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Abstract— This paper presents a general approach for terrain
following (including obstacle avoidance) of a vertical take-off
and landing vehicle (VTOL) using multiple observation points.
The VTOL vehicle is assumed to be a rigid body, equipped
with a minimum sensor suite (camera, IMU and barometric
altimeter), manoeuvering over a textured rough terrain made
of a concatenation of planar surfaces. Assuming that the
forward velocity is separately regulated to a desired non-zero
value, the proposed control approach ensures terrain following
and guarantees the vehicle does not collide with obstacles
during the task. The proposed control acquires an optical flow
from multiple spatially separate observation points, typically
obtained via multiple cameras or non collinear directions in a
unique camera. The proposed control algorithm has been tested
extensively in simulation and then implemented on a quadrotor
UAV to demonstrate the performance of the closed loop system.

I. INTRODUCTION

The past decade has seen an explosive growth of interest

in Unmanned Aerial Vehicles (UAVs) [1]. Such vehicles

have strong commercial potential in automatic or remote

surveillance applications such as monitoring traffic conges-

tion, regular inspection of infrastructure such as bridges, dam

walls, power lines, forest fire or investigation of hazardous

environments, to name only a few of the possibilities. There

are also many indoors applications such as inspection of

infrastructures in mines or large buildings, and search and

rescue in dangerous enclosed environments. Autonomous

flight in confined or cluttered environments requires cheap

and robust sensor systems that are light enough to be carried

by the vehicle and which provide sufficient information

for a high manoeuvrability. Historically, payload constraints

have severely limited autonomy of a range of micro aerial

vehicles. The small size, highly coupled dynamics and ‘low

cost’ implementation of such systems provide an ideal testing

ground for sophisticated non-linear control techniques. A key

issue arising is the difficulty of navigation through cluttered

environments and close to obstructions (obstacle avoidance,

take-off and landing). Since optical flow provides proximity

information [2], this cue can be used to navigate around

obstacles without collision [3], [4], [5], [6]. When optical

flow is combined with the forward velocity, several authors

have investigated the height regulation of the UAVs above

the terrain using linear control techniques [7], [8], [9]. The
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potential complexity of the environment makes us understand

that multiple directions of observation are necessary to

ensure collision free navigation. More recently other works

have been carried out using the measurement of different

direction of the optical flow for reflexive obstacle avoidance

[10], [11]. In [12] a biomimetic navigation in corridors that

combines left and right optical flows in a control scheme

with application to hovercraft was considered. In [13] the

measurement of two non-collinear directions are combined

to ensure a wide range of terrain following including slopes.

Based on our prior work [14], this paper provides a general

approach for terrain following in 3-D space using multiple

directions of observation. The controller ensures obstacle

avoidance of an UAV capable of quasi stationary flight. We

consider control of the translational dynamics of the vehicle

and in particular focus on regulation of the forward optical

flow along with a guarantee that the vehicle will not collide

with the surrounding environment. A ‘high gain’ controller

is used to stabilise the orientation dynamics; this approach

is classically known in aeronautics as guidance and control

(or hierarchical control) [15]. The image feature considered

is the average optical flow obtained from the measurement

of the optical flow of a textured obstacle in the inertial frame

using additional information provided by an embedded IMU

for derotation of the flow. The terrain is assumed to be made

of a concatenation of planar surfaces. Robustness analysis of

the control scheme is performed to ensure obstacle avoidance

and to prove global practical stability of the closed-loop

system for terrain following. The control algorithm has been

tested extensively in simulation and then implemented on

a quadrotor UAV developed by the CEA (French Atomic

Energy Commission). Experiments of the proposed approach

demonstrate efficiency and performance for terrain following.

The body of the paper consists of five sections followed by

a conclusion. Section II presents the fundamental equations

of motion for the quadrotor UAV. Section III presents the

proposed control strategies for terrain following and Section

IV assesses the robustness of the controller. Section V

describes simulation results and Section VI presents the

experimental results obtained on the quadrotor vehicle.

