
Abstract—This paper investigates the estimation of 3D head 
poses and its identity authentication with a partial ellipsoid 
model. To cope with large out-of-plane rotations and translation 
in-depth, we extend conventional head tracking with a single 
camera to a stereo-based framework. To achieve more robust 
motion estimation even under time-varying lighting conditions, 
we incorporate illumination correction into the aforementioned 
framework. We approximate the face image variations due to 
illumination changes as a linear combination of illumination 
bases. Also, by computing the illumination bases online from the 
registered face images, after estimating the 3D head poses, 
user-specific illumination bases can be obtained, and therefore 
illumination-robust tracking without a prior learning process 
can be possible. Furthermore, our unified stereo-based tracking 
is approximated as a linear least-squares problem; a 
closed-form solution is then provided. After recovering the 
full-motions of the head, we can register face images with pose 
variations into stabilized-view images, which are suitable for 
pose-robust face recognition. To verify the feasibility and 
applicability of our approach, we performed extensive 
experiments with three sets of challenging image sequences. 

I. INTRODUCTION

N accurate estimation of 3D head position and 
orientation is important in many applications. 3D head 

pose information can be used in human-computer interfaces 
(HCI), active telecommunication, virtual reality, and visual 
surveillance. In addition, a face image aligned in terms of the 
recovered head motion would facilitate face recognition and 
facial expression analysis. Thus, many approaches to recover 
3D head motion have been proposed [1]-[4]. One is to use 
distinct image features. This approach works well when the 
features may be reliably tracked over the image sequence. 
When this is not possible, using a 3D head model to track the 
entire head region is more reliable. There have been several 
model-based techniques to track a human head in 3D space. 

Cascia et al. [2] developed a fast 3D head tracker that 
models a head as a texture-mapped cylinder. The head pose of 
the input image is treated as a linear combination of a set of 24 
warping templates (4 templates  6 motion parameters) and 
a set of 10 illumination templates that are obtained through a 
prior learning process. While simple and effective, use of a 
small number of static templates appears unable to cope with 
fast and large out-of-plane rotations and translation in-depth. 
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Xiao et al. [3] presented a method to recover the 
full-motion (3 rotations and 3 translations) of the head using a 
cylindrical model. They used the iteratively re-weighted least 
squares technique to deal with non-rigid motion and 
occlusion. For tracking, the templates are dynamically 
updated to diminish the effects of self-occlusion and gradual 
lighting changes. However, since their method is not 
considering illumination correction explicitly, their tracker is 
not likely to work well under time-varying illumination 
conditions. 

The above two methods model a human head as a 3D 
cylinder. However, since the human head is not a 3D cylinder, 
modeling inaccuracies between the actual and approximated 
head modes can be significant. This inherent modeling error 
may degrade the accuracy in motion estimation. 

Blanz and Vetter [4] proposed an algorithm to fit 2D face 
images with 3D Morphable Models to estimate the head pose. 
Although the head pose can be estimated accurately, their 
method suffers from the cost of 3D data acquisition and 
processing. The average processing time for each frame is 
around 30 seconds. This is too slow for real-time 
applications. 

All the methods described above are based on head pose 
estimation using only a single camera. Generally, 3D head 
tracking with a single camera is not robust to fast and large 
our-of-plane rotations and translation in-depth. 

With consideration of all of these issues, the coverage of 
this paper is as follows. As in [5], we model the shape of a 
human head as a partial 3D ellipsoid-a reasonable 
approximation to the actual head. Also, to complement the 
weakness of a single camera system, we extend conventional 
head tracking with a single camera to a stereo-based 
framework. Through the use of the extra information 
obtained from stereo images, coping with large out-of-plane 
rotations and translation in-depth is now tractable (or at least 
easier than with a single camera). Furthermore, we 
incorporate illumination correction into this stereo-based 
framework to allow for more robust motion estimation even 
under time-varying illumination conditions. We approximate 
the face image variations due to illumination changes as a 
linear combination of illumination bases. By computing the 
illumination bases online from the registered face images, 
after estimating the 3D head poses, user-specific illumination 
bases can be obtained, and therefore illumination-robust 
tracking without a prior learning process can be possible.  

