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Abstract— Generally, the cables of a parallel cable-driven
robot are considered to be massless and inextensible. These two
characteristics cannot be neglected anymore for large dimension
mechanisms in order to obtain good positioning accuracy. A
well-known model which describes the profile of a cable under
the action of its own weight allows us to take mass and elasticity
into account. When designing a robot, and choosing actuator
and cable characteristics, a calculation of maximal tension has
to be done. However, because cable mass has a significant effect
on cable tensions, a model including cable mass has to be
included in the design step. This paper proposes two methods
to determine the appropriate cable and hence the maximal
tensions in the cables. Applied to a large dimension robot,
taking cable mass into account is proved to be necessary in
comparison with an equivalent method based on the massless
cable modeling. In this paper, only moving platform static
equilibria are considered (slow enough motions).

I. INTRODUCTION

Parallel cable-driven robots consist mainly of a moving

platform actuated by cables. The actuators are fixed to the

base and drive spools around which the cables are wound,

allowing the control of the position and orientation of the

end effector by acting on the lengths of the various cables.

Forces and torques can thereby also be transmitted to the

platform.

One of the main drawbacks of cable-driven robots is that

cables cannot transmit any force in compression, and thus

must be kept under tension. Two main solutions exist to deal

with this issue. Either, one or more additional cables than

the n degrees of freedom (DOF) are used (fully constrained

robots) [1] [2] [3], or as many cables as the number of DOF

are used. In this latter case, sometimes referred to as cable

suspended robots, the gravity acts as an additional vertical

cable to keep the cables tensed [4] [5] [6].

Parallel cable mechanisms have several interesting char-

acteristics in comparison to conventional parallel robots,

such as reduced moving parts mass and inertia. This has

been exploited in the high speed cable-driven parallel robot

FALCON [7]. Additionally, the fact that cables are compliant

makes parallel cable robots well adapted to human collab-

oration, e.g. in force feedback haptic interfaces [8] or for

rehabilitation systems [9].

Another difference with conventional parallel robots

comes from the possibility of storing large lengths of cables
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on spools. The possibilities in term of workspaces are thus

almost unlimited. Several studies on large dimensions cable-

driven robots have been made [4] [10] [11] [12] [13].

An important point in the study of parallel cable-driven

robots is the modeling of cables. Since cables are not rigid

bodies, their modeling is not straightforward. In most studies,

cables are assimilated to rigid inextensible massless parts,

provided they are tensed. Although this modeling is sufficient

in several applications, it may be necessary to consider more

realistic cable models. For instance, Behzadipour [14] has

used a four spring system to model the stiffness of a single

cable. Merlet also introduced elasticity in the modeling of

the cables of the MARIONET robot [15].

Another modeling, that has not been extensively used for

parallel cable robots, comes from civil engineering and more

precisely from guyed bridge studies. Irvine [16] presented

a single cable modeling taking cable mass and elasticity

into account. Kozak used this modeling in the study of the

large dimension telescope FAST [12] in order to compute

the inverse kinematics of a very large cable suspended

parallel robot. The effects of this model on the positioning

accuracy of large dimension mechanisms has been shown to

be important in [17] in which the effects of cable masses on

the tensions in the cables have also been addressed. Actually,

at some poses, taking into account cable mass can have a

non-negligible effect on the maximal cable tension.

When designing and choosing cables and actuators, ca-

ble masses could have a significant influence. Indeed, the

determination of the needed actuator torques and cable

characteristics are notably based on the maximal tension in

the cables across a desired workspace. Contrary to the case

of massless cable modeling, the cable tension depends on the

external forces acting on the cables but also on the own mass

of the cable. Thus, the determination of the appropriate cable

is not straightforward since it is based on the maximal tension

which itself depends on some of the cable characteristics.

This paper focuses on this issue and proposes two methods

permitting the choice of the appropriate cable which will

be able to withstand the maximal tension resulting from the

platform mass and its own mass.

