
Safe and Effective Learning: a Case Study

Giorgio Metta, Lorenzo Natale, Shashank Pathak, Luca Pulina and Armando Tacchella

Abstract— In this paper we consider the problem of ensuring
that a multi-agent robot control system is both safe and effective
in the presence of learning components. Safety, i.e., proving
that a potentially dangerous configuration is never reached in
the control system, usually competes with effectiveness, i.e.,
ensuring that tasks are performed at an acceptable level of
quality. In particular, we focus on a robot playing the air hockey
game against a human opponent, where the robot has to learn
how to minimize opponent’s goals (defense play). This setup is
paradigmatic since the robot must see, decide and move fastly,
but, at the same time, it must learn and guarantee that the
control system is safe throughout the process. We attack this
problem using automata-theoretic formalisms and associated
verification tools, showing experimentally that our approach
can yield safety without heavily compromising effectiveness.

I. INTRODUCTION

Multi-agent robot control systems are of fundamental
importance in robotics as they provide a scalable solution
to support the elaboration of signals from sensors of various
kinds, the execution of complex cognitive functions, and the
coordination of actuators to achieve the desired goals. Indeed,
most of the contemporary robotic development environments
provide support for such architectures – see [1]. The intrinsic
complexity of multi-agent control systems – due to the paral-
lel execution of many interacting components – is further in-
creased by learning agents. Pervasive in contemporary robot
control systems [2], learning agents change their internal
parameters over time, making it difficult, if not impossible,
to anticipate all the possible behaviours of the control system
as a whole. Therefore, while multiple learning agents enable
robots to perform various tasks effectively, they may conceal
errors which can hinder the correctness of the control system,
and thus compromise the functionality of the robot.

In this paper we consider a robot control system that
embeds adaptive agents. We prove their correctness against
safety properties, i.e., properties requiring that a control con-
figuration that may cause damage to the environment is never
reached. Our view of safety is thus à la Formal Methods [3],
wherein mathematical models of the control system and the
properties that it must satisfy are used to provide formal
proofs that properties hold throughout the evolution of the
system. In particular, we consider an automated approach
wherein the model of the system and the properties are input

Giorgio Metta (giorgio.metta@iit.it) and Lorenzo Natale
(lorenzo.natale@iit.it) are with the Italian Institute of Tech-
nology, via Morego 30, 16163 Genova.

Shashank Pathak (shashank.pathak.iitd@gmail.com),
Luca Pulina (luca.pulina@unige.it) and Armando Tacchella
(armando.tacchella@unige.it) are with Università degli Studi
di Genova, Dipartimento di Informatica Sistemistica e Telematica, Via Opera
Pia 13, 16145 Genova.

Fig. 1. The Air hockey setup (left), details of the camera (top right) and
the end effector (bottom right).

to a verification software which statically checks execution
traces. This approach, known as Model Checking [4], has
been shown to be very effective for debugging integrated
circuits [5], software [6] and, more recently, also complex
control systems [7]. Most of the Model Checking literature,
however, deals with systems that do not include learning
components. Our aim is to build on previous works in order
to accommodate for (i) multi-agent control systems, (ii)
learning components and (iii) a challenging setup in which
they must be proved safe.

Our case study involves learning to play the air hockey
game with the setup depicted in Figure 1. Air hockey is
a game played by two players. They use round paddles
(mallets) to hit a flat round puck across a table. Air is forced
up through holes in the table’s surface to create a cushion
of air whereon the puck slides with little friction. At each
end of the table there is a goal area. The objective of the
game is to hit the puck so that it goes into the opponent’s
goal area (offense play), and to prevent it from going into
your own goal area (defense play). 1 Air hockey has already
been explored as a benchmark task for humanoid robots and
vision – see, e.g., [8], [9]. In the words of [8], air hockey
is challenging because it is fast, demanding, and complex,
once the various elements of the physical setup are taken
into account. Notice that, even if our setup does not involve
a humanoid robot as in [8], all the core issues are still present.

