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Abstract— We consider a 3-link planar walker with two legs
and an upper body. An actuator is introduced between the
legs, and the torso is kept upright by torsional springs. The
model is a 3-DOF impulsive mechanical system, and the aim
is to induce stable limit-cycle walking in level ground. To solve
the problem, the ideas of the virtual holonomic constraints
approach are explored, used and extended. The contribution is
a novel systematic motion planning procedure for solving the
problem of gait synthesis, which is challenging for non-feedback
linearizable mechanical systems with two or more passive
degrees of freedom. For a preplanned gait we compute an
impulsive linear system that approximates dynamics transversal
to the periodic solution. This linear system is used for the
design of a stabilizing feedback controller. Results of numerical
simulations are presented to illustrate the performance of the
closed loop system.

Index Terms— Biped robots, virtual holonomic constraints,

motion planning, orbital stabilization of periodic trajectories.

I. INTRODUCTION

In recent years, dynamically stable walking machines have

begun having an impact in the research of legged locomotion.

The main motivation is the introduction of more anthropo-

morphic and energy efficient legged robots, by considering

the design of underactuated mechanical systems [3]. This

solution would in principle allow to exploit the robot natural

dynamics. However, achieving a dynamically stable gait on

an underactuated legged robot has proved to be difficult in

both motion planning and control system design

Some studies have been dedicated to the class of planar

biped robots with one passive degree of freedom. These

low-dimensional walkers constitute the basic models for the

development of gait synthesis methods and control system

design strategies. Recently, some approaches were introduced

to solve both problems [7], [17], [13], [1], [8], [6]. In

particular, the virtual holonomic constraints (VHC) approach

has become of interest due to its successful analytical and

practical applications in robots of this class [17], [10]. The

main idea of this approach is to define a number of geomet-

rical relations (synchronization) among the robot’s degrees

of freedom, which are imposed into the robot dynamics by
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(grant 2008-5243) and Karriärbidrag from Umeå University.

feedback control. For gait synthesis, different methods were

explored to define the constraint functions, e.g. from human

recorded data [11], to heuristic polynomials that specify the

walking posture constraints along a walking step [17], [2].

From the motion planning perspective, different questions

are still opened regarding the mentioned approach. It is

unclear, for example, how to plan a gait in the case where

the robot is subject to two or more passive links. The

main difficulty is to specify geometric relations that result

in a convenient representation of a gait, and also satisfy

the dynamic constraints of the robot model, and different

performance criteria. In opposite, the controller design is

more tractable, since it can be done by following the generic

procedure presented in [5], [14].

The main contribution of this article is providing a non-

trivial extension of motion planning by the VHC approach,

considering a modified benchmark example of the compass

biped with upper torso [18], i.e. three degrees of freedom

and only one actuator. For this example of underactuation

two, we develop a systematic method for searching virtual

constraint functions. The resulting gait is used for the de-

sign of an orbitally stabilizing controller, exemplifying the

framework of [5].

The remainder of this paper is organized as follows.

In Section II, we describe the model of the walker. The

motion planning procedure for finding forced hybrid cycles

is formulated in Section III. In Section IV, we present the

design of a feedback controller to achieve orbital stability of

the hybrid periodic gait. Discussion of the results supported

by numerical simulations and final concluding remarks are

provided in Sections V and VI.

II. MODEL DESCRIPTION

We consider the three link planar model depicted in

Fig. 1, consisting of a torso, a hip and two symmetric legs.

The torque is applied only between the support and swing

legs. The torso is kept upright by torsional springs between

the legs and the torso. The hybrid dynamics of the biped

robot, describing the continuous phase and discrete events,

is presented below.
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Fig. 1. Schematics of the biped in the sagittal plane and level ground. A
walking motion is described by the time-evolution of the support leg angle
q1 , the swing leg angle q2 , and the torso angle q3 . The length of the legs
is denoted by r and the torso’s by l . The masses of the legs, denoted by
m , are lumped at r~2 . The hip mass is denoted by Mh and the torso’s by
Mt , and it is lumped at a distance l from the hip. The torsional springs
between the legs and the torso have stiffness coefficient K .

