
A Skill-Based Motion Planning Framework for Humanoids

Marcelo Kallmann, Yazhou Huang and Robert Backman

Abstract— This paper presents a multi-skill motion planner
which is able to sequentially synchronize parameterized motion
skills in order to achieve humanoid motions exhibiting complex
whole-body coordination. The proposed approach integrates
sampling-based motion planning in continuous parametric
spaces with discrete search over skill choices, selecting the
search strategy according to the functional type of each skill
being coordinated. As a result, the planner is able to sequence
arbitrary motion skills (such as reaching, balance adjustment,
stepping, etc) in order to achieve complex motions needed for
solving humanoid reaching tasks in realistic environments. The
proposed framework is applied to the HOAP-3 humanoid robot
and several results are presented.

I. INTRODUCTION

Despite several successes in the motion planning domain,

achieving whole-body coordinated humanoid motions for

solving manipulation tasks remains a challenge. The problem

is in particular difficult because most of humanoid tasks

require coordination of different types of motion skills, which

have to be addressed in an integrated fashion. This paper

proposes a generic framework for addressing this problem.

The proposed framework is applied to the particular prob-

lem of coordinating stepping and reaching for the HOAP-

3 humanoid platform. The robot has a relatively small

reachable space for the arms and therefore coordination with

stepping is critical even for reaching simple targets. Figure 1

illustrates a situation where the humanoid is not able to reach

the target with a simple arm motion because the target is

outside reachable range, and therefore stepping and body

adjustments are required in order to solve the task.

Fig. 1. Example of a simple reaching task which is only solvable after the
robot performs a few stepping motions and body adjustments.

It is important to notice that the problem of skill coordination

appears frequently in common tasks such as: relocating ob-

jects, opening doors, pushing buttons, etc. Most importantly

this class of problems addresses a broad range of real-life

The authors are with the School of Engineering of the Uni-
versity of California, Merced, N. Lake Road, Merced CA 95343.
{mkallmann,yhuang,rbackman}@ucmerced.edu

tasks and represents a large proportion of people’s daily

activities. Deciding the sequence of skills to employ for such

tasks is not trivial due the large number of possible coordi-

nations and the different capabilities and constraints of each

available skill. However solving the coordination of motion

skills is critical for several reasons: 1) for achieving optimal

movements exploring the full potential of the humanoid

structure, 2) for enabling complex mobile manipulations

in cluttered environments, and 3) for achieving human-like

motions which are better suited for humanoid assistants

interacting and collaborating with people.

Instead of relying on a series of pre-programmed controllers

with reactive behaviors, the proposed framework is designed

to explore and evaluate many possible motion strategies for

each given problem. The planner is capable of exploring

both the parameterization space of individual motion skills

and the possible coordination points for switching between

skills. The planner is based on a generic representation of

motion skills which is able to encapsulate different algorith-

mic strategies for motion control in a common integrated

framework. As a result the planner is able to evaluate

several solutions for the sequencing of stepping and reaching

motions in order to reach for a given target. The presented

framework is inspired by cognitive theories advocating that

humans select learned motor programs (here called motion

skills) each time a task has to be solved [26].

II. RELATED WORK

Traditional motion planning approaches [20, 21, 23] are

based on the systematic search in configuration spaces.

Among the several techniques, sampling-based methods such

as the Probabilistic Roadmaps (PRMs) [14] and Rapidly-

Exploring Random Trees (RRTs) [19, 22] have become

extremely popular for planning in continuous configuration

spaces. These and other methods have been applied to

humanoid structures, however, as whole-body motion plan-

ning for humanoids is inherently a multi-modal problem,

most of the approaches have been developed for particular

modes or skills, for instance: footstep planning for precise

locomotion around obstacles [3, 4, 18], reaching motions for

manipulation [1, 5, 6, 11, 12, 17], etc.