The well-known sagging cable modeling together with

the formulation of the inverse kinematics problem are pre-

sented in section II. The differences between the massless

and the sagging models regarding the determination of the

cable tensions are discussed in section III. Two methods to

determine, for a given pose, the appropriate cable will be

proposed in section IV. Section V-A presents the application

of this method to a whole workspace. In section V-B, the
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Fig. 1. Scheme of the platform and notations.

results obtained for a large dimension robot are presented

and compared to those obtained when cable masses are not

included in the model.

II. CABLE MODELING AND KINEMATICS

A. Massless inextensible cable model

In this kind of modeling, the cable is considered as a

massless inextensible straight line. Thus, each leg of the

cable robot is assimilated to a SPS mechanism, S denoting

a spherical joint and P a prismatic joint, the prismatic joint

being actuated.

The pose p (position x and orientation α) of the platform

is expressed in the global fixed frame RA(OA,x,y,z). The

position vector of the cable drawing point Ai with respect to

frame RA is denoted ai.

The positions of the cable attachment points Bi on the

platform are expressed in the frame RB(OB,xB,yB,zB)
attached to the platform, OB being the platform mass center.

In the frame RB, the position vector of Bi is denoted bi. All

these notations are gathered in Fig.1. The matrix Q is the

rotation matrix from RA to RB.

With the massless cable modeling, the inverse kinematics

is straightforward. Indeed, the length li of the ith cable

corresponds to the norm of the vector going from the drawing

point Ai to the attachment point on the platform Bi. Let us

denote ui the unitary vector along the cable i from Ai to Bi.

The determination of the cable tensions has already been

studied, e.g. [1] [18], and is thus not further detailed here.

B. Sagging model

1) Description of the model: This model describes the

profile of the cable in the vertical plane containing Ai and

Bi. Let us denote this plane Pi as shown in Fig.1. A frame

Ri (Ai,xi,zi) is attached to this plane. This frame shares the

vector z with the frame RA. Thus, to transform RA into the

frame attached to the plane Pi, one single rotation γi around

z is needed as described in Fig. 2. The angle γi corresponds

to the angle between the projection of vector ui on the (x,y)
plane and the x-axis of the frame RA:

γi = arctan

(

uiy

uix

)

(1)

where uix and uiy correspond to the x and y coordinates of

the vector ui in the frame RA.

The associated rotation matrix is called Qi, and can be

written as follows:

Qi =





Cγi −Sγi 0

Sγi Cγi 0

0 0 1



 =
[

qi1 qi2 qi3

]

(2)

where Cγi and Sγi denote the cosine and sine of γi, respec-

tively.

In the plane Pi, a static cable model, presented in Irvine

[16] for civil engineering and used by Kozak [12] in robotics,

takes into account cable mass and elasticity. The cable does

not have a linear profile as in the inextensible massless

cable model, but sags under the action of its own weight

as illustrated in Fig.3.

With this cable modeling, note that the force vector τli

applied at the end point Bi of cable i is not collinear to the

vector ui. This force vector τli can be projected on the xi

and zi axes. The two resulting components are denoted Fxi

and Fzi, as shown in Fig. 3.

In this model, the following mechanical cable character-

istics are used: the young modulus E, the linear density ρ0,

and the unstrained section A0. The cable profile is defined

by (3) and (4) in which the coordinates x and z of a point on

the cable with respect to the frame Ri are given as functions

of the curvilinear abscissa s.

xi(s) =
Fxis

EA0
+

|Fxi|

ρ0g

[

sinh−1

(

Fzi +ρ0g(s− l0i)

Fxi

)

− sinh−1

(

Fzi −ρ0gl0i

Fxi

)

] (3)

Fig. 2. Relationship between the fixed frame and the frame attached to
the cable.
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Fig. 3. Cable i in the plane Pi with the ”sagging” cable modeling.

zi(s) =
Fzis

EA0
+

ρ0g

EA0

(

s2

2
− l0is

)

+
1

ρ0g

[

√

F2
xi +(Fzi +ρ0g(s− l0i))

2

−

√

F2
xi +(Fzi −ρ0gl0i)

2

]

(4)

2) Inverse kinematics: With this sagging cable modeling,

it is not straightforward to determine the length of each cable

for a given pose of the platform. Actually, the cable lengths

are completely coupled to the forces applied to the cables.