A. Swing phase dynamic model

In a walking gait, the stance leg acts as a pivot joint.

Under the assumption of non-sliding ground foot contact, the

Euler-Lagrange equations yield the dynamic model for the

continuous-in-time part of the motion in the single support

phase as

M(q)q̈ +C(q, q̇)q̇ +G(q) = Bu, (1)

where M(q) is a positive definite matrix of inertias, G(q)
is the vector of gravity, and C(q, q̇) is the matrix of Coriolis

and centrifugal forces. Entries of these matrices are given in

appendix A, while the physical parameters of the model are

listed in table I1.

Table I: Physical parameters

Parameters Legs Hip Torso

Mass [kg] m = 5 Mh = 15 Mt = 15

CoM [m] r~2 = 0.5 r = 1 l = 1

Length [m] r = 1

Gravity g = 9.81 m~s2

Spring constant K, to be found

B. Impact Model

Following the collision model of [9], and the derivations

in [12], [2], [7], the instantaneous jump in the values of the

states due to impact can be computed as follows2

Γ+ ? q+ =∆ ë q−, q− > Γ−, q̇+ = F(q−) ë q̇−, (2)

where ∆ is a relabeling operator and F (q) is a matrix of

algebraic terms. The notation (ë)− , (ë)+ is for the state of

the system just prior and immediately after the impact event.

1These values are taken from a similar model analyzed in [7], where the
authors consider the case of underactuation degree one.

2The authors of [7] give a description of this computation, and also
provide MATLAB code in their website.

The walking plane or switching surfaces of the impact event

are determined by

Γ+ = Γ− = �q > R
2 � cos(q1 + ψ) − cos(q2 + ψ) = 0� , (3)

where ψ denotes the angle of the slope.

C. Problem Formulation

Given the hybrid model (1)-(2), the search for a symmetric

gait consists of finding

• a spring constant K A 0 ,

• a vector of initial conditions

[q�
1
(0), q�

2
(0), q�

3
(0), q̇�

1
(0), q̇�

2
(0), q̇�

3
(0)] > Γ+, (4)

• a C1 -smooth scalar control input function u = u�(t) ,

t > [0, Te] , for some Te A 0 ,

such that the forced solution q�(t) of the hybrid model (1)-

(2), with u = u�(t) and initial conditions (4) at time moment

t = Te , reaches the switching surface Γ− , and after the jump

returns to the starting point (4).

The second task is to design a feedback controller such

that this newly planned forced hybrid periodic solution

becomes orbitally asymptotically stable for the closed-loop

system.

III. PLANNING A HYBRID CYCLE FOR THE HYBRID

MODEL (1)-(2)

The difficulty in finding such a solution q�(t) is that

neither a function u�(t) , nor a period Te of a gait, nor

the initial conditions (4) for a cycle are known a priori3.

Below we propose a procedure for a convenient represen-

tation of forced hybrid periodic motions of the walker (1)-

(2) with two passive degrees of freedom. In turn, these argu-

ments lay out the background for solving this infinite dimen-

sional problem and reducing it to the search of appropriate

initial conditions for an auxiliary set of differential equations,

i.e. making the original problem finite dimensional. By doing

so, we do not loose the generality and do not simplify the

task, but organize the simultaneous search for such hybrid

motion of (1)-(2) and the corresponding control input u�(t) .

A. Re-parametrization for a continuous-in-time part of a

hybrid cycle of (1)-(2) with one jump

The continuous time evolution of the generalized coordi-

nates of a hybrid forced periodic solution can be represented

as

q1 = q�1(t), q2 = q�2(t), q3 = q�3(t), t > [0, Te], (5)

where the interval [0, Te] represents the duration of one step

up to the time of the impact event. If the evolution of the

stance leg angle q1(ë) along the cycle is monotonic, then

one can rewrite the relations (5) as

q1 = θ�(t), q2 = φ2(θ�(t)), q3 = φ3(θ�(t)), θ� > [0,Θe],
(6)

3For the case of purely passive walking this control input is trivial, i.e.
u�(t) � 0∀ t > (0, Te) . However initial conditions and period of a cycle,
if exists, are unknown and so finding the gait is still a challenging task [4].