II. UAV DYNAMIC MODEL AND TIME SCALE SEPARATION

The VTOL UAV is represented by a rigid body, of mass m
and of tensor of inertia I, with external forces due to gravity

and forces and torques applied by rotors. To describe the

motion of the UAV, two reference frames are introduced:

an inertial reference frame I associated with the vector

basis [e1, e2, e3] and a body-fixed frame B attached to the
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UAV at the center of mass and associated with the vector

basis [eb
1, e

b
2, e

b
3]. The position and the linear velocity of

the UAV in I are respectively denoted ξ = (x, y, z)T and

v = (ẋ, ẏ, ż)T . The orientation of the UAV is given by

the orientation matrix R ∈ SO(3) from B to I, usually

parameterized by Euler‘s angles ψ, θ, φ (yaw, pitch, roll).

Finally, let Ω = (Ω1,Ω2,Ω3)
T be the angular velocity of the

UAV defined in B.

A translational force F and a control torque Γ are applied

to the UAV. The translational force F combines thrust, lift,

drag and gravity components. For a miniature VTOL UAV

in quasi-stationary flight one can reasonably assume that

the aerodynamic forces are always in direction eb
3, since the

thrust force predominates over other components [16]. The

gravitational force can be separated from other forces and

the dynamics of the VTOL UAV can be written as:

ξ̇ = v (1)

mv̇ = −TRe3 +mge3 (2)

Ṙ = RΩ×, (3)

IΩ̇ = −Ω × IΩ + Γ, (4)

In the above notation, g is the acceleration due to gravity,

and T a scalar input termed the thrust or heave, applied in

direction eb
3 = Re3 where e3 is the third-axis unit vector

(0, 0, 1). The matrix Ω× denotes the skew-symmetric matrix

associated to the vector product Ω×x := Ω × x for any x.

III. TERRAIN FOLLOWING STRATEGY

This section aims at presenting a general approach based

on a previous work [14] for terrain following. The observed

surface in a given direction is assumed to be locally planar

and cameras are assumed to be attached to the center of mass

so that the focal point of cameras coincide with the origin

of the body-fixed frame.

A. Optical flow cue

P

w = v
ρ

ρ

η

η0

v

d

Fig. 1: Average optical flow

The optical flow can be computed using a range of

algorithms (correlation-based technique, features-based ap-

proaches, differential techniques, etc) [17]. Note that due

to the rotational ego-motion of the camera, the optical flow

involves the angular velocity as well as the linear velocity

[2]. Let η ∈ I denote the unit vector in the direction of

observation and η0 ∈ I the unit normal to the target plane

(see Figure 1). We define an inertial average optical flow

from the integral of all observed optical flow around the

direction of observation η corrected for rotational angular

velocity

w = −(RtΛ
−1RT

t )R

∫∫

W2

(ṗ+ Ω × p) dp (5)

where ṗ is the derivative of an image point p observed by

a spherical camera, W2 is the aperture around η, Λ is a

diagonal matrix depending on the aperture and Rt is the

orientation matrix from a frame of reference with η in the

z-axis to the inertial frame I (see details in [14]). We make

the assumption that an observed surface is stationary and

planar or locally planar. The distance of the camera to that

target plane is denoted d. Then the average optical flow v/d
can be obtained when the observed direction is η0. If the

normal to the target plane η0 is unknown, the optical flow w
obtained from the observation in a different direction η can

be written:

w = M (η0, η)
v

ρ
(6)

= M (η0, η)
v

d
cos (〈η0, η〉) (7)

where M is a full-rank matrix equal to identity when η = η0
(if η and η0 are non-collinear M 6= I3). Since η0 is, in

practice, an unknown direction, it is not possible to invert for

M(η0, η) to estimate v/ρ from w. The approach taken is to

develop the control based on the assumption M(η0, η) = I3,

hence w = v/ρ, and then analyse the robustness of the closed

loop system with respect to modelling errors.

For the remainder of Section III we assume

w =
v

ρ
(8)

B. Terrain following by forward optical flow conservation

In this section a control design ensuring terrain, wall or

relief following is proposed. The control problem considered

is the stabilisation of a pseudo distance d around a set point

d∗ while ensuring non collision. The measurements of the

optical flow in n non-collinear directions are considered.

Let ηi be the ith direction of observation and let wi be

its associated average optical flow. A non-linear controller

depending on measurable variables wi is developed for the

translational dynamics (2). The full vectorial term TRe3
will be considered as control input for these dynamics. We

will assign its desired value u ≡ (TRe3)
d = T dRde3.