To verify the applicability of the proposed approach, we 
apply our head tracker to face recognition. Generally, the 
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performance of face recognition deteriorate with changes in 
pose, illumination, and other disturbing factors, among which 
pose variation is the most difficult one to deal with [6]. 
Therefore, face registration is the key of robust face 
recognition. After recovering the full-motions of the head by 
the proposed head tracker, face images with pose variations 
can be registered into stabilized-view images, which are 
suitable for pose-robust face recognition. 

The remainder of the paper is organized as follows. Section 
II presents a unified 3D head pose estimation method 
including online illumination correction. Section III explains 
how to generate stabilized and mirrored texture maps, which 
are suitable for frontal face recognition, by using the unified 
stereo-based tracking framework proposed in Section II. In 
Section IV, we provide extensive experimental results with 
three sets of challenging image sequences. Section V presents 
conclusions and discussions.  

II. UNIFIED STEREO-BASED 3D HEAD POSE ESTIMATION

Generally, image-based tracking is based on the brightness 
change constraint equation (BCCE). The BCCE for image 
velocity estimation arises from the assumption that image 
intensity does not change from one frame to the next. 
However, this assumption does not hold true under real-world 
conditions. Tracking based on the minimization of the sum of 
squared differences between the input and reference images is 
inherently susceptible to changes in illumination. Hence, we 
need to consider the effect of ambient illumination changes 
for stable tracking even under such circumstances. 

, , .t m t i tI I I                                   (1) 
We assume that image intensity changes arise from both 

motion and illumination variations as shown in (1). tI  is 
image gradient with respect to time t , and both ,m tI  and ,i tI
are the instantaneous image intensity changes due to motion 
and illumination variations respectively.  

A. Motion 
First, we assume static ambient illumination and thus that 

instantaneous image intensity changes arise from variations 
in motion only. If then, the following BCCE holds true. 
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where /xv dx dt  and /yv dy dt  are the x- and y- 
components of the 2D image velocity v  of object motion 
after projection onto the image plane. In addition, we replace 

/I t  with /mI t  to denote that the intensity changes are 
due to motion variations.  
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where xI , yI , and ,m tI  are the spatial and temporal 
derivatives of the image intensity computed at location 

Tx yp  respectively, where ,m tI  arise from the motion 
changes. Under the perspective projection camera model with 
focal length f , 2D image velocities can be related to 3D 
object velocities by the following equations. 
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where T
X Y ZV V VV  is the 3D velocity of a point 

TX Y ZP , corresponding to the image pixel p , in the 
camera coordinate frame.  

Any rigid body motion can be expressed in terms of the 
instantaneous rotations and translation of the object. For 
small inter-frame rotations, the rotation matrix can be linearly 
approximated as ( R I r ) by the angle-axis formula. 

I  is a 3 3  identity matrix, and []  denotes a 
skew-symmetric matrix. Also, assuming that time interval t
is unity, temporal derivatives of rotation and translation 
vectors can be approximated by finite differences r , t
respectively.
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where oP  is a 3D sampled model point in the object 
coordinate frame corresponding to the point P  in the camera 
reference frame. R  is the rotation matrix computed in the 
previous frame between the camera and object coordinate 
frames. r  and t  are the inter-frame rotation and 
translation vectors expressed in the object coordinate frame, 
respectively. Substituting (5) and (6) into (4), we obtain a 
simple linear equation as shown below.  
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Because (7) is linear with respect to motion parameters, we 
can combine it across n  pixels by stacking the equations in 
matrix form. n  is the number of model points that can be 
seen from the camera under the current estimated head pose. 
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Let the left-hand side of (8) be M  and the right-hand side 

be ,m tI . Then, (8) can be represented in compact matrix form 
as shown below.  