Thus, these variables (cable lengths and applied forces) have

to be determined at the same time. The unknowns are the

unstrained lengths l0i of the n cables and the components Fxi

and Fzi, in the frame Ri, of the force τli applied to the cable

at Bi as shown in Fig.3. The unknowns are thus:

[

Fx1 Fz1 l01 · · · Fxn Fzn l0n

]

1×3n
(5)

In order to determine these unknowns at least 3n equations

arer required. First, in (3) and (4), by replacing the curvilin-

ear abscissa s by the length l0i of cable i, x(l0i) and z(l0i)
correspond to the coordinates of the point Bi with respect to

the frame Ri. Let us denote this coordinate vector xi which

is defined as:

xi =





x(l0i)
0

z(l0i)



 = Q−1
i (x+Qbi −ai) (6)

Thereby, we get 2n non-linear equations:

x(l0i) =
Fxil0i

EA0
+

|Fxi|

ρ0g

[

sinh−1

(

Fzi

Fxi

)

− sinh−1

(

Fzi −ρ0gl0i

Fxi

)

] (7)

z(l0i) =
Fzil0i

EA0
−

l2
0iρ0g

2EA0
+

1

ρ0g

[

√

F2
xi +F2

zi

−

√

F2
xi +(Fzi −ρ0gl0i)

2

] (8)

The other n equations are those of the platform static

equilibrium:

Wff = e (9)

where

f =
[

Fx1 Fz1 · · · Fxn Fzn

]t

2n×1

e =

[

mg

0

]

6×1

Wf =

[

q11
q13

· · ·
Qb1×q11

Qb1×q13
· · ·

· · · qn1
qn3

· · · Qbn ×qn1
Qbn ×qn3

]

6×2n

where m is the platform mass, g the gravitational acceleration

vector, bix, biy and biz the components of vector bi, i.e. the

coordinates of Bi in RB, and where qi j
is the jth column of

matrix Qi as defined in (2).

III. CABLE TENSIONS FOR DESIGN

In the context of the design of large workspace cable-

driven robots, besides the workspace, one of the main aspects

to take into account is the actuator capabilities. Actually,

the actuator has to be able to support the maximal cable

tension all over the desired workspace. This maximal tension

is also involved in the proper determination of the cable.

After the choice of the cable structure (number and layout of

threads) and its material, considering the elasticity and other

material characteristics, an important parameter to choose

is the diameter. The cable diameter can be chosen directly

from the maximal tension. In fact, for most cables, the

maximal supported tension is proportional to the section

of the cable. When the massless cable model is used, the

determination of the appropriate cable and actuator can be

done by determining the maximal tension that can occur in

the cable over the whole workspace.

But, when cable mass is taken into account, sagging

appears. Kozak [12] has shown that sagging have effects

on the positioning of the platform. But, cable tension is

also significantly affected by the mass of the cables [17].

Actually, the actuator and the cable have to support a part of

the platform mass, but also the mass (or a part of it) of the

hanging cable. Thus, while taking cable mass into account,

the maximal tension τimax will be higher than with the simple

model of cable, since:

τimax =

√

F2
xi +(Fzi −ρ0gl0i)

2
. (10)
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Fig. 4. 3 DOF / 3 cables point mass cable-driven mechanism.

Note that, in this paper, Fzi is considered to be negative in

(10) (poses at which a cable is hanging below the platform

are disregarded).

The problem here is that the tension in the cable is directly

dependent on the cable mass and thus on the cable section.

Therefore, when choosing a cable section to support the

maximal tension, the increase of cable diameter will induce

an increase of cable tension and so on, a larger cable section

will be needed. The next section shows that a ”fixed point”

seems to exist.