1716



and introduce two functions φ2 and φ3 that describe syn-

chronizations of coordinates along the cycle. These functions

in (6)—the so-called virtual holonomic constraints—have

been previously used for motion planning and controller

design for systems of underactuation degree one, see e.g.

[15], [17], [13], [4].

Following [16] (and it can be readily checked for this

case), the Euler-Lagrange equations (1) restricted by the

invariance of the geometrical relations

q1 = θ, q2 = φ2(θ), q3 = φ3(θ), (7)

can be written as the set of three differential equations:

α1(θ)θ̈ + β1(θ)θ̇2 + γ1(θ) = 0,

α2(θ)θ̈ + β2(θ)θ̇2 + γ2(θ) = 0, (8)

α3(θ)θ̈ + β3(θ)θ̇2 + γ3(θ) = −u
To obtain (8), we substitute the following relations into (1):

q̇1 = θ̇, q̈1 = θ̈,
q̇i = φ′i(θ)θ̇, q̈i = φ′′i (θ)θ̇2 + φ′i(θ)θ̈, i = �2,3�. (9)

The coefficients αj(ë) , βj(ë) , and γj(ë) are written with

the following abuse of notation

αj(θ) = αj �θ, φ2(θ), φ3(θ), φ′2(θ), φ′3(θ)� ,
βj(θ) = βj �θ, φ2(θ), φ3(θ), φ′2(θ), φ′3(θ), φ′′2(θ), φ′′3(θ)� ,
γj(θ) = γj �θ, φ2(θ), φ3(θ)� , j = �1,2,3�.
For the gait (6) the variable θ = θ�(t) must be a simultaneous

solution for each of the differential equations in (8). It is

worth to note that the first two differential equations (8)

are integrable; their general integral of motion is given in

Appendix B.

B. Equations for Constraint Functions φi(ë)
The equations (8), which by construction are valid along

the solution (5), can be used for defining constraint functions

φi . Indeed, selecting different pairs of equations (8) allows

to rewrite the evolutions of θ̈ = θ̈�(t) and θ̇2 = θ̇2�(t) along

the gait as follows:

� θ̈
θ̇2
	
1

= − � α1 β1

α3 β3

	
−1

� γ1

γ3 + u 	 ,
� θ̈
θ̇2
	
2

= − � α2 β2

α3 β3

	
−1

� γ2

γ3 + u 	 , (10)

� θ̈
θ̇2
	
3

= − � α1 β1

α2 β2

	
−1

� γ1

γ2

	 .
Furthermore, along the solution (5), the functions θ̈� and θ̇2�
are related as [16]

θ̈�(t) = 1

2

d

dθ
�θ̇2�(t)� . (11)

Denoting the right hand sides of (10) as

� θ̈
θ̇2
	

j

= �D1j

D2j
	 , j = �1,2,3� (12)

we can rewrite (11) for each j = �1,2,3� in the form

2D1j =
d

dθ
D2j = χj + ∂D2j

∂φ′′
2

φ′′′
2
+ ∂D2j

∂φ′′
3

φ′′′
3
+ ∂D2j

∂u
u′ (13)

with

χj =
∂D2j

∂θ
+ ∂D2j

∂φ2

φ′
2
+ ∂D2j

∂φ3

φ′
3
+ ∂D2j

∂φ′
2

φ′′
2
+ ∂D2j

∂φ′
3

φ′′
3
.

Here we assumed that the control input u = u�(t) along the

gait can be rewritten as a C1 -smooth function of θ�(t) .

Resolving the equations (13) with respect to the highest

derivatives of the constraint functions φ′′′
2

, φ′′′
3

and the

input torque u′ , we obtain the following set of differential

equations:

<@@@@@@@@@>

φ′′′
2

φ′′′
3

u′

=AAAAAAAAA?
=

<@@@@@@@@@@@@>

∂D21

∂φ′′
2

∂D21

∂φ′′
3

∂D21

∂u

∂D22

∂φ′′
2

∂D22

∂φ′′
3

∂D22

∂u

∂D23

∂φ′′
2

∂D23

∂φ′′
3

∂D23

∂u

=AAAAAAAAAAAA?