, ,    .T
m tM I t r                     (9) 

B. Illumination
As mentioned in the beginning of Section II, BCCE does 
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not hold true under time-varying illumination conditions. To 
handle face image variations due to changes in lighting 
conditions, many methods approximate the intensity changes 
due to illumination variations as a linear combination of 
illumination bases that are obtained from the training samples 
of different people taken under a wide variety of lighting 
conditions [7]. However, these kinds of subspace-based 
methods construct an illumination subspace from training 
images for different people, which includes not only 
illumination conditions but also face identities. This subspace 
is not capable of representing the lighting conditions uniquely, 
because the intrinsic (facial geometry and albedo) and the 
extrinsic (illumination conditions) information is mixed. 
Otherwise, extremely large training sets would be needed. 
Furthermore, these methods need a prior training process and 
thus suffer from the cost of training data acquisition and 
processing.  

Hence, in this paper, by computing these illumination 
bases online from the registered face images, after estimating 
the head poses, user-specific illumination bases can be 
obtained, and therefore illumination-robust tracking without 
a prior learning process can be possible as shown in Fig. 1. 
Therefore, we can approximate the intensity changes due to 
illumination variations as a linear combination of 
illumination bases obtained through online illumination 
modeling based on principal component analysis (PCA) as 
shown below. 

, ,i tL I                                    (10) 

where ,i tI  is the instantaneous image intensity changes due to 
illumination variations. The columns of the matrix 

1, , kL l l  are the illumination bases obtained by PCA, 

and  is the illumination coefficient vector. k  is the number 
of principal components. 

C. Combined into Unified Stereo-Based Framework 
First, BCCE for each left and right camera of a stereo-rig 

can be derived in the same way as (8) and (9) in the single 
camera system. 
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where ln  and rn  are the number of 3D sampled model points 
that can be seen from the left and right cameras under the 
current estimated head pose respectively. 

Fig. 1. Online illumination modeling based on PCA. 
After combining the above equations into the stereo-based 

framework, we can obtain a simple linear equation with 
respect to inter-frame motion parameter  as shown below. 
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In the same way as in Section II.B, we can also model the 
instantaneous intensity changes due to illumination variations 
as a linear combination of illumination bases for each left and 
right face image as shown below. 
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where ,1 ,,...,l l l kL l l  and ,1 ,,...,r r r kL l l  are two sets 

of illumination bases for the left and right face images 
respectively, which are obtained by removing the rows of L
corresponding to invisible model points from each left and 
right camera under the current estimated head pose. L  is 
computed through online illumination modeling based on 
PCA from both the left and right registered face images that 
had been stored until the previous frame. 2 1k F  is the 
number of illumination bases, and F  is the number of frames. 

l  and r  are the illumination coefficient vectors for the left 
and right face images respectively. , ,i t lI  and , ,i t rI  are the 
instantaneous image intensity changes due to illumination 
variations for the left and right face images respectively. 

Because we assumed (1) in the beginning of Section II, and 
because (13) and (14) are linear with respect to motion 
parameter  and illumination coefficient vectors l  and r

respectively, we can combine them into a unified 
stereo-based framework as shown below. 
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Let the left-hand side of (15) be A  and the right-hand side 
be b . Then, the weighted least-squares solution of (15) can 
be easily obtained as shown below. 
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where W  is a diagonal matrix whose components are pixel 
weights assigned according to their projection densities as in 
[3]. Finally, motion parameters between the object and 

4058



camera coordinate frames are updated by (17) and iterated 
until the estimates of the parameters converge. Initial motion 
parameters are assumed to be known. 

,   ,
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where rR  and rT  are related to lR  and lT  through the 

stereo geometry as T
r s lR R R  and ( )T

r s l sT R T T .

