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Abstract— In this paper, the regulation problem of rigid-link
electrically-driven (RLED) robotic manipulators with uncertain
kinematics and dynamics is addressed. A task-space Saturated-
Proportional Integral and Differential (SP-ID) based control
approach is proposed using backstepping technique to deal with
the uncertainties in actuator dynamics, robot dynamics and
kinematics. The proposed method is structurally simple and
easy for implementation. Sufficient conditions for choosing the
feedback gains, approximate Jacobian matrix and motor torque
constant matrix are provided to guarantee system stability.
Simulation results demonstrate the effectiveness of the proposed
approach.

I. INTRODUCTION

Many control schemes for robotic manipulators have been
developed in the literature during the past few decades. In
most of the control methods [1]–[9], the controllers are
designed at the torque input level and the actuator dynamics
is neglected. As shown by Good et.al. [10], the actuator
dynamics constitutes an important part of the whole robotic
system and may cause detrimental effects when neglected
in the design procedure, especially in cases of high speed
movement and highly varying loads.

Since then actuator dynamics has been explicitly included
in control schemes and some control schemes for rigid-link
robots have been developed to deal with this problem in
joint space [11]–[17]. However, for most robot applications
the desired position or path is specified in the task space.
To design controllers in the joint space for such control
tasks, inverse kinematics transformation should be carried
out to obtain the desired joint-space position or trajectory.
In order to avoid the problem of solving inverse kinematics,
Takegaki and Arimoto [18] proposed a task-space controller
for set-point regulation in Cartesian space using a transposed
Jacobian matrix. Other task-space control schemes have been
proposed later [19]–[21]. To apply these task-space control
schemes, exact knowledge of the Jacobian matrix from joint
space to task space is required. If uncertainties exist in the
robot kinematics, degraded performance or even instability
may occur as a result of employing the aforementioned task-
space controllers. To deal with the problem of uncertain
kinematics, several task-space feedback laws with uncertain
kinematics from the joint space to the task space have been
proposed [22]–[27]. However, in those works the actuator
dynamics was not considered.

Recently, a control method [28] was presented which
is able to deal with uncertain actuator transmission model
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but the the actuator dynamics has not been taken into
consideration. The first task-space control scheme taking into
account both uncertain kinematics and actuator dynamics
for manipulator regulation problem is proposed in [29]. It’s
shown that regulation error convergence is achieved even
with uncertainties in both kinematics and actuator dynamics
at the same time. But there still exist certain constraints for
this method: two Jacobian matrices (one adaptive and one
approximate) are employed which complicates the control
design and imposes a limit of estimation error for the
approximate Jacobian matrix to guarantee system stability;
the gravity is compensated using regressor which increases
the design cost since the regressor structure varies with
different configuration of manipulator used; one more adap-
tive regressor is used devoting to compensating the overall
manipulator loop uncertainty.

To remove the above mentioned constrains, in this work
we propose a new task-space SP-ID based method for
the manipulator regulation problem. The new controller
utilizes just one adaptive Jacobian matrix throughout the
whole system design without assuming any estimation error
limitations, and an integrator is use to compensate for
gravity force and deal with all rest uncertainties in the
manipulator loop without much concern of dynamics of the
particular manipulator used. Hence the proposed controller
is structurally simpler and more efficient for both design
and implementation. The closed-loop system is shown to
be asymptotic stable through Lyapunov analysis and simple
sufficient conditions are presented to guarantee the system
stability. Simulation results are provided to demonstrate the
effectiveness of the proposed regulation approach.

II. PROBLEM FORMULATION

In order to describe a task for the robot manipulator, the
desired path for the end effector is usually specified in the
task space. Let X ∈ R

m represents the position vector of
the manipulator in task space defined by [19], [22]:

X = h(q), (1)

where q ∈ R
n is the vector of generalized joint coordinates,

h(·) ∈ R
n → Rm (m ≤ n) is generally a nonlinear

transformation describing the relation between the joint space
and the task space. The velocity vector Ẋ is therefore related
to q̇ as follows:

Ẋ = J(q)q̇, (2)

where J(q) ∈ R
m×n is the Jacobian matrix of mapping from

the joint space to the task space.
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Property 1: The right hand side of equation (2) is linear in
a set of kinematic parameters θJ = (θJ1, . . . , θJl)T , such as
link lengths [29], so that it has