−1 <@@@@@@@@@>

2D11 − χ1

2D12 − χ2

2D13 − χ3

=AAAAAAAAA?
,

(14)

with some initial conditions

ξ = �φ+
2
, φ+

3
, φ

′+
2
, φ

′+
3
, φ

′′+
2
, φ

′′+
3
, u+�T > R

7, (15)

where (ë)+ denotes the values at θ�(0) . Solutions of these

differential equations define the walking gait of the robot.

Besides, it is worth to observe that the infinite dimensional

difficult task of computing

• an unknown in advance time interval (a gait period),

and

• an unknown external generalized force—a control sig-

nal u = u�(t)—that shapes a gait

is converted into a simpler finite dimensional problem:

finding initial conditions (15) for the differential equations

(14). The last task is similar to those that may appear in

searching for a gait in passive walkers [4], [12].

C. Procedure for Searching a Symmetric Gait of the Walker

(1)-(2)

The iterative search of a symmetric gait for the walker

(1)-(2) is explicitly based on the differential equations (14),

which requires an appropriate initialization (15), the step

interval [θ+, θ−] and the spring coefficient K . We can define

the initialization vector for the search as

X� = �K, θ+, φ+3 , θ̇+, φ′+2 , φ′+3 , u+�T > R
7. (16)

since the reminder of the initial conditions, i.e. φ
′′+
2

and φ
′′+
3

,

can be computed by solving (8) with respect to θ̈ , φ
′′

2
, and

φ
′′

3
and substituting the values from (16). In addition, (36)

can be used to verify the solutions obtained.

As an example, we present one result for level ground

walking, i.e. ψ = 0 . The initial conditions for the found gait,

written in the form (15) for the dynamical system (14), are

ξ = [0.3375, 0.5816, −0.0883, 0.1620,

−4.4508, 1.7286, 2.7132�T , (17)

1717



and the found spring stiffness is K = 20.3429 . The evolution

of θ is within the step interval [−0.3375,0.3375] . The

constraint functions φ2(θ) , φ3(θ) and the control signal

u = u�(t) (expressed as a function of θ� ) that generate the

gait are shown in Fig. 2. The corresponding vector of initial
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Fig. 2. Solutions of (14) as functions of θ with initial conditions (17).
Top Left: Support leg. Top right: Swing Leg. Bottom left: Torso. Bottom
right: Nominal input torque.

conditions of the gait written for the dynamics of (1) are

q1�(0) � −0.3375, q2�(0) � 0.3375, q3�(0) � 0.5816

q̇1�(0) � 1.3470, q̇2�(0) � −0.1189, q̇3�(0) � 0.2182
(18)

However, it can be verified that the found forced hybrid

periodic motion of (1)-(2) is not stable. A possible design of

a state feedback control law to make it orbitally exponentially

stable is explained next.

IV. DESIGN OF AN ORBITAL STABILIZING FEEDBACK

CONTROL LAW

For the synthesis of a controller, and analysis of the closed-

loop system dynamics, the technique recently proposed in

[13], [14] is applied. Such arguments rely on concepts of

a moving Poincaré section and a linearization of hybrid

transverse dynamics, which are of importance for analysis

of dynamics in a vicinity of the gait, and can be efficiently

constructed for forced motions of mechanical systems and

further used for controller design.

Below we briefly present the general steps in constructing

a transverse linearization, and then show how it is used for

controller design.

A. Computing a Hybrid Transverse Linearization for a Gait

of (1)-(2)

A hybrid transverse linearization of the 3-DOF walker

dynamics (1)-(2) along its gait of period Te is a hybrid linear

control system defined as:

d
dτ
x̂�(τ) = A(τ)x̂�(τ) +B(τ)û�(τ) τ > [0, Te], (19)

x̂�(T +e ) �= L x̂�(T −e ) τ > Te, (20)

where the linear system approximates dynamics transverse to

the trajectory (5) and L > R
5�5 corresponds to a linearization

of the impact map. This system is initialized by a vector

x̂�(0) = x̂0

� , which is re-defined after each impact event as

x̂0

� �= x̂�(T −e ) .