III. FACE RECOGNITION

As mentioned in Section I, if we can align the face images 
with pose variations into stabilized views, the recognition 
task would be much easier, and higher recognition rate can be 
achieved. Fig. 2 presents how to obtain a pose-compensated 
face image when given 3D pose information of the head 
under perspective projection. The general idea of stabilization 
is as follows. First, we can estimate the current pose of the 
ellipsoid corresponding to a human head using the proposed 
unified motion estimation technique. If so, then we can find 
out the relationship between all surface points of the ellipsoid 
and their projections onto the input image plane under the 
perspective projection model. Second, by projecting all 
surface points onto the o oX Y  plane, we can generate a 
stabilized view image. Following this procedure, we can find 
out the complete relationship between an arbitrary input face 
image with pose variation and its corresponding stabilized 
texture map. 

oX

oY

oZ

xr

yr

zr

oP

, ,K R T

oX

oY

Fig. 2. Geometrical mapping from an input face image to its stabilized texture 
map under the estimated head pose and perspective projection. K  represents 
the camera intrinsic parameter and is assumed to be known. R  and T  are 
the estimated rotation matrix and the translation vector of the current head 
pose, respectively. 

However, there might be missing pixels in the stabilized 
texture map, which correspond to invisible regions from the 
camera due to self-occlusion and camera’s viewing direction. 
Therefore, such invisible regions are considered as missing 
pixels, and their intensities are set to be zeros in the stabilized 
texture map. This may deteriorate the recognition 
performance. Therefore, we can also generate a mirrored 
texture map through a simple mirror operation on the 
stabilized texture map around its vertical axis as shown in Fig. 
3. By doing so, we can make up for the missing pixels and 
improve the recognition performance. 

Finally, simple and efficient frontal face recognition can be 
easily carried out in the stabilized (or mirrored) texture map 
space, which is nearly linear-separable, instead of the original 
input image space that is highly nonlinear and complex. 

Fig. 3. Mirrored texture map generation. An input image and its stabilized and 
mirrored texture maps are shown from left to right, respectively. 

IV. EXPERIMENTAL RESULTS

To verify the feasibility and applicability of our proposed 
3D head-tracking framework, we performed extensive 
experiments with three sets of challenging image sequences. 
All the three experiment sets of stereo image sequences were 
collected with a stereo vision module named "Bumblebee". 
All the image sequences were digitized at 30 frames per 
second at a resolution of 320 240 . Ground truth data for the 
first and second sets was simultaneously collected via a 3D 
magnetic sensor named "Flock of Birds". The magnetic 
sensor has a positional accuracy of 2.54mm  and rotational 
accuracy of 0.5 . The first set consists of 20 image sequences 
(two sequences for each of 10 subjects) taken under 
near-uniform illumination conditions. The second set consists 
of 20 image sequences (two sequences for each of 10 
subjects) taken under time-varying illumination. All the 
sequences in the first and second sets are 300 frames long and 
are including free and large head motions. The third set was 
collected for face recognition test and consists of 17 image 
sequences (16 males + 1 female) taken under near-uniform 
lighting conditions. All the sequences in this set are 200 
frames long and are also including free and large head 
motions. 

Note that all the measured ground truth and the estimates of 
the visual tracking are expressed with respect to the initial 
object (head) coordinate frame for the comparison of 
estimation errors. 

A. Experiment 1: Near-Uniform Illumination 
The first experiment was designed to compare the 

performance of the proposed tracker with that of a 
conventional head tracking with a single camera and also 
intended to evaluate the effects of online illumination 
correction. 20 stereo image sequences taken under 
near-uniform illumination were used in this experiment. Left 
images of a stereo camera were used for the single 
camera-based tracker. In this experiment, for modeling the 
illumination changes in face images, we used 10 illumination 
bases. They were obtained through online illumination 
modeling based on PCA from both the left and right 
registered face images that had been stored until the previous 
frame. 