When planning is limited to a discrete selection among pos-

sible actions or predefined motion patterns, discrete planners

based on A* and its several variations [15, 16, 24] are well

suited for finding the best sequence of actions to be taken.

No single planning method is best in all cases. For instance,

while discrete planning is well suited for sequencing stepping

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2507

motions, arm reaching is best addressed by searching the

continuous configuration space of the arm.

Multi-modal planning has recently emerged for humanoids

and has been in particular developed for achieving locomo-

tion and climbing in difficult terrains [2, 8, 9, 13] and also

to sequentially coordinate walking and pushing [10]. With a

focus on locomotion, extensions to the basic PRM method

for handling multi-modal problems have also been proposed

[7]. However, less attention has been given for the specific

purpose of coordinating locomotion with reaching motions,

which is the main topic addressed in our present work.

The multi-skill framework proposed in this paper addresses

the problem of coordinating stepping and reaching motions

as a multi-modal planning problem. In doing so the presented

algorithm proposes a novel hybrid mechanism for solving

multi-modal problems, integrating two types of search: 1)

sampling of motion variations for concatenation of mobility

skills and 2) bidirectional systematic exploration of manipu-

lation skills for precisely reaching given targets. The overall

approach is therefore able to explore the concatenation

of locomotion skills until the target manipulation can be

rapidly solved with a bidirectional search. The presented

results demonstrate the suitability of the approach for solving

several complex humanoid reaching tasks.

III. MOTION SKILLS

The presented framework considers that each available mo-

tion skill is able to produce specialized motions efficiently

according to its own parameterization scheme.

Let C be the d-dimensional configuration space of the

humanoid being controlled and Cfree the subspace repre-

senting the valid configurations. Configurations in Cfree are

collision-free, in balance and respect articulation constraints.

One of the purposes of using motion skills is their specialized

ability to control the humanoid in a particular mode. The

discrete set M is used to represent humanoid modes by

specifying the state of each end-effector. Four letters are

used: f for free (or unconstrained), m for when the end-

effector is being used for object manipulation, s for when it

is being used to support the humanoid, and o for when the

end-effector can be optionally used as a support. Optional

supports are in particular detected when a foot is correctly

placed on the floor but without supporting any weight,

meaning that the foot can be used or not as support by a

subsequent skill.

Assuming that the humanoid structure in consideration has

four end-effectors (two feet and two hands), a mode is then

represented as a four-letter string, such as: “ssff” for a

standing rest pose, or “ssmf” for a standing pose with one

hand grasping an object, etc.

X is the state space of the planning problem, which is defined

as the Cartesian product X = C × R
+, where R

+ is used

to represent time. Therefore x = (q, t) ∈ X denotes a

configuration q at time t. The function m(x) ∈M is used to

compute the mode of the humanoid at state x in the current

environment.

S represents the skill base of the humanoid and is the finite

set of all available motion skills. S(x) ⊂ S represents the

subset of skills which can be instantiated at x, i.e., which are

applicable to take control over the humanoid in state x and

mode m(x). Each skill is essentially a controller specialized

to operate in a particular set of modes and is responsible

for checking the feasibility of instantiation, for example: a

foot placement skill will only be instantiated if there is an

unconstrained foot to be controlled, etc.

A skill σx ∈ S(x) is a function of the type σx : Pσ ×
[0, 1] → X , where Pσ is its parametric control space, and

[0, 1] is the normalized time parameterization of the produced

motion, such that ∀p ∈ Pσ , σx(p, 0) = x, and σx(p, 1) is

the final pose produced by the skill. Therefore, once a skill

is instantiated it can then be evaluated in [0, 1] in order to

obtain the states traversed by the produced motion. Note that

if there is a p ∈ Pσ such that σx(p, 1) = y, then σx can be

used to create a motion between states x and y, and the

notation σx(y, t) may be used instead of σx(p, t).

Skills are also classified according to their main purpose.