J(q)q̇ = YJ (q, q̇)θJ (3)

where YJ(q, q̇) ∈ R
m×l is called the kinematic regressor

matrix. Note that if the robot’s kinematics is uncertain, θJ

is uncertain.
The dynamics of the rigid-link electrically driven robot

manipulator include two coupled loops: the manipulator loop
and the actuator loop. The dynamic equation of the RLED
system with n degrees of freedom are described as follows
[17]

M(q)q̈ + (B + C(q, q̇))q̇ + g(q) = KNI, (4)

Lİ + RI + KE q̇ = u. (5)

where I ∈ R
n is the vector of armature currents and u ∈ R

n

denotes the vector of armature voltages. M(q) ∈ R
n×n

denotes a positive definite inertia matrix; B ∈ R
n×n denotes

a positive definite damping matrix; C(q, q̇)q̇ ∈ R
n is the

centrifugal and coriolis force and g(q) ∈ R
n denotes the

gravitational force vector. L ∈ R
n×n represents the actuator

inductance matrix; R ∈ R
n×n is the actuator resistance

matrix, KE ∈ R
n×n is the matrix characterizing the voltage

constant of the actuator and KN ∈ R
n×n is the motor

torque constant diagonal matrix which characterizes the
electromechanical conversion between current and torque.
L, R, KE and KN are positive definite constant diagonal
matrices.

Some important properties of the robot dynamics that
will be used in the control analysis are as following [30]:

Property 2: M(q) is symmetric and positive definite.
Furthermore, since each entry of M(q) is constant or a
trigonometric function of components of q, there are positive
constants ςm and ςM such that

ςmI ≤ M(q) ≤ ςMI, (6)

where I denotes the n × n identity matrix.
Property 3: The matrix C(q, q̇) and the time derivative Ṁ(q)
of the inertia matrix satisfy:

q̇T [
1
2
Ṁ(q) − C(q, q̇)]q̇ = 0 ∀ q, q̇ ∈ R

n (7)

In this study, it’s assumed that X , q, q̇ and I are mea-
surable; the exact values of the dynamics parameters in
M(q), C(q, q̇) and g(q) and the actuator dynamic coefficient
matrices L, R, KE and KN are not available; Jacobian
matrix J(q) is not known exactly due to uncertainties in
robot kinematics. The regulation task for this RLED robot
manipulator is hence to drive the manipulator endpoint to
the desired position defined in task space with the existence
of uncertainties in actuator dynamics, robot kinematics and
dynamics.

III. CONTROL SCHEME DEVELOPMENT BASED ON

BACKSTEPPING TECHNIQUE

In this section, we propose a task-space control scheme
for the regulation problem of RLED robots. Firstly, based
on the second-order manipulator subsystem dynamics (4), a
desired armature current signal Id is designed to ensure that
the task-space position errors converge with the presence
of uncertainties in kinematics and motor torque constant
matrix. Then based on the actuator subsystem dynamics (5),
a backstepping procedure is used to design a voltage control
input u to guarantee that the actual armature current I tracks
the desired current signal Id in spite of the uncertain actuator
coefficient matrices. Two Lyapunov functions are proposed
for stability analysis of the control scheme proposed.

A. Desired Armature Current Design

Using the desired armature current Id, the manipulator
subsystem dynamics (4) can be rewritten as

M(q)q̈ + (B + C(q, q̇))q̇ + g(q) = KNId + KN Ĩ (8)

where Ĩ = I − Id represents a current perturbation to the
rigid-link robot dynamics. The revised subsystem (8) can be
viewed as controlled by KNId with an input disturbance
KN Ĩ which will be handled by the input control voltage
designed in next subsection.

Let Ĵ(q) be the adaptive Jacobian matrix and K̂N be the
adaptive motor torque transmission matrix whose uncertain
parameters θ̂J and θ̂K are updated by the updating laws (12)
and (13) respectively as in following. Note that θ̂K is a vector
containing the diagonal elements of K̂N .

Based on the adaptive motor torque transmission matrix
and Jacobian matrix, the desired armature current Id is
proposed as

Id = −K̂−1
N (ĴT (q)Kps(e) + Kvv + KI

∫ t

0

y(τ)dτ ), (9)

v̇ = −Λv + q̇ + αĴT (q)s(e), (10)

y = q̇ + αĴT (q)s(e), (11)

where si(·), i = 1, · · · , n are saturated functions of e as
will be explained later; e = X − Xd = (e1, · · · , em)T

is a positional deviation from a desired task-space position
Xd ∈ R

m, X is obtained through camera or other positioning
systems (laser, ultrared sensor etc.); Kp = kpIE , Kv,
KI , Λ ∈ R

n×n are positive definite diagonal feedback gains,
IE represents the identity matrix and α is a positive constant.