Fig. 4 presents typical tracking results on one of the test 
sequences from the first experiment set. The estimations for 
3D motion on this sequence are displayed in Fig. 5. This 
sequence involves large pitch, yaw, and roll motions up to 
40 , 70 , and 35  respectively. “Single” denotes 
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conventional single camera-based tracking defined by (9). 
“Stereo” represents stereo-based tracking described by (13). 
This is a simple extension of “Single” to a stereo framework, 
but not including illumination correction. “Unified stereo” 
means our proposed unified stereo-based tracking including 
online illumination correction. 

Fig. 4. Typical tracking results on one of the sequences taken under 
near-uniform illumination. Frames 116, 138, 210, and 251 are shown (left to 
right). Row 1: single; Row 2: stereo; Row 3: unified stereo. 

Fig. 5. Comparison between the ground truth and the estimated head poses on 
the sequence corresponding to Fig. 4. Green line: single; Blue line: stereo; 
Red line: unified stereo; Black line: the ground truth. 

TABLE I
MOTION ESTIMATION ERRORS ON 20 IMAGE SEQUENCES TAKEN UNDER 

NEAR-UNIFORM ILLUMINATION CONDITIONS

 Single Stereo Ours 
Trans. X [mm] 11.27 8.24 5.83 
Trans. Y [mm] 9.65 6.75 4.30 
Trans. Z [mm] 66.61 38.62 12.19 
Pitch [degree] 5.46 3.92 2.50 
Yaw [degree] 6.08 4.95 3.62 
Roll [degree] 2.54 2.27 1.80 

Average errors of 3D motion estimation on 20 image 
sequences are shown in Table I. As can be seen in these 
results, single camera-based tracking is not robust to large 
out-of-plane rotations (especially for pitch and yaw) and 
translation in-depth. A simple extension to stereo-based 
tracking improves the performance of the tracker to some 
degree, but there still exist significant tracking errors. On the 
other hand, even though there are no changes in ambient 
illumination, motion estimation is greatly improved through 
the proposed unified stereo-based tracking including online 
illumination correction compared to stereo-based tracking. 
This is because self-shading is likely to occur in face images 
even under uniform illumination, depending on the current 
head pose. Hence, our proposed unified stereo-based tracking 
can provide robust motion estimation by reducing the 

negative effects of self-shading, thanks to the illumination 
correction term. 

B. Experiment 2: Time-Varying Illumination 
The second experiment was set up to evaluate the 

performance of the proposed tracker under time-varying 
illumination conditions. In this experiment, we also used 10 
illumination bases obtained through online illumination 
modeling as in Experiment 1. 

Fig. 6. Typical tracking results on one of the sequences taken under 
time-varying illumination. Frames 149, 181, 245, and 300 are shown (left to 
right). Row 1: single; Row 2: stereo; Row 3: unified stereo. 

Fig. 7. Comparison between the ground truth and the estimated head poses on 
the sequence corresponding to Fig. 6. Green line: single; Blue line: stereo; 
Red line: unified stereo; Black line: the ground truth. 

TABLE II
MOTION ESTIMATION ERRORS ON 20 IMAGE SEQUENCES TAKEN UNDER 

TIME-VARYING ILLUMINATION CONDITIONS

 Single Stereo Ours 
Trans. X [mm] 18.85 15.44 5.73 
Trans. Y [mm] 16.02 10.86 4.75 
Trans. Z [mm] 112.37 52.68 14.91 
Pitch [degree] 9.91 7.07 3.32 
Yaw [degree] 18.89 14.60 3.61 
Roll [degree] 6.86 6.42 2.05 

Fig. 6 presents typical tracking results on one of the test 
sequences from the second experiment set. The estimations 
for 3D head motion on this sequence are displayed in Fig. 7. 
This sequence also involves large pitch, yaw, and roll 
motions up to 30 , 50 , and 38  respectively. Whenever 
there are changes in illumination, significant tracking errors 
occur in “Single” and “Stereo” tracking. On the other hand, 
the proposed unified stereo-based tracker shows stable 
tracking even under time-varying illumination. 