Currently two types of skills are considered: mobility skills

and manipulation skills. The type informs how each skill

is supposed to be controlled by the multi-skill planner.

While manipulation skills are responsible for controlling end-

effectors in order to reach targets which are in reachable

range, mobility skills are responsible for updating the posi-

tion of the humanoid until the target becomes reachable.

Given an initial state xi and a final set of goal states Xg ,

the goal of the multi-skill planner is to produce a sequence

of n skills, together with their application parameters such

that, after the sequential application of all the skills, the

humanoid will have moved from xi to a state xg ∈ Xg and

only traversing states with configurations in Cfree. Note that

in this way the search space considered by the multi-skill

planner is restricted to the parametric spaces of the available

skills.

In this paper, the specific case of coordinating body motions

for object grasping is used to demonstrate the framework.

The goal is to precisely reach given targets with the hand

and therefore the final set of goal states Xg represents all

body postures with the hand precisely reaching the given

target placement. The motion skills developed for solving

these reaching tasks are described below.

A. Reaching Skill

The reaching skill σreach is a manipulation skill parameter-

ized by the target location to be reached by a hand or foot

and was developed with analytical IK formulations for the

arms and legs of the HOAP-3 robot.

2508

Given a parameter p, σreach produces a motion from the

current posture to a final pose with the hand or foot exactly

reaching the target position encoded in p. The legs of the

HOAP-3 platform have 6 degrees of freedom (DOFs) and

therefore the analytical solution can precisely compute joint

angles for placing the feet in given 6 DOFs targets (position

and orientation). The arms only have 5 DOFs and so the

IK formulation only ensures that the target position is met,

leaving the end-effector with the best orientation possible.

Whenever the skill is instantiated in a given body posture,

the reaching skill will first determine with the IK a final

arm posture reaching the given location p. The motion

between the initial posture and the final posture is produced

by interpolating the current hand position to the target in

workspace. Each intermediate pose is therefore also com-

puted by IK. In this way a reaching motion with the hand

describing a rectilinear trajectory in workspace is obtained

(see Figure 2). The time parameterization is mapped to a

spline curve in order to obtain a bell-shaped velocity profile.

These characteristics encode observations of how realistic

arm motions are performed by humans [25].

The use of an analytical IK formulation is important due its

fast computation, as the motion planner will sample several

variations of each motion skill. The fact that the analytical

formulation only affects the arm (or leg) does not pose a

problem since other skills (as the balance skill introduced

next) will affect the other parts of the body. Note also that

the IK formulation observes joint range limits and the planner

will test for motion feasibility each time a skill is used.

Fig. 2. The motion obtained by the reaching skill produces a straight-line
trajectory of the end-effector in workspace.

B. Stepping Skill

The stepping skill σstep is a mobility skill that moves each

leg individually and is implemented using the same IK

formulation as in σreach. The main difference is that σstep is

parameterized by a target position and orientation on the floor

to be reached by the foot. Contacts between the feet and the

environment are constantly monitored for determining the

support mode and balance validity. In this paper only the

ground is considered to be a valid surface for support.

Given the current mode m(x), σstep can only be instantiated

for a leg which is unconstrained, and two versions exist:

σlstep controls the left leg and σrstep controls the right leg.

Also note that in order to produce valid motions between the

current foot position to a new placement, σstep generates an

arc-shaped trajectory in the vertical plane such that the foot

will not slide on the ground between the two placements.

Figure 3 illustrates the generated motion.

Fig. 3. Lateral view of a leg motion produced by the stepping skill.

C. Balance Skill

The balance skill σbal is another mobility skill but which

has as main purpose to vary the support mode in order

to allow different stepping skills to be instantiated. It is

parameterized by a displacement (in position and orientation)

to be achieved by the root joint of the robot. The desired

motion is achieved by moving the joint angles of the legs

towards new configurations which will lead to the desired

root joint displacement. The analytical IK formulation is

again used to determine the joint angle variations of the legs

while exactly maintaining the feet placements.