In our case study, a multi-agent control system manages
the setup. A vision agent is devoted to visual perception;

1You may get a feeling of the game by watching the movie attached to
this paper. The movie was obtained by collating chunks of different sessions
in our experiments.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4809

a motion control agent sends position commands to the
manipulator; finally, a coordination agent converts the stimuli
perceived by the vision agent into commands for motion con-
trol. The coordination agent is the only one whose internal
parameters change over time for the effects of learning. In
particular, the goal of learning is to fine tune coordination in
order to be able to intercept the puck when it approaches the
robot’s goal area (defense play). We consider our control sys-
tem safe if the manipulator does not reach unsafe positions,
e.g., moving too close to the table’s edges. Given our safety
target, we model each agent as a hybrid automaton [10], a
formalism allowing for mixed discrete and continuous state
variables. We check execution traces for safety in a static
way, by feeding the automata and the property statements to
a model checker – in our case HYSAT [11] – which can
find bugs by exploring traces of increasing length. Because
of learning, the whole system must be (re)verified eventually.
We preserve safety at all times by keeping safe – and
possibly ineffective – parameters of the coordination agent
in place, until we have a more effective – and definitely safe
– setting. While the proposed approach is expressive enough
to allow for various setups to be analyzed, our experimental
analysis in the air hockey setup shows that it can yield safety
without heavily compromising on effectiveness. All other
things being equal, the accuracy of a safety-conscious control
system is very close – albeit inferior – to the one of a safety-
oblivious control system.

The paper is structured as follows. In section II we
describe our experimental setup, including the robot and the
supporting hardware and software components. In section III
we describe in detail the formal model of the robot control
system, including an introduction to the formal language and
the algorithms to verify safety. In section IV we comment
the results of our experiments, and in section V we discuss
related work.

II. SETUP

Our setup consists of a commercial air hockey table –
see Figure 1 (left). The table is approximately 90cm wide
and 180cm long.2 Original features of the table and its
accessories are unchanged, with the following exceptions.
The red puck has been covered with a green sticker in order
to make tracking easier. The mallet used by the robot is a
custom-made round plastic paddle – see Figure 1 (bottom-
right). The robot’s goal area is covered with a metal bar that
bounces back the puck so that it can be recovered without
entering the robot’s workspace. In the following, we describe
in some detail the hardware and the software components
used in our setup.

A. Hardware components

For vision, we used a CCD DragonFly2 camera with a
60Hz maximum frame rate, fitted with a fish-eye lens –
see Figure 1 (top-right). The camera is mounted 145cm

2Our table is smaller than tables sanctioned by the United States Air
hockey Association (USAA) for official tournaments, see [12], whereas the
mallets and the puck meet USAA requirements.

above the top center of the table and its mounting is not
connected to the table or to the robot’s scaffolding. The
camera is wired to a standard PC by means of an IEEE-1394
interface. For manipulation, we used a 6 d.o.f. Unimation
PUMA 260 industrial robot mounted upside down on a
metallic scaffolding to match human-like arm position and
movement. The robot’s paddle is not rigidly fitted to its end
effector, whereas a damper – see Figure 1 (bottom-right) –
is used to compensate for small errors either in (i) vertical
positioning, so that the robot’s paddle is never pushed on the
table with excessive force, or (ii) wrist orientation, so that
slight changes in pitch and yaw do not alter the horizontal
position of the paddle. Four standard PCs are used to provide
elaboration.

B. Software agents

The whole robot control system is built on top of YARP
(Yet Another Robotic Platform) [13], a middleware devoted
to the integration of devices for complex robotic archi-
tectures. In our setup YARP provides seamless connection
between the modules, and it enables us to distribute the
components across different PCs connected to a LAN.

A vision module is dedicated to track the puck on the table
and send puck positions via YARP. Our camera mounting
eliminates perspective distortion – as in [9] – as well as
vibrations due to robot’s movements – which must be dealt
with in [8] instead. However, the puck moves fast – average
speeds of 800 pixels/s (about 2.5m/s) are typical – and real-
time detection requires a tight compromise between speed
and complexity. Our tracking algorithm of choice is based
on image segmentation with background subtraction in the
YUV color space. The algorithm is accurate enough for our
purposes, and fast enough to acquire some (at least two)
frames containing the puck inside a predefined “perception
zone” of the table. As soon as the puck leaves such zone,
the grabbed positions are sent to the coordination module.
In our experiments, the perception zone starts at 1.1 m
(ρ begin perception) from the robot’s world origin, and
ends at 0.6 m (ρ end perception).