The uncertain parameters θ̂K and θ̂J in K̂N and Ĵ(q) are
updated online by

˙̂
θJ = Φ1L1Y

T
J (q, q̇)s(e), (12)

˙̂
θK = −Φ2L2QĴT (q)s(e), (13)

where L1 ∈ R
l×l, L2 ∈ R

n×n are constant positive definite
updating gain matrices, Q = diag{q̇} ∈ R

n×n. Φ1 and Φ2

are diagonal projection operators defined as

Φ1i =

⎧⎨
⎩

0, if θ̂Ji ≥ θimax and {Y T
J (q, q̇)s(e)}i ≥ 0

0, if θ̂Ji ≤ θimin and {Y T
J (q, q̇)s(e)}i ≤ 0

1, otherwise,
(14)
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Φ2i =
{

0, if θ̂Ki ≤ 0 and {−QĴT (q)s(e)}i ≤ 0
1, otherwise,

(15)

where θmax, θmin denote the estimated upper and lower
bound of kinematics parameter vector θJ , the projection
operators Φ1 and Φ2 guarantee that θ̂J lies in [θmin, θmax]
and K̂N is positive definite [31].

Remark 1: In the desired current Id design, an auxiliary
variable v is proposed instead of using joint or task space
damping q̇ or Ẋ directly. Hence acceleration measurement
is avoided in next step of the backstepping design as can be
seen in equation (36). And for the projection operators, they
are used simply to guarantee the boundedness of the adaptive
parameters in the theoretical analysis and hence their ranges
could be set quite flexibly without losing system stability in
practical implementation plus the fact that it’s not actually
difficult to obtain a rough guess of the real physical limits
of these parameters. ♦

For the saturated function, let us define a scalar function
Si(e) and its derivative si(e) as shown in Figure 1 with the
following properties [30]:

1) Si(e) > 0 for e �= 0 and Si(0) = 0.
2) Si(e) is twice continuously differentiable, and the

derivative si(e) = dSi(e)
de is strictly increasing in e for

|e| < γi with some γi and saturated for |e| ≥ γi, i.e.
si(e) = ±si for e ≥ ±γi, and e ≤ −γi respectively
where si is a positive constant.

3) There are constants ĉi > 0 such that for e �= 0,

Si(e) ≥ ĉisi
2(e). (16)

Fig. 1. (a)Quasi-natural potential: S(e) (b)Derivative of S(e) : s(e)

Some examples of the saturated function can be found in
[26], [28], [30].

Substituting Id as defined in (9) into the dynamic equa-
tion (8), we can get the closed-loop manipulator dynamic
equation as

M(q)q̈ + (B + C(q, q̇))q̇ + g(q) + KNK̂−1
N ĴT (q)Kps(e)

+KNK̂−1
N Kvv + KNK̂−1

N KIz = KN Ĩ , (17)

where z is an auxiliary variable defined as z =
∫ t

0
y(τ)dτ

so that ż = y. KNK̂−1
N KI is a diagonal matrix since KN ,

K̂−1
N and KI are all diagonal matrices.
We now study the the stability of the closed loop system

equation (17) with Ĩ = 0 and the current perturbation Ĩ will
be considered in the overall Lyapunov function construction

in next subsection. A Lyapunov function candidate V1 is
proposed with the form:

V1 = 1
2 q̇T M(q)q̇ + αq̇T M(q)ĴT (q)s(e)

+
∑m

i=1 kpSi(ei) + P (q) + 1
2zT KNK̂−1

N KIz

+ 1
2vT KNK̂−1

N Kvv + 1
2kpΔθT

J L−1
1 ΔθJ

+ 1
2kpΔθT

KK̂−1
N L−1

2 ΔθK , (18)

where Δq = q − qd, ΔθJ = θJ − θ̂J and ΔθK =
θK − θ̂K . P (q) denotes the potential energy function of the
manipulator so that g(q) = ∂P (q)/∂q [32].

From [30], it has

1
4 q̇T M(q)q̇ + αq̇T M(q)ĴT (q)s(e) + 1

2

∑m
i=1 kpSi(ei)

= 1
4 (q̇ + 2αĴT (q)s(e))T M(q)(q̇ + 2αĴT (q)s(e))

−α2sT (e)Ĵ(q)M(q)ĴT (q)s(e) + 1
2

∑m
i=1 kpSi(ei)

≥ ∑m
i=1(

1
2kpĉi − α2λm)s2

i (ei), (19)

where α can be chosen small enough or kp can be chosen
large enough to to satisfy the inequality,

1
2
kpĉi − α2λm > 0, (20)

where λm = λmax[Ĵ(q)M(q)ĴT (q)], λmax[A] denotes the
maximum eigenvalue of a matrix A.