The balance skill provides the key capability of transitioning

between different leg support modes. The support mode is

constantly monitored during the application of motion skills

as it will influence the set of applicable motion skills, i.e. the

skills which can be instantiated at a given humanoid config-

uration. The balance skill will in particular be responsible

to free one leg from supporting the humanoid, allowing it

to take a step towards a new placement. Figure 4 illustrates

two different motions generated by the balance skill.

D. Sampling Skill Variations

Skills also determine bounds for their parameters in order

to allow meaningful sampling of motions produced by in-

stantiated skills. Figure 5 illustrates few variations obtained

when sampling the parametric spaces of the skills considered

in this work. The multi-skill planner will use this sampling

functionality in order to search for concatenations between

skills, and in the case of manipulation skills, to also search

for intermediate motions around obstacles when collisions

with obstacles are detected.

IV. MULTI-SKILL PLANNER

The multi-skill planner (MSP) maintains a search tree T of

visited states and a priority queue Q with the nodes in the

current expansion front. When MSP starts, T and Q are

initialized with the current state of the humanoid. Queue

2509

Fig. 4. Example of motions obtained with the balance skill. Top sequence:
from standing pose (mode “ssff”) to single foot support (mode “osff”).
Bottom sequence: transitioning the support mode from “soff” to “osff”.
The vertical line shows the projection of the center of mass to the floor.
The intersection with the support polygon (also shown) reveals the support
mode of the humanoid.

Fig. 5. Examples of the final postures obtained when sampling motions
produced by σreach (left), σlstep (center), and σbal (right).

Q is prioritized by a cost associated with each enqueued

state and the initial state receives cost 0. Then, given a goal

position pg and orientation qg , the skill expansion procedure

is repetitively called until the humanoid reaches a state in Xg ,

i.e. a state where one of its hand is exactly reaching target

(pg, qg). If a given maximum elapsed time passes without

success, the expansion stops and MSP reports failure.

The skill expansion routine is detailed in Algorithm 1. It

basically selects skills and performs the search expansion

strategy according to each skill type. At each call, the

procedure removes the lowest cost (higher priority) state x
from Q and selects all skills which are applicable (line 2),

i.e. which can be instantiated at state x. For each applicable

skill, the corresponding expansion method is then selected

and applied. Note that skills will only be applicable if the

controlled end-effector is free or optionally free (letters f
or o in the mode encoding). Therefore, for each new state

x being processed, the center of mass of the humanoid and

its support polygon are computed in order to determine the

mode description m(x) ∈M . In the scope of this paper, only

static balance tests based on the location of the projected

center of mass onto the support polygon are computed.

Manipulation skills are only considered by the planner if the

goal location is reachable by the skill from the current state.

This test is performed in lines 5 and 6. When a manipulation

skill is selected for expansion, a candidate goal state xg

reaching the goal has been already determined (line 5) and

a bidirectional RRT-like exploration starts between x and

xg in order to determine if a valid motion joining the two

states can be found, in which case the algorithm successfully

terminates. If the two states can be connected by a single

application of the manipulation skill, the bidirectional search

will trivially find such solution.

Algorithm 1 Skill expansion of the multi-skill planner.

Expand Skill (Q, T , pg , qg)

1. x← Q.remove lowest cost ()

2. S(x)← applicable skills (S)

3. for (each σx in S(x)) do
4. if (σx type is manipulation) then
5. xg ← σx((pg, qg), 1)
6. if (xg �= null) then
7. for (k1 times) do
8. Expand Bidirectional Search (x, xg , σx)

9. if (connection found) then
10. return SOLUTION FOUND

11. end if
12. end for
13. attach the expanded bidirectional trees to x
14. n← total number of nodes in the trees

15. Q.insert (x, fcost(x, pg, n))

16. end if
17. else if (σx respects its mobility sequence) then
18. for (k2 times) do
19. p← sample (Pσ)

20. if (motion generated by σx(p) is valid) then
21. x′ ← σx(p, 1)
22. T .append child (x, x′, σx, p)

23. Q.insert (x′,fcost(x′, pg, 0))

24. end if
25. end for
26. end if
27. end for
28. return NOT YET FOUND

Skill σreach is the only considered manipulation skill and

two versions of it are available in S: one for the right hand

and another one for the left hand. In this way the planner

will naturally select the most suitable hand to reach the goal.

