor and joint output link, i.e. τs = k (ϑl – ϑm), and by 
considering its time derivatives, the sensor torque dynamics 
reads as  
 

gs s s l d m

l l m m

c k k k k k

J J J J J J
τ τ τ τ τ τ τ+ + = + − −  (2) 

 

where J = [Jm Jl / (Jm + Jl )]. With reference to the test-rig 
depicted in Fig. 3, the spectrum of the joint sensor torque τs 

in response to the motor torque command τm  (both reduced 
to the output shaft of AG1) is reported in Fig. 5. This Bode 
magnitude plot is obtained experimentally by commanding 
τm with a chirp function. As (2) predicts, the test-rig 
possesses a marked natural frequency at 

/ / 2 17Hzk J π ≈ . From Fig. 4, use of the Half-Power 
Bandwidth method returns c = 11.8Nms/rad as the overall 
damping coefficient of the flexible joint (this value has also 
been validated via the Logarithmic Decrement method). 

 

III. FLEXIBLE JOINT AND JOINT TORQUE FEEDBACK 
CONTROL 

Environment interacting robots, in particular haptic and 
rehabilitation devices, are machines which modulate the 
forces/torques they exchange with the surroundings, in 
particular the human user. Referring to the one-degree-of-
freedom flexible joint schematized in Fig. 4, this reduces to 
the regulation of τl by the action on τm. Equation (2) 
highlights that while the dynamics of the sensor torque τs 
can be shaped as desired by designing a proper feedback law 
for the commanded motor torque τm, conversely the external 
torque τl is not controllable via τm. Besides, the availability 
of a stable, fast and accurate torque control loop on τs (i.e. a 
JTF control) can enhance enormously the adjustment of the 
external torque τl. Indeed, by forcing τs ≈ τs

D and 0sτ ≈ , 
where τs

D is a desired sufficiently smooth-varying sensor 
torque, the second equation of (1) tends to 

D
l l l g sJ ϑ τ τ τ≈ + − , which reduces the dynamics of the 

flexible joint to that of a direct drive system having the 
desired torque τs

D as command (see Fig. 6). Then, the design 
of τs

D as a well-behaved function of ϑl (along with its time 
derivatives) and of τg (which can be easily calculated as a 
function of ϑl) enables the regulation of the interaction 
torque τl as well as the contact impedance of the joint output 
link. For instance, if the angular acceleration of the output 
link is available (via either direct measurement or an 
estimator), the adoption of a stable fast and accurate JTF 
control with   ( )D D

s l g l lJτ τ τ ϑ≈ + −  can be used to force       
τl ≈ τl

D, where τl
D is the desired joint output link torque. In 

addition, whenever a direct measurement of τl is available, a 
similar result (i.e.  τl ≈ τl 

D) can be obtained by setting the 
JTF control with τs 

D = [τl 

D + τg + kτl (τl 

D – τl)], where kτl is 
an appropriate feedback error gain of an outer torque loop. 
Note that for most haptic applications, and in particular for 
rehabilitation, which usually involve motions with rather 
limited accelerations, the simple choice τs

D = (τl
D + τg) 

 
Fig. 5. Experimental open-loop response (Bode magnitude plot) of 
AG1: joint sensor torque vs. motor torque command 
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Fig. 4. Lumped parameter model of the flexible joint 

225



 
 

 

suffices. 

 

IV. FLEXIBLE JOINT STATE-SPACE CONTROLLER 
In this section, the design of a stable JTF controller that is 

capable of tracking τs ≈ τs
D and 0sτ ≈  with great accuracy 

and responsiveness is performed via a state-space approach 
[26]. For the purpose of JTF control, (2) is recast in the 
following state-space system 

 
0mτ= +A Eτe e + B  (3.1) 

 
where τm is the control input, 
 

D
s s

s

τ τ
τ
−= ⎡ ⎤

⎢ ⎥⎣ ⎦
e , 0

lgd
D
s

τ
τ

= ⎡ ⎤
⎢ ⎥⎣ ⎦

τ , 0 = 0τ  (3.2) 

 
are the controllable and the uncontrollable (i.e. exogenous 
input) variables, τlgd = [τl  + τg – τd (Jl / Jm)], and 
 

0 1
/ /k J c J=

− −
⎡ ⎤
⎢ ⎥⎣ ⎦

A , 0
/ mk J=

−
⎡ ⎤
⎢ ⎥⎣ ⎦

B , 0 0
/ /lk J k J=

−
⎡ ⎤
⎢ ⎥⎣ ⎦

E  (3.3) 

 
Note that (3) assumes  0D

sτ ≈  (i.e. τs
D is a sufficiently 

smooth-varying desired sensor torque). For more demanding 
applications, whenever  D

sτ  is available, the controllable 
variable se τ=  can be replaced by D

s se τ τ= −  whilst E and 
τ0 augmented to account  D

sτ  as supplementary exogenous 
input variable. According to (3), the following full-state 
feedback law is obtained 
 

( )  
,1 1 2 3 4

ˆˆ ˆD D
m m s s s lgd sk k k kτ τ τ τ τ τ τ⎡ ⎤= = − − + + +⎣ ⎦

 (4) 

 
where k1, k2, k3 and k4 are the controller gains, while ˆsτ , ˆ

sτ , 
l̂gdτ  and τs

D are the estimates of both controllable and 
exogenous state-space variables. Note that whenever a 
reliable model ˆdτ  is readily available for the motor 
disturbance τd, (4) can be replaced by 
 

( )  
,2 1 2 3 4

ˆˆ ˆ ˆD D
m m s s s lg s dk k k kτ τ τ τ τ τ τ τ⎡ ⎤= = − − + + + −⎣ ⎦

 (5) 

 
where l̂gτ  is the estimate of the overall external torque        
τlg = (τl  + τg), which acts on the joint output link only. 