IV. CABLE SECTION DETERMINATION METHODOLOGY

A. Description of the robot studied

The robot considered in that study is a point mass cable

suspended robot, that is to say, a 3 cables / 3 DOF robot

in which gravity keeps cables under tension. The 3 DOF

are the three translations along the x, y and z axes. The

3 cable exit points are located at the 3 extremities of an

equilateral triangle. The dimensions of the structure have

been chosen to allow us to see the effect of cable mass.

In fact, the dimensions have been chosen to be the same

as the mechanism FAST studied by Kozak [12]. Thus, the

positions of the exit points of each cable, expressed in the

fixed frame, are given in TABLE I. The end effector mass

has been chosen to be 4000Kg.

The type of cable chosen for that study is made of galva-

nized steel in a 7×19 threads structure. The corresponding

density Mv is of 7800Kg/m3 considering the cable as a

cylinder. From the breaking loads given for different cable

diameters by the manufacturers, the corresponding maximal

TABLE I

EXIT POINTS POSITIONS

x (m) y (m) z (m)

a1 0 0 0

a2 500 0 0

a3 250 433.01 0

admissible stress σmax results to be 180MPa using a safety

factor of 2. This value is based on the yield strength of such

material. The Young modulus of the cable is 200GPa.

B. Basic loop method

In this section, the first methodology used to determine the

cable section needed for a given mechanism and application

is presented. The robot geometry is assumed to be known.

1) Methodology: For a given pose, we start by using the

massless cable model to determine the maximal tension, and

we deduce the cable section from this value. Once this step

realized and the cable characteristics known, we can compute

the inverse kinematics of the manipulator with the sagging

model. We obtain a new value of the maximal tension higher

than the one found with the massless model because of the

cable mass now taken into account. Thus, we find a new

value of the cable diameter. We then reproduce this procedure

as many time as needed to reach a diameter variation ∆diam

inferior to a given threshold ε . This procedure followed here

is described schematically in Fig.5.

Fig. 5. Cable characteristic determination loop.

2) Results for a given pose: For the manipulator of TA-

BLE I, this procedure is applied to the pose [250,200,−50],
with a platform mass of 4000Kg. The results in terms of

cable tension and corresponding cable diameter are presented

in Fig.6 and Fig.7, respectively.

It can be noticed that these values are converging in

just a few iterations with ε = 10−6m. In this example, the
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Fig. 6. Maximal cable tension evolution along the loop.
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Fig. 7. Cable diameter evolution along the loop.

appropriate cable appears to be of diameter 32.6mm. The

maximal tension reaches 150.2KN. That is to say, at the

considered pose, the cable with a diameter of 32.6mm will

withstand the tension due to both the end-effector and the

cable mass.

C. Determining the appropriate cable by optimization

In this subsection, another method to determine the ap-

propriate cable section is proposed. This method is based

on an optimization integrated to the inverse kinematics

computation.

1) Methodology: The inputs to our problem are the de-

scription of the structure, that is to say the position of the

cable exit points, the platform description (attachment points

and mass) and the pose (position and orientation) of the

platform. Our goal is to determine simultaneously the length

of each cable, the forces exerted by the cables on the platform

for the latter to be in static equilibrium, and the cable section.

Actually, the criterion to minimize is the cable diameter

with the constraint of being able to support the tensions due

to the platform mass and also to the cable own mass.

Thus, in the optimization, the non-linear constraints are

given by the static equilibrium of the platform described in

(9), and by the cable profile equations of the sagging model

(7) and (8).

In (7) and (8), the section of the cable A0 can be replaced

by its expression as a function of the linear density ρ0 of the

cable, since the cable material is chosen (galvanized steel).

The Young modulus E and its density Mv are also known.