The bidirectional search for the manipulation skill is then

expanded up to k1 times (lines 7-12).

Algorithm 2 details the process: each bidirectional search is

initialized with one tree rooted at the current state x and the

second tree rooted at the goal state xg . At each iteration, the

algorithm tries to grow the trees in the direction of random

2510

Fig. 6. The left-most image shows the edges expanded for finding the first solution for reaching the target among obstacles on top of the table. The
second image illustrates the expansion of several solutions. The five right-most images, from left to right, show poses of the first solution found (left view).

landmarks xrand by a motion of length δ. The iterations will

eventually produce a collision-free path by concatenation of

the landmarks, or in case k1 iterations pass without success,

the process stops.

Parameter k1 controls the tradeoff between insisting in trying

to reach the target from the current body placement, or

suspending the search to let new manipulation instantiations

to try reach the target from different body placements. When

the k1 iterations pass, the bidirectional search is suspended

and attached to the current state x, which is re-inserted in

Q with an updated cost encoding the time invested so far in

that expansion. Note that if x is removed again from Q in

a later expansion, the attached bidirectional search will be

again executed for a maximum of k1 additional expansions.

In this way different instantiations of σreach compete with

each other in order to find the overall minimum-cost solution

for the task (see Figure 8).

Algorithm 2 Bidirectional expansion of manipulation skills

Expand Bidirectional Search (x, xg , σx)

1. if no bidirectional trees attached to x, attach empty ones

2. ta ← attached tree rooted at x
3. tb ← attached tree rooted at xg

4. xrand ← σx(sample(Pσ) , 1)

5. xa ← closest configuration to xrand in ta
6. xb ← closest configuration to xrand in tb
7. if (motion generated by σxa(xb) is valid) then
8. return CONNECTION FOUND

9. else
10. try to expand (ta, xa, xrand, δ)

11. try to expand (tb, xb, xrand, δ)

12. return NOT YET FOUND

13. end if

Mobility skills are selected for expansion in line 17 of

Algorithm 1. In order to ensure that the planner concatenates

a meaningful sequence of mobility skills, each mobility skill

provides a mobility sequence to be respected. Skill σlstep

requires the grand-parent and the parent nodes of the current

state x to have been generated by skills σrstep and σbal

respectively. This avoids the planner to spend time with non-

useful stepping sequences such as: σlstep, σbal and σlstep.

Similarly, skill σrstep constraints the two previously applied

skills to be σlstep and σbal. Finally skill σbal simply does not

allow repetition, i. e. it restricts that the previous skill cannot

be as well a σbal skill. Constraining sequences with per-skill

specifications has greatly improved the overall performance

of the planner.

xi

xg Xg

x’g Xg

Fig. 8. The concatenation of mobility skills (continuous blue edges) will
lead to several states which can initiate expansions of manipulation skills.
Here the dashed red edges and the dotted green edges represent bidirectional
expansions trying to reach the goal from different states. Each bidirectional
expansion grows for up to k1 times.

Selected mobility skills are expanded at most k2 times (line

18 of Algorithm 1). Each expansion selects a target state by

sampling a control parameter p from the parametric control

space of the skill. Each time p is sampled, the generated

motion between σx(p, 0) and σx(p, 1) is tested for validity

(line 20). If the motion is valid, a new valid state x′ =
σx(p, 1) has been reached and x′ is then added to T and Q.