Substituting inequalities (19) into equation (18) and noting
that P (q) is always positive, we have

V1 ≥ 1
4 q̇T M(q)q̇ +

∑m
i=1(

1
2kpĉi − α2λm)s2

i (ei) + P (q)

+ 1
2

∑m
i=1 kpSi(ei) + 1

2zT KNK̂−1
N KIz + 1

2vT KNK̂−1
N Kvv

+ 1
2kpΔθT

J L−1
1 ΔθJ + 1

2kpΔθT
KK̂−1

N L−1
2 ΔθK > 0 (21)

Hence, V1 is positive definite with condition (20) satisfied.
Differentiating equation (18) with respect to time and

substituting equations (10), (11) and (17) (with Ĩ = 0) into
it, we have:

d

dt
V1 = −W1 (22)

where

W1 = q̇T Bq̇ + vT KNK̂−1
N KvΛv

−kpq̇
T [JT (q) − ĴT (q)]s(e) − kpq̇

T (I − KNK̂−1
N )ĴT (q)s(e)

+αsT (e)Ĵ(q)[kpKNK̂−1
N ĴT (q)s(e) + g(q)]

+α{sT (e)Ĵ(q)[B − Ṁ(q) + C(q, q̇)]q̇

−ṡT (e)Ĵ(q)M(q)q̇ − sT (e) ˙̂
J(q)M(q)q̇}

+kpΔθT
J L−1

1
˙̂
θJ + kpΔθT

KK̂−1
N L−1

2
˙̂
θK (23)

Following [30] and knowing that both Ĵ(q) and g(q) are
trigonometric functions of q, the following condition stands
with specified constant k0 > 0 for any q:

kps
T (e)Ĵ(q)KNK̂−1

N ĴT (q)s(e)

+sT (e)Ĵ(q)g(q) ≥ k0(kp + 1)‖s(e)‖2 (24)
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Also, since s(e) and θ̂J are bounded, there exist constants
c0 > 0 and c1 > 0 so that [30]:

α{sT (e)Ĵ(q)[B − Ṁ(q) + C(q, q̇)]q̇ − sT (e) ˙̂
J(q)M(q)q̇

−ṡT (e)Ĵ(q)M(q)q̇} ≥ −αc0‖q̇‖2 − αc1‖s(e)‖2. (25)

Hence substituting inequalities (25) and (24) into (23), we
can get:

W1 ≥ (λmin[B] − αc0)‖q̇‖2 + λmin[KNK̂−1
N KvΛ]‖v‖2

+α(k0 + k0kp − c1)‖s(e)‖2 − kpq̇
T [JT (q) − ĴT (q)]s(e)

−kpq̇
T (I − KNK̂−1

N )ĴT (q)s(e) + kpΔθT
J L−1

1
˙̂
θJ

+kpΔθT
KK̂−1

N L−1
2

˙̂
θK (26)

According to Property 1, we have

kpq̇
T [JT (q) − ĴT (q)]s(e) = kps

T (e)[J(q)q̇ − Ĵ(q)q̇]
= kps

T (e)YJ (q, q̇)ΔθJ = kpΔθT
J Y T

J (q, q̇)s(e), (27)

also it has

kpq̇
T (I − KNK̂−1

N )ĴT (q)s(e)

= kpq̇
T (K̂N − KN )K̂−1

N ĴT (q)s(e)

= −kpΔθT
KK̂−1

N QĴT (q)s(e). (28)

Substituting (27) and (28) into (23) and using updating
laws (12) and (13), we can get

W1 ≥ (λmin[B] − αc0)‖q̇‖2 + λmin[KNK̂−1
N KvΛ]‖v‖2

+α(k0 + k0kp − c1)‖s(e)‖2

−kpΔθT
J (I − Φ1)Y T

J (q, q̇)s(e)

−kpΔθT
KK̂−1

N (I − Φ2)[−QĴT (q)s(e)] (29)

From the definitions of Φ in (14), (15) and following [31],
it’s easily verified that

kpΔθT
J (I − Φ1)Y T

J (q, q̇)s(e) ≥ 0, (30)

kpΔθT
KK̂−1

N (I − Φ2)[−QĴT (q)s(e)] ≥ 0, (31)

so that the above inequality (29) has

W1 ≥ (λmin[B] − αc0)‖q̇‖2 + λmin[KNK̂−1
N KvΛ]‖v‖2

+α(k0 + k0kp − c1)‖s(e)‖2. (32)

Hence if the following conditions are satisfied

λmin[B] − αc0 > 0, (33)

k0 + k0kp − c1 > 0, (34)

then W1 is positive definite in q̇, v and s(e).