Equations (7) and (8) become:

x(l0i) =
Fxil0iMv

Eρ0
+

|Fxi|

ρ0g

[

sinh−1

(

Fzi

Fxi

)

− sinh−1

(

Fzi −ρ0gl0i

Fxi

)

] (11)

z(l0i) =
Fzil0iMv

Eρ0
−

l2
0igMv

2E
+

1

ρ0g

[

√

F2
xi +F2

zi

−

√

F2
xi +(Fzi −ρ0gl0i)

2

] (12)

Thus, the unknowns of the problem, gathered in the vector

shown in (13), are the 6 cable lengths, the forces exerted on

cable i along the axes xi and zi of the frame Ri (Fig.1) and

the linear density ρ0 of the cables.

[

Fx1 Fz1 l01 · · · Fxn Fzn l0n ρ0

]

1×(3n+1)
(13)

Inequality constraints are also added. Since the material

and the structure of the cables are known, the maximal stress

each cable can withstand σmax is also known. Using a safety

factor k, an inequality on the resistance of the cables can be

expressed as follows:

kτ0i

A0
≤ σmax ∀i = 1 . . .n (14)

2) Results for a given pose: Considering the same pose

used for the basic loop method, i.e. [250,200,−50], the op-

timization presented before is computed, and the optimized

cable diameter obtained is 32.6mm. This result confirms the

one given with the basic loop method and validates these

two methods, at least for the example at hand.

V. APPROPRIATE CABLE DETERMINATION ACROSS A

WORKSPACE

A. Principle and methodology

The two methods presented in the previous section allow

us to determine the appropriate cable for a given robot

geometry and a given pose. The next step is to be able to find

the pose in the workspace where the tension is the highest,

and thus where the needed cable is the thickest. The first idea

was to use the massless model to determine, by sampling the

whole workspace, the pose where the tension is the highest.

But, on the one hand, finding such a pose is not an easy

task and, on the other hand, nothing guarantees that this

pose would also be the one with the highest tension while

taking cable mass and elasticity into account. Furthermore,

it is neither obvious that this pose will be the one which

requires the thickest cable.

Therefore, the method presented in section IV-C is applied

to each pose of the sampled workspace. The resulting largest

cable diameter should be very close to the one required

across the whole workspace (for a fine enough discretiza-

tion).

B. Results and analysis

The geometry of the robot under study is given in TABLE

I. The sampled workspace corresponds to the volume limited

by the three posts and, along the z axis, located between

−200m to −40m. At each pose, the optimization presented

in section IV-C has been computed, and, thereby, a mapping
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Fig. 8. Appropriate cable diameters all over the workspace.

of the required cable diameters all over the workspace is

obtained and presented in Fig.8.

It can be noted in this figure that the maximal cable

diameters, and thus the maximal tensions, are found on the

upper part of the workspace. This can be explained by the

fact that the higher the pose is in the workspace, the more

horizontal the cable are, and so the higher the cable tensions

are to balance the vertical force produced by the end effector

mass. Fig.9 shows the diameters obtained for the upper part

of the workspace.

In this figure, the poses where the cable tensions are the

highest are seen to be located on the boundaries of the

triangle formed by the three posts. The corresponding ap-

propriate cable diameter is 51.2mm. This value corresponds

to a maximal tension of 371kN.

With the same robot and using massless cable modeling,

the maximal tension would have been 121kN yielding a cable

diameter of 29.3mm. Thus, this results in a significant error

since the real tension is about three times higher.

VI. CONCLUSIONS

This paper deals with the choice of cables for large scale

cable-suspended robots taking cable masses and elasticity

into account. After presenting a formulation of the inverse

kinematics problem, based on a well-known static cable

modeling, two methods are proposed to determine, for a

n cable/n DOF parallel cable-driven robot, the appropriate

cable that can withstand the tensions due to both the mobile

platform mass and the cable own mass. Based on a dis-

cretization, these methods enable the exploration of a given

workspace. These methods applied to a large scale cable-

suspended robot are proved to be necessary in comparison

with a determination based on a massless cable modeling.
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