Assuming that actuator dynamics can be neglected, the value

T d is considered to be instantaneously reached by T . For

the orientation dynamics of (3)-(4), a high gain controller is

used to ensure that the orientation R of the UAV converges

to the desired orientation Rd. The resulting control problem

is simplified to

ξ̇ = v, mv̇ = −u+mge3 (9)
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Thus, we consider only control of the translational dynamics

(9) with a direct control input u. This common approach

is used in practice and may be justified theoretically using

singular perturbation theory [18].

Define β as the unit vector collinear to the sum of all

the directions of observation ηi weighted by the associated

optical flow wi. That is

β =

∑n
i=1

‖wi‖ ηi

‖(∑n
i=1

‖wi‖ ηi)‖
=

∑n
i=1

ηi/ρi

‖∑n
i=1

ηi/ρi‖
(10)

Note that a direction for which an obstacle has larger average

optical flow and consequently is closer to the camera, has a

higher weight than another. We also define the following

average optical flow

wβ =
n
∑

i=1

(

η⊤i β
)

wi (11)

It is not immediately clear what represents wβ . Developing

wβ recalling (8) and (10), we obtain

wβ = v

(

n
∑

i=1

η⊤i
ρi

)

β = v

(∥

∥

∥

∥

∥

n
∑

i=1

ηi/ρi

∥

∥

∥

∥

∥

β⊤

)

β =
v

d

where d = ‖∑n
i=1

ηi/ρi‖−1
is termed the pseudo distance.

wβ may be interpreted as the average optical flow measured

in direction β from a single camera observing a virtual

obstacle with d the distance between the camera and the

obstacle. We define two components of wβ that we term the

normal optical flow (w⊥
β ) and the forward optical flow (w

‖
β)

as follows:

w⊥
β = 〈β,wβ〉 (12)

w
‖
β = πβwβ (13)

where πβ = (I3−ββ⊤) is a semi-definite projection matrix.

The control strategy proposed in this paper consists in

applying a control input u that allows regulation of the

forward optical flow to a constant ω∗ while preserving the

norm of the forward velocity. Since the norm of the desired

forward velocity vr is assumed to be constant (‖vr‖ = v∗),

only the orientation of the vector vr can vary over time due

to variation of β (vr = πβv
r). We define Ωv as the angular

velocity of the reference velocity vr, thus, dvr/dt = Ωv×vr.

With the above objective, the controller is divided in two

parts. The first controller ensures regulation of (v − vr) in

the plane normal to β:

u‖ = kv

(

v‖ − vr
)

−mπβ (Ωv × v) +mgπβe3 (14)

where v‖ = πβv and kv is a positive parameter.

The second controller, acting in the direction β, aims

at regulating the tangential (or forward) optical flow to a

constant ω∗ with the normal flow w⊥
β is used as an additional

damping term:

u⊥ = kDw
⊥
β + kP

(∥

∥

∥
w

‖
β

∥

∥

∥
− ω∗

)

−m〈Ωv × v − ge3, β〉
(15)

where kD and kP are positive parameters. Since the forward

velocity must be close to the set point vr at any time to

insure good detection of the optical flow, the control gain kv

must be chosen such that kv >> kP , kD. The term Ωv × v
is used to compensate for variations of vr (and β). Note that

if the regulation is achieved,

∥

∥

∥
w

‖
β

∥

∥

∥
≡ ω∗ is a function of v∗.

This means that if

∥

∥

∥w
‖
β

∥

∥

∥ converges around ω∗, d converges

around d∗ = v∗/ω∗.

Introducing both controllers (14-15) in the translational

dynamics (9), it yields:

m
d

dt

(

v‖ − vr
)

= −kv

(

v‖ − vr
)

(16)

m
d

dt
v⊥ = −kDw

⊥
β − kP

(∥

∥

∥w
‖
β

∥

∥

∥− ω∗
)

(17)

Note that the stability of system (16) is obvious. The stability

proof of system (17) is however more complex. It is provided

in our previous work [14] in the situation where only

one direction of observation is used. Before introducing

robustness analysis of the proposed control scheme in the

situation where multiple measurements are used, two illus-

trative examples are considered.

v‖

η1 β

d

α

x

z

ρ1

η2
ρ2

(a) Planar surface following

d2η2

η1

z

x

d1 α

β

v‖

d

(b) Corner avoidance

Fig. 2

1) The case of the planar surface: The control problem

is to follow a plane using two directions of observation.

Assume that the two directions η1 and η2 are perpendicular

(see Figure 2a) and the desired forward velocity is in the

plane defined by these two directions (2-D motion).