Lemma The closed-loop system described by equation (17)
gives rise to the convergence of X → Xd and q̇ → 0 as
t → ∞ if Ĩ = 0, the feedback gains Kp, α are chosen to
satisfy conditions (20), (33) and (34).
Proof Since V1 is positive definite and W1 is positive semi-
definite, from equation (22) we have

d

dt
V1 = −W1 ≤ 0. (35)

Hence, V1 is a Lyapunov function whose time derivative is
negative definite in s(e), q̇ and v. Since W1 = 0 implies that
q̇ = 0, e = X − Xd = 0, v = 0, by LaSalle’s invariance
Theorem, the proof is complete. ΔΔΔ

Remark 2: The stability conditions (20), (33) and (34) could
be easily satisfied by tuning control parameters. In fact, a
careful look at these conditions simply suggests the guideline
of tuning as larger Kp or/and smaller α is/are requested
if the system goes unstable. Moreover, these conditions are
sufficient conditions and hence could be conservative. ♦

B. Input Control Voltage Design

We can now use the desired current input Id as defined by
(9) in previous subsection to design a voltage input u which
will force armature current perturbation Ĩ to zero. Since the
actuator dynamic coefficient matrices L, R, KE and KN

are unknown, we employ approximate models L̂, R̂, K̂E

and K̂ ′
N and propose the input voltage u as:

u = L̂İd + R̂Id + K̂E q̇ − KD Ĩ − NN (y)θ̂K′
N

, (36)
˙̂
θL = −LLNL(İd)Ĩ , (37)
˙̂
θR = −LRNR(Id)Ĩ , (38)
˙̂
θKE = −LENE(q̇)Ĩ , (39)
˙̂
θK′

N
= LNNN (y)Ĩ . (40)

where y = q̇ + αĴT (q)s(e), KD ∈ R
n×n is a

positive definite control gain, LL, LR, LE , LN are pos-
itive definite diagonal matrices as introduced in Sec-
tion II. NL(İd) = diag{İd1, · · · , İdn}, NR(Id) =
diag{Id1, · · · , Idn}, NE(q̇) = diag{q̇1, · · · , q̇n}, NN(y) =
diag{y1, · · · , yn} and hence L̂İd = NL(İd)θ̂L, R̂Id =
NR(Id)θ̂R, K̂E q̇ = NE(q̇)θ̂KE , K̂ ′

Ny = NN(y)θ̂K′
N

.
The approximate models L̂, R̂, K̂E and K̂ ′

N are updated
online by their updating laws respectively during the reg-
ulation. Note that K̂ ′

N here is different from the adaptive
transmission matrix K̂N in Id and they are updated by
different updating laws.

Substituting the input voltage (36) into the actuator dyan-
mics (5), we have

L(İ − İd) + R(I − Id) = (L̂ − L)İd + (R̂ − R)Id

+(K̂E − KE)q̇ − KD Ĩ − NN (y)θ̂K′
N

(41)

which can be rewritten as

L ˙̃I + (R + KD)Ĩ
= NL(İd)(θL̂ − θL) + NR(Id)(θR̂ − θR)

+NE(q̇)(θK̂E
− θKE ) − NN(y)θ̂K′

N
(42)

We now propose another Lyapunov function candidate V2

with the form as following:

V2 = V1 + 1
2 ĨT LĨ + 1

2 (θL − θ̂L)T L−1
L (θL − θ̂L)

+ 1
2 (θR − θ̂R)T L−1

R (θR − θ̂R)

+ 1
2 (θKE − θ̂KE )T L−1

E (θKE − θ̂KE )

+ 1
2 (θKN − θ̂K′

N
)T L−1

N (θKN − θ̂K′
N

) (43)
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where V1 is defined as in last subsection and
θL, θR, θKE , θKN denotes the vector of true values in
L, R, KE, KN respectively.