A motion control module is dedicated to the low-level con-
trol of the manipulator. For the sake of speed and simplicity,
control is organized around five primitives. Home returns
the arm to its reference position. Left and right, respectively,
rotate left and right the waist joint of the manipulator, so that
the paddle follows a circular trajectory on the table centered
in the robot’s world origin. Finally, forward and backward,
respectively, coordinate shoulder, elbow and the wrist bend
joints of the manipulator, so that the paddle follows a linear
trajectory on the table, going either outward or inward w.r.t.
the robot’s world origin. The above primitives are realized
as follows: The angular displacement is solely controlled by
the waist joint, whereas the radial displacement is achieved
through constrained motion of shoulder, elbow and wrist
bend, to ensure planar motion.

A coordination module is in charge of (i) reading the
puck positions from vision, (ii) estimating reasonable target
positions for the robot’s paddle and (iii) send the esti-

4810

mated position to the motion controller. In particular, (ii)
is performed using a linear transformation in a system of
polar coordinates centered in the robot’s world origin. The
estimated target position of the robot’s paddle (ρee, θee) is
the result of the following calculations:

ρee = p1 + p2ρ1 + p3θ1 + p4ρ2 + p5θ2
θee = p6 + p7ρ1 + p8θ1 + p9ρ2 + p10θ2

(1)

where (ρ1, θ1) and (ρ2, θ2) correspond to two puck positions
detected by vision, and p = {p1, p2, . . . , p10} are parameters
learned using linear regression. Notice that coordination
requires at least two points from vision in order to predict
(ρee, θee). In the case of straight shots, two points are suffi-
cient to compute the whole trajectory of the puck, and thus
equation (1) can, in principle, compute the target position
exactly. This is not the case when shots bounce multiple
times, and an exact prediction would require either more
parameters, or physical laws and geometrical constraints
to be taken into account. However, in actual plays the
puck rarely bounces more than one time on the edge, so
equation (1) can still provide a good estimate of the target
position, while keeping the complexity of the model low.
The parameters p can be learned in two ways:
• Off-line by collecting a number of shots and related

target positions, and using them as a train set to obtain
the value of p which is unchanged thereafter.

• On-line by starting with some bootstrap value p0 and
then recording new shots/target positions while playing
so that new and improved values can be computed.

In our case, on-line learning amounts to adding new
shots/target positions to a data set, and train linear regression
from scratch. While in principle this may lead to inefficien-
cies and/or convergence problems, in practice the method
turns out to be pretty robust and fast enough for our purposes.

III. MODELING

A. Formal preliminaries

In order to model the multi-agent control system described
in the previous section we resort to the formalism of Hybrid
Automata [10]. For our purposes, a hybrid automaton can
be defined as a tuple A = (X,V, flow, inv, init, E, jump)
consisting of the following components. Variables are a
finite ordered set X = {x1, x2, . . . xn} of real-valued vari-
ables, representing the continuous component of the system’s
state. Control modes are a finite set V , representing the
discrete component of the system’s state. Flow conditions
are expressed with a labeling function flow that assigns a
condition to each control mode v ∈ V . The flow condition
flow(v) is a predicate over the variables in X ∪ Ẋ , where
Ẋ = {ẋ1, ẋ2, . . . , ẋn}. The dotted variable ẋi for 1 ≤ i ≤ n
refers to the first derivative of xi with respect to time, i.e.,
ẋi = dx

dt . Invariant conditions determine the constraints
of each control mode with the labelling function inv, and
initial conditions are denoted with the function init. Control
switches are a finite multiset E ∈ V × V . Each control
switch (v, v′) is a directed edge between a source mode

v ∈ V and a target mode v′ ∈ V . Jump conditions are
expressed with a labeling function jump that assigns a jump
condition to each control switch e ∈ E. The jump condition
jump(e) is a predicate over the variables in X ∪X ′, where
X ′ = {x′1, x′2, . . . x′n}. The unprimed symbol xi, for 1 ≤ i ≤
n, refers to the value of the variable xi before the control
switch, and the primed symbol x′i refers to the value of xi
after the control switch. Thus, a jump condition relates the
values of the variables before a control switch to the possible
values after the control switch.