Average errors of 3D motion estimation on 20 image 
sequences are shown in Table II. There exist much larger 
tracking errors in “Single” and “Stereo” tracking than those in 
Experiment 1, because they cannot cope with illumination 
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changes. On the other hand, our tracker shows slightly 
deteriorated but almost similar performance of motion 
estimation to that evaluated in Experiment 1 even under 
time-varying illumination, thanks to the illumination 
correction term. 

C. Experiment 3: Face Recognition 
The third experiment was intended to verify that our 

proposed head tracking method is helpful to improve the 
performance of face recognition. In this experiment, we 
constructed three test sets such as unregistered, stabilized, 
and mirrored sets. For the unregistered test set, we manually 
cropped 200 pairs of stereo face images from the input image 
sequence for each of 17 classes. For the stabilized set, we 
obtained 200 pairs of stereo face images registered into 
frontal views by the proposed unified stereo-based tracker for 
each class. For the mirrored set, we made a mirror operation 
on the stabilized test set. For face recognition on each test set, 
we used only a pair of stereo face images (frontal views) for 
the training and 200 pairs of stereo face images obtained by 
the aforementioned methods for the test from each class. For 
the comparison of performance, we used three linear 
subspace-based classification methods such as PCA, 
PCA+LDA (PCA followed by LDA), and DCV [8]-[10]. 

TABLE III
PERFORMANCE OF FACE RECOGNITION ON OUR LABORATORY TEST SETS

USING THREE LINEAR SUBSPACE-BASED CLASSIFICATION METHODS

 Unregistered Stabilized Mirrored 
PCA 62.50% 84.94% 92.32% 

PCA+LDA 69.35% 88.06% 96.12% 
DCV 66.24% 83.29% 91.15% 

Table III shows the recognition rates with three linear 
classification methods. As can be seen in the recognition rates, 
we can verify that face registration is helpful to improve the 
recognition performance, and also the recognition rate using 
the mirrored texture maps is much better. 

Fig. 8. Distributions of 3400 pairs of test samples from 17 classes, projected 
onto the two-dimensional subspace spanned by two optimal projection 
vectors obtained by DCV, for the unregistered and mirrored test sets. 

Fig. 8 shows the distributions of 3400 pairs of test samples 
from 17 classes projected onto the two-dimensional subspace 
spanned by two optimal projection vectors obtained by DCV 
for the unregistered and mirrored test sets respectively. As 
can be seen in this figure, the registered set with mirrored 
texture maps is well-clustered compared with the 
unregistered one. Therefore, when using the stabilization 
scheme based on our proposed 3D head pose estimation, 
linear classification can be easily applied, and also much 
higher recognition rate can be achieved than the unregistered 
case.

V. CONCLUSION

In this paper, we presented a long-term stable and robust 
technique for 3D head tracking even in the presence of 
time-varying illumination conditions. We extended 
conventional head tracking with a single camera to a 
stereo-based framework. This partially enables us to cope 
with large out-of-plane rotations and translation in-depth. In 
addition, we incorporated the online illumination correction 
term into this stereo-based framework for more robust motion 
estimation. We approximated the intensity changes in face 
images due to illumination variations as a linear combination 
of illumination bases. Also, by computing these illumination 
bases online from the registered face images, after estimating 
the head pose, user-specific illumination bases can be 
obtained, and finally illumination-robust tracking without a 
prior learning process that needs a great cost of training data 
acquisition and processing can be possible.

This paper has shown the feasibility and applicability of 
the proposed approach by carrying out three challenging 
experiments. First, it was verified that the proposed unified 
stereo-based tracking method is able to cope with fast and 
large out-of-plane rotations and translation in-depth. This is 
true even under time-varying illumination conditions. Second, 
it was proved that our proposed unified stereo-based head 
tracking is helpful to improve the performance of face 
recognition (over 91% recognition rate when using mirrored 
texture maps). 
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