In principle, the appropriate choice of the controller gains 
makes it possible to shape at will the dynamic response of τs 
to τs

D. In order to mediate between the exigencies of fast and 

accurate system response and the saturation limits of the 
control command τm, the gains k1, k2, k3 and k4 are selected 
in the framework of Linear-Quadratic (LQ) optimum control 
[26]. In particular, k1, k2, k3 and k4 are chosen as the steady-
state gains that minimize the following performance integral 
 

( )22  2 2 2
1 2

T D
s s s m

t
LQ q q dtτ τ τ τ= − + + ⋅⎡ ⎤

⎣ ⎦∫  (6) 

 
where q1 and q2 are penalty parameters relative to the cost of 
control. As for their physical significance, the choice of q1 
influences directly the system tracking error e (i.e. larger q1 
leads to smaller e), while the choice of the ratio q2/q1 
influences directly system stability and responsiveness (i.e. 
rising q2/q1 increases stability and reduces time-response). 
Augmenting q1 and q2 enlarges controller effort. The 
practical mathematical procedure for calculating k1, k2, k3 
and k4 for a given system (i.e. equations (4) and (6)) and 
chosen penalty parameters is detailed in [26]. 

As compared to the most popular JTF laws, the controller 
described by either (4) or (5) (hereafter called JTF1) differs 
from that described in [17, 18] (hereafter called JTF2) since 
there k3 = 0 and k4 = (1 + Jm/Jl), and from that described in 
[19, 20] (hereafter called JTF3) since there k3 = 0 and k4 = 1. 
That is, the controller proposed here can be considered as a 
generalization of those given in [17-20].  

V. FLEXIBLE JOINT OPTIMUM OBSERVER 
Beside the availability of τs

D, the JTF control scheme 
proposed in the previous section requires the knowledge of 
the state-space variable estimates ˆsτ , ˆ

sτ  and l̂gdτ  (or l̂gτ  and 
ˆdτ  if (5) is used instead of (4)). Here, a Kalman filter 

(optimum observer [26]) is proposed to infer ˆsτ , ˆ
sτ  and l̂gdτ  

from a single noisy measurement τs
m, τs

m = (τs + w), where w 
is the noise affecting the torque sensor embedded in the 
flexible joint (the major contribution to w is usually the 
electrical noise excited by the motor driver switching 
electronics). For the purpose of variable estimation (both 
controllable states and exogenous input), the dynamics 
governed by (2) and (4) can be described by the following 
meta-system 

 
,1

        
m

m
s

v
y w

τ
τ

′ ′= +⎧
⎨ = = +⎩

Aτ τ Γ
τ

+ B
C

 (7.1) 

 
where =[ ]Τ

s s lgdτ τ ττ  is the meta-state vector, w and v are 
white noise processes with known variances W and V,          
C = [1 0 0] and 
 

0 1 0
/ / /

0 0 0
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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0
/
0
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⎡ ⎤
⎢ ⎥
⎣ ⎦
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0
0
1

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

Γ  (7.2) 

 
Note that in order for the Kalman filter to estimate the 

ϑl 

 

τs
D τl 

  Jl

τg 

 
Fig. 6. Lumped parameter model of the flexible joint with JTF control 
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exogenous input τlgd, the dynamics of such an unknown 
variable is assumed as the Wiener process (i.e. a non 
stationary random process) lgd vτ = , which, in practice, only 
forces τlgd to be continuous and varying with independent 
increments. According to (7), the following optimum 
observer is obtained 
 

( ),1
ˆ ˆ ˆm yτ′ ′= + −Aτ τ τ+ B L C  (8) 

 
where ˆˆ ˆ ˆ=[ ]Τ

s s lgdτ τ ττ  is the meta-state vector estimate and 
L is the steady-state Kalman gain vector. The practical 
mathematical procedure for calculating L for a given system 
(i.e. once (7) is known) and noise process variances (i.e. W 
and V) is detailed in [26]. In this regard, note that the 
variance W is evaluated directly from the torque sensor 
measure, while the ratio V/W is chosen so that to 
compromise between estimator accuracy and precision (i.e. 
larger V/W leads to more accurate but less precise estimates).  

It is worth to mention that when a reliable model ˆdτ  is 
readily available for the motor disturbance τd, such that (5) 
is used instead of (4) for JTF control, the substitution in (8) 
of τm,1 with ,2 ˆ( )m dτ τ+  enables to find  l̂gτ  instead of  l̂gdτ . 