Intuitively, checking that a hybrid automaton is safe
amounts to checking that no execution reaches an unwanted
condition. In order to frame this concept precisely we define
a state as a pair (v,a) consisting of a control mode v ∈ V
and a vector a = (a1, . . . , an) that represents a value ai ∈ R
for each variable xi ∈ X . The state (v,a) is admissible if the
predicate inv(v) is true when each variable xi is replaced
by the value ai. The state (v,a) is initial if the predicate
init(v) is true when each xi is replaced by ai. Consider
a pair of admissible states q = (v,a) and q′ = (v′,a′).
The pair (q, q′) is a jump of A if there is a control switch
e ∈ E with source mode v and target mode v′ such that the
predicate jump(e) is true when each variable xi is replaced
by the value ai, and each primed variable x′i is replaced by
the value a′i. The pair (q, q′) is a flow of A if v = v′ and
there is a nonnegative real δ ∈ R≥0 – the duration of the flow
– and a differentiable function ρ : [0, δ] → Rn – the curve
of the flow – such that (i) ρ(0) = a and ρ(δ) = a′; (ii) for
all time instants t ∈ (0, δ) the state (v, ρ(t)) is admissible;
and (iii) for all time instants t ∈ (0, δ), the predicate
flow(v) is true when each variable xi is replaced by the
i-th coordinate of the vector ρ(t) , and each ẋi is replaced
by the i-th coordinate of ρ̇(t) – where ρ̇ = dρ

dt . In words,
jumps define the behaviour of the automaton when switching
from one control mode to another, whereas flows describe
the behaviour of the automaton inside the control mode. With
the concepts above, we can now define executions of the
automaton as trajectories, i.e., finite sequences q0, q1, . . . , qk
of admissible states qj such that (i) the first state q0 of the
sequence is an initial state of A, and (ii) each pair (qj , qj+1)
of consecutive states in the sequence is either a jump of A
or a flow of A. A state of A is reachable if it is the last state
of some trajectory. Let us assume that a safety requirement
can be specified by defining the “unsafe” values and value
combinations of the system variables. A state is thus safe if
it does not entail such values, and the whole system is safe
exactly when all reachable states are safe. Safety verification,
therefore, amounts to computing the set of reachable states.

Given the expressiveness of the above formalism, it is no
surprise that checking safety is, in its most general form,
an undecidable problem in hybrid automata [10]. Even if
the air hockey control system can be modeled in terms of
a linear hybrid automaton, i.e., a hybrid automaton where
the dynamics of the continuous variables are defined by
linear differential inequalities, there is still no guarantee that
the exploration of the set of reachable states terminates.
The method is still of practical interest, however, because

4811

Fig. 2. Vision (top), coordination (middle), and motion (bottom) automata.
Control modes are vertices, and directed edges are control switches whose
labels represent jump conditions. Looping edges are labeled with invariant
conditions. Initial conditions and initial values of the variables are shown as
labels of incoming arrows (START). Symbols have the usual meaning, with
the exception of “=” which indicates assignment, and “∼=” which indicates
approximate equality testing: x ∼= y iff x = y ± δ, where δ is a small
positive constant.

terminations can be enforced by considering the behavior of
the system over a bounded interval of time. This technique,
known as Bounded Model Checking – see, e.g., [11] –
involves the exploration of increasingly long trajectories until
either an unsafe state is reached, or resources (CPU time,
memory) are exhausted. Technically, we no longer speak of
verification, which is untenable in an infinite state space,
but of falsification. Whenever an unsafe state is found, then
we have a trajectory witnessing the bug. On the other hand,
the unfruitful exploration of increasingly long trajectories is
considered an empirical guarantee of safety.