Having known the nominal model for dynamics of the

walker (1)-(2), its gait (5), and the associated constraint

functions (6), the matrices A(τ) , B(τ) , and L of this

linear system can be found analytically as described in [13].

As soon as a stabilizing feedback control law for (19),

(20) is found, it can be transfered into a nonlinear orbitally

exponentially stabilizing state feedback control law for the

nonlinear system (1)-(2), see [13], [14]. To proceed with the

necessary computations, we need to define a few specific

coordinate and feedback transformations.

First, introduce the following new generalized coordinates

for (1) in a vicinity of the motion:

θ, y1 = q2 − φ2(θ), y2 = q3 − φ3(θ), (21)

with the derivatives

θ̇ , ẏi = q̇i+1 − φ′i+1(θ)θ̇, (22)

θ̈ , ÿi = q̈i+1 − �φ′′i+1(θ)θ̇2 + φ′i+1(θ)θ̈� , (23)

where i = �1,2� . Observe that as long as a control action

makes the desired cycle invariant and the initial conditions

are on the cycle, we have

θ = θ�(t), θ̇ = θ̇�(t), yi = 0, ẏi = 0. (24)

Dynamics (1) in the new coordinates can be found by intro-

ducing the expression from (21), (22) and (23) into dynamics

of the robot (1). This substitution yields the dynamics of y

in the following form:

ÿi = Ri(yi, θ, ẏi, θ̇) +Ni(yi, θ)u, i = �1,2�, (25)

The θ -dynamics is also found by the same substitution and

it can be written as the following differential equation

αi(θ)θ̈ + βi(θ)θ2 + γi(θ) = gi(θ, θ̇, y, ẏ, ÿ), (26)

where gi(ë) is a smooth function that is equal to zero on the

desired orbit.

It can be verified that N1(0, θ�(t)) x 0 for all t > [0, Te] ;
hence, we define the following feedback transformation:

u =
1

N1

u� − R1

N1

, (27)

with u� � 0 along the target motion. Then, the nominal input

u�(t) on the orbit is4

u�(t) = U(θ�(t), θ̇�(t),0,0) = −R1(0, θ�(t),0, θ̇�(t))
N1(0, θ�(t),0, θ̇�(t)) ,

(28)

and this brings the y1 -dynamics into the form: ÿ1 = u� .

Substituting (27) into (25) yields the y-dynamics as:

� ÿ1
ÿ2
	 = � 0

R2 − N2

N1

R1

	
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R(θ,θ̇,y,ẏ)

+ � 1
N2

N1

	
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
N(θ,y)

u�, (29)

4Note that it can also be expressed as a function of θ� only.

1718



The dynamical system (26), (29) possesses a natural choice

of (2n − 1) - transverse coordinates

x� = [I(i)(θ, θ̇, θ�(0), θ̇�(0)), y1, y2, ẏ1, ẏ2]T , (30)

where I(i) is a conserved quantity that measures the Eu-

clidean distance to the desired cycle projected onto the [θ, θ̇]
plane, see Appendix B. Consider the nonlinear dynamical

system (29), (26) and its solution defined for t > [0, Te]
y1 � 0, y2 � 0, θ � θ�(t), u�� � 0, (31)

the linearization of dynamics of the transverse coordinates

(30) along (31) can be represented by the time-varying

system (19).

Now, we proceed with designing a stabilizing feedback

controller for the system (19)–(20).

B. Feedback controller design

Suppose there exist a C1 -smooth vector of gains K(ë) ,

such that the feedback control law

û�(τ) =K(τ) x̂�(τ), (32)

stabilizes the trivial equilibrium of the hybrid linear system

(19)–(20). Then, an orbitally stabilizing controller for the

nonlinear system (29), (26) can be constructed as follows

[13], [14]:

u�(t) =K(s)x�(t), s = s(θ(t)), (33)

where x�(t) is given by (30), and s(ë) is an index parame-

terizing the particular leaf of the moving Poincaré section, to

which the vector x� belongs at time moments t , see [13].