It’s easy to see that V2 is positive definite if the condition
(20) is satisfied. Differentiating V2 with respect to time and
using equations (37)-(39),(42), we have:

V̇2 = V̇1 + yT KN Ĩ − ĨT (R + KD)Ĩ − ĨT NN (y)θ̂KN

− ˙
θ̂T

K′
N

L−1
N ΔθKN

= −W1 − ĨT (R + KD)Ĩ + ĨT NN (y)ΔθKN

− ˙
θ̂T

K′
N

L−1
N ΔθKN (44)

here we notice an additional term yT KN Ĩ which is intro-
duced by the differentiation of V1 since the current pertur-
bation Ĩ is considered in this design step as from equation
(17).

Substituting (40) into equation (44), we can get:

V̇2 = −W1 − ĨT (R + KD)Ĩ (45)

where W1 is defined in last subsection. Hence, if the cor-
responding sufficient stability conditions are satisfied V̇2 is
guaranteed to be negative.

We are now in a position to state the following Theorem:
Theorem If the control input voltage u given by (9) and (36)
is applied on the rigid-link robot dynamics (4), (5), then the
closed-loop system gives rise to the convergence of X → Xd,
q̇ → 0 and I → Id as t → ∞, provided that the feedback
gains Kp, α are chosen to satisfy conditions (20), (33) and
(34).
Proof Since V2 is positive definite, its time derivative V̇2

is negative definite in s(e), q̇, v, and Ĩ . V̇2 = 0 implies
that q̇ = 0, e = X − Xd = 0, v = 0, Ĩ = 0, by LaSalle’s
invariance Theorem, the proof is complete. ΔΔΔ

IV. SIMULATION RESULTS

In this section, we present the simulation results to il-
lustrate the performance of the proposed control scheme.
The simulation is based on a two-link RELD robot holding
an uncertain object as shown in Fig. 2. The manipulator
endpoint is required to move from an initial position X0 =
(0.8, 0.32) to an desired position Xd = (0.5, 0.55) defined
in Cartesian space.

In the simulation, we set the true masses, lengths and grav-
ity centers of link 1, 2 and the object to m1 = 17.4kg, m2 =
4.8kg, mo = 2kg, l1 = 0.4318m, l2 = 0.4318m, l0 =
0.2m, lc1 = 0.068m, lc2 = 0.07m, lc0 = 0.1m respectively.
The object grasping angle is set to q0 = 30◦. The true
actuator dynamic coefficient matrices are defined as L =
diag(1 1), R = diag(15 15), KE = diag(10 8), KN =
diag(10 8).

To test the ability of the proposed control scheme to
deal with kinematics and actuator uncertainties, first we
set the initial estimated kinematics parameters wrongly to
l̂1 = 0.5m, l̂2 = 0.5m, l̂0 = 0.25m, q̂0 = 45◦ and the initial
approximated actuator models to L̂ = diag(2.5 2.5), R̂ =

Fig. 2. 2-Link Robot Holding Object

diag(10 12), K̂E = diag(15 10), K̂N = K̂ ′
N = diag(15 12)

in the controller design. The system performance with con-
trol gains Kp = 200IE, Kv = 1000IE, KI = 260IE, α =
5, Λ = 12IE , KD = 300IE , L1 = L2 = IE , LR = LE =
LN = 3IE are illustrated by Fig. 3 and 4.
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To further test the robustness of the proposed control
scheme, larger and hence more challenging kinematics and
actuator uncertainties settings are used as l̂1 = 0.6m, l̂2 =
0.6m, l̂0 = 0.35m, q̂0 = 60◦, L̂ = diag(3.5 3.5), R̂ =
diag(10 10), K̂E = diag(15 15), K̂N = K̂ ′

N =
diag(15 15). Figure 5 and 6 show the system performance
with the the same control parameters as in the first simulation
study. As shown by these simulation results, the proposed
control scheme is efficient to achieve convergence of both
regulation errors and armature current tracking errors even
with the presence of kinematics and dynamics uncertainties
in the RLED robot system.
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V. CONCLUSIONS

In this paper, we proposed a task-space SP-ID control
scheme for regulation problem of RLED robotic manipula-
tors with uncertain kinematics. The proposed control scheme
does not require exact knowledge of actuator dynamics, robot
kinematics and dynamics. The novelty and main contribution
of this work lies in that it is shown through rigorous
theoretical analysis that PID type controller which is used
widely in various applications beyond industry due to its
simplicity is able to achieve regulation convergence even
for complicated tasks like in RLED robot control. Sufficient
conditions for choosing the feedback gains were given to
guarantee the system stability which are easy to meet. The
performance of the proposed control scheme was illustrated
through simulation studies.
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