B. Control agents as hybrid automata

In order to check the safety of the control system described
in Section II, we model each agent as a hybrid automaton,
and then we check the composition of the agent’s automata.
All the automata that we describe in the following are de-

picted in Figure 2 (see the legend for graphical conventions).
The vision automaton – Figure 2 (top) – has three control

modes: WAIT V, SEND V, and RECEIVE V. The real variables
are (ρ1v, θ1v) and (ρ2v, θ2v) denoting the two positions
perceived along the puck trajectory by the camera. The
Boolean flags ack v and ack r are used for communications
with the other agents. Initially, the automaton is in the control
mode WAIT V until at least two points are perceived along
the trajectory of a shot directed towards the robot’s goal
area. When the two points are collected, the control mode
SEND V is reached, and the automaton loops there while
the ack v signal is false. When the coordination automaton
acknowledges receipt of the coordinates, ack v becomes
true, and the mode RECEIVE V is entered. The automaton
resets to WAIT V as soon as the motion controller also
receives its target position and ack r becomes true.

The coordination automaton – Figure 2 (middle) – has
three control modes: WAIT C, PREDICT C, and SEND C. The
real variables are (ρ1c, θ1c) and (ρ2c, θ2c), corresponding to
the puck coordinates received by the vision automaton; the
variables (ρp, θp) represent the result of applying equation
(1) where (ρ1, θ1) ≡ (ρ1c, θ1c) and (ρ2, θ2) ≡ (ρ2c, θ2c).
The Boolean flag pred denotes the end of the computation,
and the Boolean flags ack c, and ack arm are used for
communication with other agents. Initially, the automaton
is in the control mode WAIT C until the puck coordinates
are received from the vision automaton. In this case, the
control mode PREDICT C is reached, and the variables ρp, θp
are computed according to equation (1). Once this operation
is complete, there is a jump to the control mode SEND C,
in which the coordinates (ρp, θp) are sent to the motion
controller automaton. The automaton loops in SEND C until
motion control acknowledges, and then it resets to WAIT C.
Notice that we do not model the learning component of coor-
dination as an automaton, and we consider the parameters p
as constants. However, we can keep into account changes
in p by scheduling (re)verification of the control system
automaton each time p changes because of learning. In this
way, the internals of the learning algorithm need not to be
modeled, but it is still possible to ensure safety of the control
system, as long as only safe choices of the parameters p are
used in the coordination module.

The motion controller automaton – (Figure 2, bottom)
– has five control modes: WAIT A, MOVE BWD, MOVE
FWD, MOVE LEFT, and MOVE RIGHT, corresponding to the
control primitives. The real variables (ρee, θee) are the target
coordinates of the end effector; (ρh, θh) denote the current
position of the end effector. The Boolean flag ack a is
devoted to communications with other agents. Initially, the
automaton is in control mode WAIT A until the coordinates
(ρee, θee) are received from the coordination automaton. If
ρh or θh are different from ρee and θee, respectively, a
jump condition for the control modes representing the motion
primitives is satisfied, and the automaton evolves until the
target position is reached. Inside the primitives, the evolution
of (ρh, θh) is modeled using linear differential equations
expressing constant radial and angular velocities control,

4812

Fig. 3. RMSE on the prediction of ρee and θee. On the x axis the sequence of subjects, in the same order in which they played the games.

respectively.

IV. EXPERIMENTAL RESULTS

In this section we show empirical results supporting the
claim that our multi agent control system can learn from
experience while maintaining safety. Our safety target re-
quires that the angle θee is in the range [−50,+50] (degrees)
and ρee is the range [0.10, 0.27] (meters). These boundaries
ensure that the paddle will never hit the borders of the table.
Considering that the robot moves, e.g., left and right, at an
average speed of 5.2 rad/s (298 degrees/s) hitting the borders
would surely damage the table or the paddle. In our experi-
ments this is prevented by a low-level emergency protection
that avoids dangerous commands to be executed by the
robot. In the following, when we say that the control system
reached an unsafe state during experimental plays, it means
that the low-level protection intervened to avoid damage. In
order to check for safety we used the tool HYSAT [11], a
satisfiability checker for Boolean combinations of arithmetic
constraints over real- and integer-valued variables which can
also be used as a bounded model checker for hybrid systems.
HYSAT takes as input a textual description of the automata
in Figure 2 , and it tries to find a violation of the stated safety
properties by exploring trajectories of increasing bounded
length k.