It is worth to mention that the JTF implementations, 
which can be found in the literature for the torque control of 
flexible joints, do not consider the possibility of 
reconstructing the exogenous variable τlgd (or τlg if (5) is 
used instead of (4)) from the measurement of the built-in 
joint-torque sensor. Indeed, just minimum order observers 
for the estimation of τd only have been devised and 
employed which require the additional measurement of 
either motor position ϑm [18, 21, 27, 28] or motor velocity 

mϑ  [13].  Moreover, in these JTF implementations, the 
estimates ˆsτ  and ˆ

sτ  are obtained by simply feeding the 
torque sensor measurement y through basic low-pass and 
derivative filters, instead of reconstructing them via the 
optimal observer given by (8). This may degrade JTF 
control performance since built-in joint-torque sensors are 
usually affected by noise w having significant variance.  

VI. SIMULATION AND EXPERIMENTAL RESULTS 
The combination of (4) (or (5)) with (8) gives a LQG 

torque regulator for flexible robotic joints. In this section, 
such a regulator is employed for the control of the system 
depicted in Fig. 3. According to the system properties 
already described in Section II, the choice V = 104 yields the 
following Kalman gain vector L = [199, 19854, 289]T, 
whereas the choice q1 = 500 and q2 = 0.1 gives the controller 
gains k1 = –18.3, k2 = –0.33, k3 = –2.81 and k4 = 3.62.  

The synthesized controller is first tested in simulation to 
verify the performance of the proposed novel control law 
JTF1 with respect to the existing JTF2 [17, 18] and JTF3 
[19, 20]. In the simulation, the following working conditions 

 
are considered: τd = τg = W = 0, τs

D = [20 sin(0.4πt)]Nm (t 
being the elapsed time), ϑl = [20 sin(2πt)]deg (that is, the 
controller attempts to track τs

D while the output link is 
moved according to a given trajectory; measurement errors 
are not considered here). Simulation results are reported in 
Fig. 7, which highlights the better performance (i.e. smaller 
tracking error e, see upper plot) of JTF1 with respect to both 
JTF2 and JTF3. In particular the tracking error obtained with 
JTF1 is |e| ≤ 0.3Nm. 

 
Then, the proposed LQG regulator is assessed on the test-

rig shown in Fig. 3. In the experiment, the joint axis is 
vertical so that τg = 0. Moreover, disposing of the 
experimentally determined [8] motor friction torque model 
ˆ [ 13.7 sign( )(1 tanh(| / 2 | 4)) / 2]d m mτ ϑ ϑ= − ⋅ + − Nm, the 

controller implements (5) instead of (4). Since τg = 0, the 
Kalman filter makes it possible to get an estimate of the 
external torque τl  (i.e. l̂τ ). In the experiment, the following 
desired torque is considered τs

D = [20 sin(0.4πt)]Nm, while 
the end link is moved in the range ϑl ∈ [-60,60]deg by a 
human user who acts on the sensorized handle of the test-rig 

 

 

 
Fig. 8. Performance of the proposed Linear-Quadratic-Gaussian 
(LQG) torque regulator (experimental results) 

 

Fig. 7. Comparison between different Joint Torque Feedback (JTF) 
laws (simulation results)
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(see Fig. 3). Experimental results are reported in Fig. 8, 
which highlights (third plot from the top) that the proposed 
controller is able to keep the torque sensor tracking error e 
within ±0.5Nm (which is about the same value as that 
obtained in simulation and of the noise of the joint-torque 
sensor measure). The effectiveness of the Kalman filter in 
the estimation of τs and τl is shown, respectively, in the first 
two diagrams where the estimates ˆsτ  and l̂τ  are plotted over 
the raw measurements τs

m and τl
m (τl

m being measured via 
the force sensor placed at the test-rig handle). The 
significant difference (roughly ±3Nm) between l̂τ  and τl

m, 
which is also evidenced in the third plot from the top, is only 
due to the imperfection of the adopted friction model ˆdτ  (in 
practice, l̂τ  depends on τl

m but also on the error between the 
real and the modeled motor disturbance torque). The bottom 
graph plots the position and velocity of the output link along 
with the commanded motor torque τm. As shown, τm is rather 
smooth and remains within ±40Nm and does not exceed too 
much the maximum of the sum of desired sensor torque and 
motor friction torque (i.e. ˆmax( ) 33.7D

s dτ τ+ ≈ Nm). 

VII. CONCLUSION 
This paper have proposed and demonstrated, both in 

simulation and through experiments, Linear-quadratic-
Gaussian control for the torque regulation of flexible robotic 
joints with built-in torque sensor. As compared to other 
available joint-torque-feedback controllers, the proposed 
method makes it possible to overcome most of the issues 
related to the presence of noise in the joint-torque sensor 
measure and to the lack of knowledge of both external and 
internal torques acting on the joint. Controller tuning is very 
simple and amounts to the selection of two parameters that 
directly relate to the stability, responsiveness and accuracy 
of the system, and to the controller effort.  
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