In that case, from equations (10), (12) and (13), it is

straightforward to show that:

β = (sinα, cosα)
⊤

(18)

w⊥
β =

〈β, v〉
d

=
v⊥

d
= − ḋ

d
(19)

w
‖
β =

πβv

d
=
v‖

d
(20)

where v⊥ = 〈β, v〉. Note that β = η0, the normal to the

observed plane, hence v⊥ = −ḋ.

Recall the dynamics of the component of (9) in the
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direction β and the control law (15), it yields:

md̈ = −kD

ḋ

d
+ kP

(
∥

∥v‖
∥

∥

d
− ω∗

)

(21)

When the regulation of the forward velocity v‖ to vr is

achieved, one obtains the equation studied in the previous

work [14]. It has been shown that for all initial conditions

such that d(0) = d0 > 0, the closed-loop trajectory exists for

all time and satisfies d(t) > 0, ∀t. Moreover, d(t) converges

asymptotically to d∗. Note that contrary to the case where

one direction (n = 1) is used, the controller is stable for any

slope α between 0 and π/2 and for any positive gains kP

and kD. The robustness of the approach has been increased

by adding a second direction of observation.

2) Corner avoidance: The control problem is to avoid the

corner of a room or a wall that appears in the direction of

motion. Assume that the two directions η1 and η2 are per-

pendicular (see Figure 2b) and the desired forward velocity

is in the plane defined by these two directions (2-D motion).

In that case, from equations (10), (12) and (13), it is

straightforward to show that:

β =

(

d1
√

d2
1 + d2

2

,
d2

√

d2
1 + d2

2

)⊤

= (sinα, cosα)
⊤

(22)

w⊥
β =

〈β, v〉
d

=
v⊥

d
(23)

w
‖
β =

πβv

d
=
v‖

d
(24)

where tanα = d1/d2 and d = d1d2/
√

(d2
1 + d2

2). Figure

3 represents the desired trajectory d = d∗. Note that the

function d is defined with respect to a virtual plane that itself

depends on the local geometry and position of the vehicle. As

a consequence, the pseudo distance d is a highly non-linear

function of position. In particular, unlike actual distance such

as was considered in case III-B.1, the gradient of d is not

colinear with β. Straightforward calculations yield

∇d = −





(

d1
√

d2
1 + d2

2

)3

,

(

d2
√

d2
1 + d2

2

)3




⊤

= −(sin (α)
3
, cos (α)

3
)⊤

while β is given by (22). Recall the dynamics of the

component of (9) in the direction β and the control law (15),

it yields:

mv̇⊥ = m
dv⊥

dt
= −kD

v⊥

d
− kP

(
∥

∥v‖
∥

∥

d
− ω∗

)

(25)

When the regulation of the forward velocity v‖ to vr is

achieved, one obtains a similar equation as the previous

case (21). Note however that v⊥ 6= −ḋ and the stability

is not guaranteed a priori. One can write the direction of ∇d
as (− sinα′,− cosα′) where tanα′ = tan (α)

3
. Note that

tan (α− α′) < 0.36 for all α such that 0 ≤ α ≤ π/2.

This ensures that the direction of the gradient of d with

respect to x and z remains close to the direction −β. That

is, the controller acts in a direction close to the opposite

of the gradient of d. Let vd denote the velocity of the

UAV in the opposite direction of the gradient of d: vd =
−〈v,∇d〉 / ‖∇d‖ = −ḋ/ ‖∇d‖. The dynamics of the sytem

in this direction can be written as follows:

mv̇d = m
dvd

dt
= kPω

∗γ

(

1 − d∗

d
χ

)

− kD

vd

d
(26)

where γ = cos (α− α′) and χ = (1 + tan (α− α′)kD/kP ).
The gains kP and kD must be chosen such that χ is positive

and bounded.

d2 = d∗

d1 = d∗

d = d1d2√
d2

1
+d2

2

d = d∗

d1

d2

Fig. 3: The desired trajectory d = d∗

Remark 3.1: Only a 2-D control approach is considered in

these two examples. However, the general approach can also

be used for full 3-D motion by adding additional cameras,

for example, on the leftside or rightside of the UAV. In this

case the dynamics (16) and (17) are still valid, although, the

special cases III-B.1 and III-B.2 considered above only hold

in very specific geometries. It is beyond the scope of this

paper to analyse the 3-D case in detail. We believe, however,

that the results for 3-D will be qualitatively the same as for

the results obtained in this paper. △

IV. ROBUSTNESS TO NOISE AND UNCERTAINTIES

In this section we consider the robustness of the previous

controller in case where v⊥ 6= −ḋ. Analogously to the

analysis of Section III-B.2, it can be shown in the general

case that the dynamics of the system in the opposite direction

of the gradient of d can be written:

mv̇d = m
dvd

dt
= kPω

∗γ(t)