Data was collected by having the robot play a series of
games against ten different human players3 and using three
different settings of the coordination module. In the first
setting (off-line), the parameters p are learned off-line using
a controlled training set of 150 shots performed by one of
us, of which 50 are straight shots, and 100 are single-bounce
shots; this setting is not checked for safety. In the second
setting (on-line), the parameters p are learned on-line; the
bootstrap parameters p0 correspond to a hand-made setting
which is checked off-line for safety. In the third setting (safe
on-line), each time a new set of parameters is learned, it is
plugged into the model which is then checked for safety; the
new parameters are used thereafter only if HYSAT could
not find a safety violation within 30 CPU seconds. Notice
that in the two on-line settings we keep learning across
different players, so the more games are played, the more
effective the robot becomes. Because of this, the training set
accumulates the shots/target positions recorded during all the
playing history. The choice of 30 CPU seconds as a resource

3At http://www.liralab.it/airhockey we made available the
videotapes of all the experimental sessions.

TABLE I
UNSAFE PREDICTIONS DURING THE EXPERIMENTS.

PLAYER OFF-LINE ON-LINE
SHOTS UNSAFE SHOTS UNSAFE

1 59 – 55 1
2 56 2 72 3
3 46 1 39 –
4 61 – 46 –
5 58 – 80 –
6 48 – 69 –
7 84 6 76 1
8 44 2 84 –
9 103 – 112 –
10 99 8 86 –

limit for HYSAT reflects a tradeoff between the accuracy of
the safety check, and the performances of safe learning. In
our application, 30 CPU seconds are sufficient to perform a
number of iterations k in the order of hundreds. Considering
that most bugs can be found withing a limited number of
iterations – k in the order of tens, running time of a few
seconds – this provides a sufficient empirical guarantee of
safety.

The conclusions of our experiments are that
• the off-line setting is unsafe;
• on-line learning, even starting from a safe choice of

parameters, improves performances over time, but it
hinders safety;

• safe on-line learning can be almost as effective as its
counterpart, and it guarantees safety.

In more detail, considering the parameters p used in the off-
line setting, HYSAT is able to detect an unsafe state within
5 CPU seconds and k = 10. On the other hand, the set of
boostrap parameters p0 used in the on-line settings could
not be found unsafe after 10.42 CPU hours and k = 9480.4

One may ask how significant it is in practice that the off-line
setting is unsafe. In Table I we show, for each player, the
number of shots detected (SHOTS) and the number of shots
that triggered the low level protection (UNSAFE). As we can
see, 50% of the players performed shots such that the control
system proved to be unsafe in the off-line setting.

A similar problem occurs in the on-line setting. Looking
at Table I, we can see that coordination emits unsafe target
positions in five cases. Interestingly, four cases occur with

4Experiments with HYSAT are performed on a family of identical Linux
workstations comprised of 10 Intel Core 2 Duo 2.13 GHz PCs with 4GB
of RAM.

4813

the first two players, meaning that the very first attempts
to update the initial safe model invariably result in unsafe
ones. One case occurs also for player #7, indicating that, no
matter how effective the model becomes, still there is chance
to emit unsafe predictions. In the on-line safe setting, 879
shots were detected, and none of them triggered an unsafe
target prediction. In order to evaluate effectiveness, for each
player we consider the parameters p obtained at the end of
the corresponding session, so that we can compute (ρee, θee)
with equation (1). To measure the effectiveness of the param-
eters p, we extract input coordinates and reference target
positions from the off-line training set, and we compute the
root mean square error (RMSE) between the reference target
positions and the results of equation (1). This gives us an
idea about how much the control system is effective and how
much it improves across the sequence of plays. In Figure 3
we show the RMSE values in for ρee (left) and θee (right).
As we can see, both on-line settings are able to improve
their effectiveness while playing. The basic on-line setting
can actually outperform the safe on-line setting. However,
we know it is unsafe. On the other hand, in the safe on-
line setting, adaptation is slower, and the final target RMSE
is higher. However, the differences between the final RMSE
values is small – 13% of the on-line RMSE for ρee and 6%
of the on-line RMSE for θee – , whereas the resulting control
system is safe.