The motion validity tests (Algorithm 1 line 20 and Algo-

rithm 2 line 7) will evaluate the motion in several intermedi-

ate states by recursive bisection until a given precision is

reached. At each evaluated state, joint limits compliance,

collision detection and balance tests are performed. The

continuous validity problem is therefore solved discretely and

the motion is determined valid only if all intermediate states

are valid.

Costs Every time a new state is inserted in Q (lines 15 and

23) of Algorithm 1, its cost is computed. The cost dictates

which states are to be expanded first and its computation can

take different metrics into consideration. The cost function

used in this work encodes the following terms:

fcost(x, pg, n) = dc(xi, x) + wgdg(x, pg) + wen.

Term dc(xi, x) encodes the usual cost-to-come and is com-

puted as the sum of the costs in all the edges in the T branch

from the root node xi to the current node x. Edge costs

encode the displacement of the motion represented by each

edge. Term dg(x, pg) encodes the cost-to-go heuristic, and is

set as the distance between the goal point and the mid-point

between the shoulder joints of the humanoid at state x. This

cost is weighted by wg and makes states closer to the goal

to be expanded first.

2511

Fig. 7. The sequences show snapshots of two solutions for a reaching task requiring several steps among obstacles on the ground. The top sequence
shows a solution with the right arm reaching the goal. The bottom sequence shows a solution with the left arm. These solutions had similar costs.

The final term is weighted by we and penalizes states

which have already been expanded (by n expansions) in a

bidirectional manipulation search. This term does not affect

states reached by mobility skills which will always have

n = 0 (Algorithm 1 line 23).

V. RESULTS AND DISCUSSION

Figure 6 illustrates a typical solution obtained by MSP for

reaching a target among a few obstacles in a table. In the

example shown by Figure 7 the two versions of σreach are

included in S (one for each hand) and the planner was

able to find solutions using both hands. Figure 9 shows

another solution obtained in a more constrained environment.

In all cases, the obtained solutions represent coordinated,

statically-stable and collision-free motions.

The first two images of Figure 6 show colored edges

representing the expanded nodes of the search. The blue

edges show the root position variation generated with the

application of skill σbal. Red edges represent variations of

the right foot position generated by instantiations of σrstep.

Green edges represent variations of the left foot position

generated by σlstep. The edges in magenta represent the

hand trajectories controlled by σreach. These examples show

that most of the solutions are composed of several body

adjustments until arm reaching is feasible, in the same

fashion depicted by the diagram of Figure 8.

The obtained results show that MSP is able to find suitable

body placements for supporting manipulation tasks and that

several solutions can be explored when the algorithm is

not stopped at the first (minimum-cost) solution. Additional

metrics can also be included in the cost function for taking

into account: low energy consumption, security distance from

obstacles, etc.

One main strength of the proposed approach is the ability

to integrate the discrete expansion of mobility skills with

the systematic and bidirectional expansion of manipulation

skills, allowing both types of search to be concurrently

expanded in order to explore and evaluate different concate-

nations of skills. The amount of expansions performed at

each step can be controlled by parameters k1 and k2, which

will directly control the branching factor of the search. Note

that no mechanisms have been included to detect and prevent

regions in X to be excessively visited. Such mechanisms

could be integrated with the use of hash functions, and would

be necessary in dense expansions.

Another important observation is that MSP is able to generate

crude locomotion patterns. Locomotion patterns could be

further optimized and parameterized, and even re-inserted as

new higher-level skills to become available to the planner.

The possibility of integrating an automated process of learn-

ing of higher-level skills could lead to a powerful knowledge-

base learning approach for motion planning. Alternatively,

hand-crafted skills for producing a walking gait could be

easily integrated in the framework and would quickly bring

the humanoid close to the object to be manipulated.

Note also that the computed solutions are described by a

precise sequence of skills and their instantiation parameters.