(

1 − d∗

d
χ(t)

)

− kDδ(t)
vd

d
(27)

where vd = −ḋ/ ‖∇d‖ denotes the velocity of the UAV

in the opposite direction of the gradient of d; and γ, δ, χ
are functions of time. These parameters can also represent

uncertainties of the system that will be specified later (see

Remarks 4.2, 4.3).
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Theorem 4.1: Consider the system (27). Choose kP and

kD such that γ, δ and χ are positive and bounded functions

of time and define the following parameters:

d = d∗χmin

d = d∗χmax

and,

µ+ =
kP

kD

(γχ)max

δmin

v∗, d = d exp

(

m ‖∇d‖max

kDδmin

µ+

)

> d

µ− = −kP

kD

ω∗ γmax

δmin

d, d = d exp

(

m ‖∇d‖max

kDδmin

µ−

)

< d

Then, for all initial conditions such that d0 > 0, the closed-

loop trajectory exists for all time, d(t) > 0 remains positive

and (d, ḋ) remain bounded. Moreover, the domain D defined

in Figure 4 represents the global attractor of the system; that

is, it is forward invariant under dynamics (27) and for all

bounded initial condition (d0 > 0, vd(0)), there exists a time

t′ such that (d, vd) ∈ D for all time t > t′.

µ+

d∗dd d

d

d exp

(

−m‖∇d‖max
kDδmin

vd

)

= d

D

d exp

(

−m‖∇d‖max
kDδmin

vd

)

= d

d

µ−

−vd

Fig. 4: Global attractor D

Proof: Define the following virtual state:

z = d exp

(∫ t

0

−m ‖∇d‖ v̇d

kDδ(τ)
dτ

)

(28)

Differentiating z and recalling equations (27), it yields

ż = −kPω
∗

kD

γ(t) ‖∇d‖
δ(t)

(

1 − d∗

d
χ(t)

)

z (29)

It is straightforward to show that if d > d, ż < 0 and if

d < d, ż > 0. Thus, four situations need to be considered:

d0 < d vd(0) ≤ 0, dր (a)

z ր vd(0) > 0, dց (b)

d0 > d vd(0) < 0, dր (c)

z ց vd(0) ≥ 0, dց (d)

1) Case (a): since z is increasing, the sign of vd (or ḋ)

cannot change as long as d ≤ d. Then there exists a

time T such that d(T ) ≥ d.

2) Case (d): since z is decreasing, there exists a time T
such that d(T ) ≤ d.

3) Case (b): to show that there exists a time T ′ such

that the sign of vd changes along with d(T ′) > 0,

we proceed using a proof by contradiction. Assume

vd > 0 and d < d for all time t. Using the fact that

d = d∗χmin it follows, from (28), that v̇d < 0 while

z remains positive and bounded

z < d0 exp

(

m

kD

‖∇d‖max

δmin

vd(0)

)

for all time t. Note that ‖∇d‖ is bounded on all space.

Moreover, since z is exponentially increasing, there

exists ǫ > 0 such that ż > ǫz. Therefore, there exists

a time t1 such that

z(t1) > d0 exp

(

m

kD

‖∇d‖max

δmin

vd(0)

)

This contradicts the assumption. Moreover, since z0 is

positive, d remains positive. It follows that situation

(b) leads to situation (a).

4) Case (c): analogously to the case (b) a similar proof

shows that the situation (c) leads to situation (d).

Consequently, for any situation (a-d), there exists a

time T such that d(T ) belongs to the interval
(

d, d
)

.

To define the attractor, assume that (d0 > 0, vd(0)) /∈ D.