V. DISCUSSION AND RELATED WORKS

Our results show that verifying the safety of a multi
agent control system with learning components is doable,
even under the tight constraints imposed by real world
applications. While ensuring formal safety of the control
system is just one of the tasks involved in robot’s functional
safety – see, e.g. [14] – if a robot is to be deployed in
a context where it can harm humans, it is expected that
its architecture and implementation reach the highest safety
integrity levels (SILs). In most cases, achieving such levels
entails the use of structured design methods – such as hybrid
automata – and the provision of formal guarantees of safety
for the implementations – such as Model Checking or other
verification methods. Therefore, we see our approach as
one of the key elements towards reaching industry-standard
safety for robots operating outside structured environments.

The issue of coping with formal safety in robot control
systems has been posed already. The ICRA workshop “For-
mal Methods in Robotics and Automation” – see, e.g., [3] for
the latest event – focuses precisely on this theme. However,
to the best of our knowledge, this is the first time in which
the issue is investigated in the context of a fast-paced task
like the air hockey game, without using simulation results
only, and including adaptive components. For other works
in robotics dealing with the issue of safety, but not with the
problem of formal verification, see, e.g., [15].

Some work has been done in the AI community towards
providing a formal framework for checking the safety of
adaptive agents. Relevant contributions include a series of

paper by Gordon, see e.g. [16]. In these contributions, adap-
tation is explored as a challenge for safety, but in all of them
the formal model of the system does not include continuous
state variables, which makes them unsuitable for the kind
of modeling required by physical robots. A rather different
approach in exploring the same challenge is taken in [17]
where the problem of learning how to combine different
control modes in a safe way is studied. While this approach
is suitable for physical robots, it requires knowledge of the
systems’ models to be applied. In our case, it is exactly the
systems’ model which is sought by learning, which makes
the approach in [17] inadequate.

ACKNOWLEDGMENTS

This research has received funding from the European
Community’s Information and Communication Technologies
Seventh Framework Program [FP7/2007-2013] under grant
agreement N. 215805, the CHRIS project.

REFERENCES

[1] J. Kramer and M. Scheutz, “Development environments for au-
tonomous mobile robots: A survey,” Autonomous Robots, vol. 22,
no. 2, pp. 101–132, 2007.

[2] J. Bagnell and S. Schaal, “Special issue on Machine Learning in
Robotics (Editorial),” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 155–156, 2008.

[3] G. Pappas and H. Kress-Gazit, Eds., ICRA Workshop on Formal
Methods in Robotics and Automation, 2009.

[4] E. Clarke, O. Grumberg, and D. Peled, Model checking. Springer,
1999.

[5] C. Kern and M. Greenstreet, “Formal verification in hardware design:
a survey,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 4, no. 2, pp. 123–193, 1999.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
checking programs,” Automated Software Engineering, vol. 10, no. 2,
pp. 203–232, 2003.

[7] E. Plaku, L. Kavraki, and M. Vardi, “Hybrid systems: From verifica-
tion to falsification,” Lecture Notes in Computer Science, vol. 4590,
p. 463, 2007.

[8] D. Bentivegna, C. Atkeson, and G. Cheng, “Learning tasks from
observation and practice,” Robotics and Autonomous Systems, vol. 47,
no. 2-3, pp. 163–169, 2004.

[9] B. Bishop and M. Spong, “Vision-based control of an air hockey
playing robot,” IEEE Control Systems Magazine, vol. 19, no. 3, pp.
23–32, 1999.

[10] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems,” Lecture notes in computer science, pp. 209–229, 1993.

[11] M. Franzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 209–236, 2007.

[12] “United States Air hockey Association web site,” Last visited [9-2009].
[13] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: yet another robot

platform,” International Journal on Advanced Robotics Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[14] D. Smith and K. Simpson, Functional safety: a straightforward
guide to applying IEC 61508 and related standards. Butterworth-
Heinemann, 2004.

[15] E. Cervera, N. Garcia-Aracil, E. Martinez, L. Nomdedeu, and A. del
Pobil, “Safety for a robot arm moving amidst humans by using
panoramic vision,” in IEEE International Conference on Robotics and
Automation, 2008. ICRA 2008, 2008, pp. 2183–2188.

[16] D. Gordon, “Asimovian adaptive agents,” Journal of Artificial Intelli-
gence Research, vol. 13, pp. 95–153, 2000.

[17] T. Perkins and A. Barto, “Lyapunov design for safe reinforcement
learning,” The Journal of Machine Learning Research, vol. 3, pp. 803–
832, 2003.

4814