Finally, the gain K(τ) can be chosen via a few steps

of the numerical minimization procedure for the maximum

absolute value of the eigenvalues of the state transition matrix

Φ(Te+) computed as follows

d
dτ

Φ(τ) = �A(τ) +B(τ)K(τ)�Φ(τ), 0 < τ < Te

Φ(0+) = I, Φ(T +e ) = LΦ(T −e ).
(34)

In general, K(τ) can be computed via solving the associated

differential Riccati equation on the period of the gait with

additional constraints at the beginning and the end of the

interval. i.e. Ṙ+ATR+RA+G = RBΓ−1BTR , ∀τ > [0, T ] ,
with G(τ) A 0 being a n-by-n positive definite matrix, and

Γ A 0 , such that K(τ) = −Γ−1B(τ)TR(τ) . The boundary

conditions should satisfy R(0) <Wc and R(T ) = LTWcL ,

with Wc A 0 . Despite the challenge of this numerical

problem, we have followed this general method and have

computed K(τ) for the found gait, and its components are

shown in Fig. 3.

V. SIMULATION RESULTS

To verify that the transverse-linearization-based controller

(33) is orbitally stabilizing the gait of the biped with a

reasonable region of attraction, simulations with various

initial conditions were performed. The results for one of such

simulations of the nonlinear closed-loop system are shown

on Fig. 4, depicting the exponential convergence of three
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for one period of the walking gait.

transverse coordinates to the equilibrium, i.e. I, y1, y2 . The

other transverse coordinates – ẏ1(ë) and ẏ2(ë) – converge to

zero with a similar rate. The limit cycle is depicted in Fig. 5.
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VI. CONCLUSIONS

We have considered the model of a planar 3-DOF biped

robot with two passive links. The main result is a new

systematic procedure for gait synthesis based on the concept

of virtual holonomic constraints. The procedure allows to

represent forced hybrid periodic motions of the walker in

a more convenient form. In fact, we have transformed the

original infinite dimensional task of searching a gait into

a finite dimensional one, consisting on finding appropriate

initial conditions for an auxiliary set of differential equations.

For a found periodic gait, a hybrid transverse linearization

has been computed. This auxiliary system, which represents

dynamic transverse to the desired motion, has been used for

the design of an exponentially orbitally stabilizing controller.

Simulation results have been shown to visualize the per-

formance in closed loop.
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Fig. 5. Phase portrait for each degree of freedom. Top left: support leg, θ̇

vs. θ . Top right: swing leg, q̇2(θ) vs. q2(θ) . Bottom left: torso, q̇3(θ)
vs. q3(θ) . Bottom right: torque, u(t) vs. θ .
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APPENDIX

A. Matrices for the dynamic model (1):

M =

<@@@@@>
�Mh + 5

4
m +Mt� r2 − 1

2
mr2c12 Mtrlc13

− 1

2
mr2c12

1

4
mr2 0

Mtrlc13 0 Mtl
2

=AAAAA?
,

C =

<@@@@@>
0 − 1

2
mr2s12q̇2 Mtrls13q̇3

1

2
mr2s12q̇1 0 0

−Mtrls13q̇1 0 0

=AAAAA?
,

G =

<@@@@@>
(q1 − q3)K − �Mh + 3

2
m +Mt� rs1g(q2 − q3)K + 1

2
mgr2s2(2q3 − q2 − q1)K −Mtgls3

=AAAAA?
,

B =

<@@@@@>
1

−1
0

=AAAAA?
,

where
s1j = sin(q1 − qj),
c1j = cos(q1 − qj),

with j = �2,3� .

B. Integral of motion

The first two second order differential equations of (8) are

integrable.

Lemma 1: [16] Along the solutions of the differential

equation

αi(θ)θ̈ + βi(θ)θ̇2 + γi(θ) = 0, i = �1,2� (35)

initiated at θ(0) = θ0 and θ̇(0) = θ̇0 , the integral function

I(i)(θ, θ̇, θ0, θ̇0) = θ̇2−Ψ(θ0, θ) �θ̇20 − S θ

θ0

Ψ(s, θ0)2γi(s)
αi(s) ds	 ,

(36)

with

Ψ(θ1, θ2) = exp�−2S θ2

θ1

βi(τ)
αi(τ)dτ¡ (37)

preserves its zero value.
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