Define the storage function J = m(vd)
2/2. Differentiating

J and recalling equations (27), it yields:

J̇ = −kDδ
vd

d

(

vd − kPω
∗

kD

γ

δ
(d− χd∗)

)

(30)

= −kDδ
vd

d
(vd + µγ,χ,δ(d)) (31)

It follows that J is negative as long as |vd| > |µγ,χ,δ(d)|.
This implies that there exists a time T such that −vd belongs

to (µ−, µ+) for all time t ≥ T . Combining this result

with the previous discussion, we get the following table that

represents the successive states of the system when the worst

case occurs.

phase 0 phase 1 phase 2 phase 3
(a) d0 < d d ≤ d ≤ d ≡ (c)

vd(0) < −µ+ vd < −µ+ at phase 0

(b) d0 < d d < d d < d d ∈ D

vd(0) > −µ− vd = 0 0 > vd > −µ+

(c) d0 > d d > d ≡ (d)

vd(0) < −µ+ vd = 0 at phase 0

(d) d0 > d d ≤ d ≤ d ≡ (b)

vd(0) > −µ− vd > −µ− at phase 0

A straightforward examination shows that for any initial

condition, there exists a time T such that (d(T ), vd(T )) ∈ D.

It remains to show that if (d0, vd(0)) ∈ D, (d(t), vd(t))
remains in D for all time t. Since, by assumption, vd(0) ≥
−µ+, this proves that vd ≥ −µ+ for all time. Moreover,
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since z is decreasing for d > d, if the situation (c) occurs,

then v̇d > 0 and

d(t) exp

(

−m ‖∇d‖max

kDδmin

(vd − vd(0))

)

≤ z(t) ≤ z0 = d0

as long as vd < 0. Thus, d ≤ d for all time. Using this

result and the fact that vd(0) ≤ −µ− is also verified, it is

straightforward to show, from equation (30), that vd ≤ −µ−

for all time. Moreover, since z is increasing for d < d, if the

situation (b) occurs, then v̇d < 0 and

d(t) exp

(

−m ‖∇d‖max

kDδmin

(vd − vd(0)

)

≥ z(t) ≥ z0 = d0

as long as vd > 0. Thus, d(t) ≥ d for all time. Consequently,

(d, vd) remains in D for all time.

Remark 4.2: If the optical flow is noisy. The noise can be

modeled by a bounded variable b(t); that is:

w =
v

d
+ b(t) (32)

Let b1 be the component of b in the direction of the forward

velocity v‖ and b2 the component of b in the direction β.

Then, the dynamics of the system can be written as follows:

mv̇d = kPω
∗γ′(t)

(

1 − d∗

d
χ′(t)

)

− kDδ(t)
vd

d
(33)

where,

γ′ = γ − γ

ω∗

(

b1(t) +
kD

kP

b2(t)

)

χ′ =
χγ

γ′

Then, choosing kP , kD and ω∗ such that γ′(t) is positive and

bounded for all time and recalling Theorem 4.1, for all initial

conditions such that d0 > 0, the closed-loop trajectory exists

for all time, d(t) > 0 remains positive and (d, ḋ) remains

bounded. △
Remark 4.3: if the norm of the forward velocity v‖ is

not constant but under bounded and non-vanished (
∥

∥v‖
∥

∥ ≥
vmin > 0), the dynamics of the pseudo distance d can be

written as follows:

mv̇d = kPω
∗γ(t)

(

1 − d∗

d
χ′(t)

)

− kDδ(t)
vd

d
(34)

where χ′(t) = χ
∥

∥

∥
w

‖
β

∥

∥

∥
/
∥

∥

∥
w

‖
β

∥

∥

∥

v‖=vr

. Recalling Theorem

4.1, it shows that the vehicle is ensured to follow the terrain

without collision. △
V. SIMULATIONS

In this section, simulations of the above algorithm de-

signed for the full dynamics of the system are presented.

Two cameras are incorporated in a 3-D simulator: one

camera pointing down and the other one looking forward.

The UAV is simulated with the model provided by Section

II. A Pyramidal implementation of the Lucas-Kanade [19]

algorithm is used to compute the optical flow. Control Law

(14-15) is used for the terrain following. Results present the

estimation of the slope α computed from the measurement
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Fig. 5: Terrain following

of β (10) and the realised trajectory of the UAV. The profile

of the terrain and its slope angle are represented by the

red dashed lines in Figures 5 and 6 respectively. Figure

5 is the result related to the first example presented in

Section III-B.1. The slope is set to 43%; it corresponds to

α = 23.3◦. v∗ is set to 0.05 m.s−1 and ω∗ is set to 0.25 s−1.