This allows motion optimization algorithms to be developed

to operate on the parametric control space of each skill,

instead of operating on the full state space of the humanoid.

In our present work, optimization and smoothing techniques

were not applied to the presented results. However several

well-known techniques from the motion planning field can

be readily integrated for further improving the computed

motions.

Depending on the complexity of the problem being solved,

the computational time required for finding a solution may

vary from few seconds to several minutes. The solutions

illustrated in Figures 1, 6, 7, and 9 took respectively: 1

second, 49 seconds, 7 minutes, and 3 hours on an Intel Q9450

CPU. In most of these examples parameters k1 = 60 and

k2 = 10 were used. Note that the planner is not designed

to plan long stepping sequences and long solutions imply

excessive search of stepping combinations leading to many

minutes of computation. Instead, the planner is designed to

solve short concatenations of stepping and body adjustments

for the purpose of supporting manipulation tasks. Further-

more, our prototype implementation can still be significantly

improved with the purpose of reducing computation time,

in particular in respect to precomputing skill samples and

2512

Fig. 9. In this example the target is behind the initial pose of the robot and there are few obstacles on the ground constraining the free space. This
environment forces the robot to perform several rotational steps until it is able to reach the goal with the right hand.

employing specific continuous collision detection procedures

based on simplified geometries.

The produced reaching motions have also been successfully

transferred to the HOAP-3 platform for the realtime control

of reaching tasks. Figure 10 shows snapshots of one of our

experiments. In this example, markers tracked by motion

capture cameras are used to record the position of the target

to be reached. The planner then typically takes a few seconds

for computing a solution (of relatively short duration), which

can then be transferred and executed by the robot. Our

realtime controller converts the sequence of joint angles of

the solution motion into encoder values which are sent to the

robot at about 30 Hz.

The presented experiments show that the produced plans

have enough precision for being successfully executed by

the humanoid robot. Several extensions are being carried

out for improving the robustness of the humanoid control.

For instance we are currently integrating reactive controllers

monitoring the robot’s sensors with the specific purpose of

improving balance maintenance and target tracking while

executing computed motions.

The video accompanying this paper presents animations of

some of the obtained results and also demonstrations of

planned motions being applied to the HOAP-3 humanoid.

Fig. 10. Applying a solution motion to the robot.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes a multi-skill motion planning frame-

work able to plan the sequencing of generic motion skills.

The presented results demonstrate that the proposed frame-

work is able to solve multi-modal problems involving mo-

bility and manipulation.

This approach has the potential to lead to optimal whole-

body humanoid performances which are closer to human-like

strategies. Furthermore, the proposed skill-based approach

has the potential to enable a human-like automated way

of learning complex skills from basic ones. The presented

framework has therefore the potential to be useful to a

wide range of humanoid applications related to achieving

intelligent autonomous assistants.

As future work, we are exploring several topics for improve-

ment of the framework: 1) the use of higher-level skills, 2)

skill parameterization properties for improving the planning,

and 3) mechanisms for learning basic coordinations in order

to solve repeated situations fast.

Acknowledgments This work was partially supported by

NSF Award BCS-0821766.

REFERENCES

[1] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour.

An integrated approach to inverse kinematics and path

planning for redundant manipulators. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 1874–1879. IEEE, May 2006.

[2] T. Bretl. Motion planning of multi-limbed robots sub-

ject to equilibrium constraints: The free-climbing robot

problem. International Journal of Robotics Research,

25(4):317–342, 2006. ISSN 0278-3649.

[3] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K.

Hodgins, and T. Kanade. Footstep planning for the

honda asimo humanoid. In ICRA, April 2005.

[4] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami.

An adaptive action model for legged navigation plan-

ning. In Proceedings of the IEEE/RAS International
Conference on Humanoid Robotics, 2007.

[5] R. Diankov and J. Kuffner. randomized statistical

path planning. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages

1–6, May 19-23 2008.

[6] E. Drumwright and V. Ng-Thow-Hing. Toward inter-

active reaching in static environments for humanoid

2513

robots. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS),
Beijing, China, October 2006.

[7] K. Hauser and J. Latombe. Multi-modal motion plan-

ning in non-expansive spaces. In Proceedings of the
8th Workshop on Algorithmic Foundations of Robotics
(WAFR), December 7-9 2008.

[8] K. Hauser, T. Bretl, and J. Latombe. Non-gaited

humanoid locomotion planning. In Humanoids, pages

2641– 2648, December 2005.

[9] K. Hauser, T. Bretl, K. Harada, and J. Latombe. Using

motion primitives in probabilistic sample-based plan-

ning for humanoid robots. In Workshop on Algorithmic
Foundations of Robotics (WAFR), pages 2641– 2648,

July 2006.

[10] K. K. Hauser, V. Ng-Thowhing, Gonzalez-Baos,

H. Mukai, and S. Kuriyama. Multi-modal motion

planning for a humanoid robot manipulation task. In

International Symposium on Robotics Research, 2007.

[11] S. Kagami, J. Kuffner, K. Nishiwaki, M. Inaba, and

H. Inoue. Humanoid arm motion planning using stereo

vision and rrt search. Journal of Robotics and Mecha-
tronics, April 2003.

[12] M. Kallmann. Scalable solutions for interactive virtual

humans that can manipulate objects. In Proceedings
of the Artificial Intelligence and Interactive Digital
Entertainment (AIIDE’05), pages 69–74, Marina del

Rey, CA, June 1-3 2005.

[13] M. Kallmann, R. Bargmann, and M. J. Matarić. Plan-

ning the sequencing of movement primitives. In Pro-
ceedings of the International Conference on Simulation
of Adaptive Behavior (SAB), pages 193–200, Santa

Monica, CA, July 2004.

[14] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Over-

mars. Probabilistic roadmaps for fast path planning in

high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12:566–580, 1996.

[15] S. Koenig. A comparison of fast search methods for

real-time situated agents. In Proceedings of the Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 864–871, 2004.

[16] S. Koenig and M. Likhachev. Real-time adaptive A*.

In AAMAS, pages 281–288, 2006.

[17] Y. Koga, K. Kondo, J. J. Kuffner, and J.-C. Latombe.

Planning motions with intentions. In Proceedings of
SIGGRAPH, pages 395–408. ACM Press, 1994.

[18] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and

H. Inoue. Motion planning for humanoid robots. In

Proceedings of the 11th International Symposium of
Robotics Research (ISRR), November 2003.

[19] J. J. Kuffner and S. M. LaValle. RRT-Connect:

An efficient approach to single-query path planning.

In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), San Francisco, CA,

April 2000.

[20] J.-C. Latombe. Robot Motion Planning. Kluwer

Academic Publisher, December 1990.

[21] J.-P. P. Laumond. Robot Motion Planning and Control.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,

1998. ISBN 3540762191.

[22] S. LaValle. Rapidly-exploring random trees: A new

tool for path planning. Technical Report 98-11, Iowa

State University, Computer Science Department, Octo-

ber 1998.

[23] S. M. LaValle. Planning Algorithms. Cambridge

University Press (available on-line), 2006. URL msl.

cs.uiuc.edu/planning/.

[24] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*:

Anytime A* with provable bounds on sub-optimality. In

S. Thrun, L. Saul, and B. Schölkopf, editors, Advances
in Neural Information Processing Systems 16. MIT

Press, Cambridge, MA, 2004.

[25] S. Schaal. Arm and hand movement control. In

M. Arbib, editor, The handbook of brain theory and
neural networks, pages 110–113. The MIT Press, sec-

ond edition, 2002.

[26] R. Schmidt and T. Lee. Motor Control and Learning:
A Behavioral Emphasis. 2005. ISBN 073604258X.

2514