This implies that d∗ = 0.2 m. The blue line is the result

using both cameras while the green line represents the result

when camera pointing down (see arrows on the figure) is

used alone (see previous work [14]). Clearly, the use of

two cameras improves performance, although the pseudo

distance (result with two cameras) still does not converge

to the desired one. This is due to arguments discussed in

Section III-A, in particular the error due to not knowing

M (η0, η) 6= I3.

Figures 6 and 7 provide results for the second situation

described in Section III-B.2. It considers the problem of

corner avoidance (typically the corner of a room). The result,

in blue line, is performed when choosing kP = 3kD and

using the same desired set points (v∗, ω∗, d∗). This shows

good performance and a robust behaviour of the controller

during transients.

VI. EXPERIMENTAL RESULTS

In this section, experimental results of the above algorithm

designed for the full height dynamic of the system are

presented. The UAV used for the experimentation is the quad-

rotor, made by the CEA, (Fig. 8) which is a vertical take off

and landing vehicle ideally suited for stationary and quasi

stationary flight. The complete description of the prototype

used is given in [20].

It is equipped with an Inertial Measurement Unit (IMU)

and with two cameras (one camera pointing down and the

other one looking forward). Each camera transmits video to a

ground station (PC) via a wireless analogical link of 2.4GHz.

The images sent by embedded cameras are received by the

ground station at a frequency of 25Hz. In parallel, the X4-

flyer sends the inertial data to the station on the ground at a
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frequency of 12Hz. The data is processed by the ground

station PC and incorporated into the control algorithm.

Desired orientation and desired thrust are generated on the

ground station PC and sent to the drone. A key difficulty

of the algorithm implementation lies in the relatively large

time latency between the inertial data and visual features.

For orientation dynamics, an embedded ‘high gain’ controller

in the DSP running at 166Hz, independently ensures the

exponential stability of the orientation towards the desired

one.

A. Experiments

Corner avoidance has been tested and results are presented.

The task considered consists in avoiding frontal obstacle

by going over it. The experiment is a direct application of

the second example III-B.2. To regulate forward velocity

to the desired set point, a controller based on the measure

of the drag force opposite to the direction of motion via

the combination of accelerometer readings and pressure

measurement (barometer) is used. Note that this kind of

controller can be used only for indoor environment or very

calm outdoor environment since the wind would disturb

the measure of the velocity. In outdoor applications, this

approach could be replaced by a velocity control based on

GPS, an approach that is impossible in indoor environments.

The lateral position has been stabilised with an optical flow

based controller (see [21]). Textures are made of random

contrasts (Fig. 8). A Pyramidal implementation of the Lucas-

Kanade [19] algorithm is used to compute the optical flow.

The sample time of 12Hz and large time latencies prevent

us from experimenting algorithms with high velocities of the

quadrotor. Then v∗ is set to 0.4 m.s−1. Moreover, ω∗ is set

to 0.5 s−1 and therefore d∗ = 0.8 m. The parameters kP

Fig. 8: Hovering flight around the textured terrain

and kD have been chosen such that the variable χ defined

in Section III-B.2 is positive:

kP > 0.36kD (35)

During experiments, the yaw velocity is not controlled. The

drone is teleoperated near the target, so that textures are visi-

ble. Figure 9 shows the measurement of the forward velocity

v‖, the measurement of the forward optical flow w
‖
β and

the measurement of the pseudo distance d =
∥

∥v‖
∥

∥ /
∥

∥

∥
w

‖
β

∥

∥

∥
.

The result shows that v‖ → v∗ and w
‖
β → ω∗. Several

experiments have been carried out to verify the performance

of the approach. One can see that it ensures that the quad-

rotor follows the terrain without collision. This result can

be watched on the video accompanying the paper. Figure 10

shows the same results in the case of a more complex terrain

made of a corner followed by an elevated level and a ramp

that slopes down. This result can also be watched on the

same video accompanying the paper.

VII. CONCLUDING REMARKS

This paper presented a rigorous nonlinear controller for

terrain following of a UAV using the measurement of average

optical flow in multiple observation points. The approach is
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a generalization of a prior work that used only one direction

of observation. The closed-loop system and limits of the

controller have been theoretically analysed and discussed.

The proposed control algorithm has been tested in simulation

in different scenarios and then implemented on a quad-rotor

UAV to demonstrate the performance of the closed loop

system. Although only a longitudinal motion was considered,

the approach can be extended to full 3-D motion by adding

additional cameras.
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