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Abstract— The main aspect in multi-robot exploration is the
efficient coordination of a group of robots. Inspired by previous
results on the coverage problem, we propose a novel, frontier-
based approach for multi-robot exploration. This approach
merges the step of choosing appropriate target points with
the step of planning a collision-free path. This is achieved
by optimizing an objective function consisting of distance and
orientation costs as well as an estimated information gain. The
optimization yields motion control laws directly solving the
exploration task. Using a Voronoi partition of the environment
ensures, that each robot autonomously creates and optimizes
the objective function to obtain a collision-free path in a
distributed fashion. Simulations demonstrate the effectiveness
of our approach.

I. INTRODUCTION

Within the last decade the robotics community extended

single-robot problems to the multi-robot domain. Multi-robot

exploration [2], [6], [12] is one of such extensions of the

single-robot case [10], [13]. Central to successful exploration

is the effective coordination of a group of robots. Essentially,

the problem is to assign appropriate target points to each

robot such that all robots explore different regions of the

environment. To this end, existing exploration strategies

use a frontier-based approach [13], i.e., all robots simply

move to target points on the borderline separating explored

from unknown area. Intuitively, the main aspects in existing

exploration approaches are how to choose those target points

on the frontiers and how to get there. Choosing the target

points is implemented by optimizing an objective function

that consists of different key ingredients. For instance, in [2]

the objective function consists of the expected information

gain at a point and the distance costs, while the objective

function in [10] additionally incorporates the localization

quality. However, after determining the target points it is

not clear how to choose appropriate motion control laws in

order to reach those locations.

Hence, we can summarize the procedure of existing ex-

ploration strategies as follows: i) Each robot chooses a target

point by optimizing an objective function, ii) the chosen

destination (or similar information) is communicated to the

group to prevent other robots from moving to the same

location, iii) each robot plans a path to reach the target

point and finally, iv) each robot moves to the target point

to continue exploration.
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In this work, we present a new approach to multi-robot

exploration, inspired by the solution to the coverage prob-

lem in [3]. There, the steps of path planning and finding

appropriate target points are merged. This is achieved by

gradient-based motion control laws [9]. To this end, the

authors use a Voronoi partition [4] of the environment.

The task of each robot is to maximize coverage in its

own Voronoi cell. Maximizing coverage is achieved by the

optimization of an objective function, which exclusively uses

information available in a single Voronoi cell. The gradient

of the objective function is distributively computed and then

used in the motion control laws.

The exploration strategies [2], [10] use an objective func-

tion to choose the target points, but then require an extra

step for collision-free path planning and motion control.

The authors in [8] derive control laws directly from op-

timizing an objective function. But they do not partition

the environment. Hence, they need an additional component

for collision avoidance as well. Contrary, using a Voronoi

partition inherently incorporates collision avoidance, because

Voronoi cells are guaranteed to be convex.

Our approach to multi-robot exploration combines the

aforementioned work and extends the coverage problem to

facilitate multi-robot exploration. Therefore, we refer to this

as DisCoverage. The basic idea of DisCoverage is illustrated

in Fig. 1 and works as follows: By using the Voronoi partition

each robot i autonomously creates and optimizes its objective

function Hi to derive an appropriate control input vector

ui. The control input vector changes the state vector xi

according to the considered robot dynamics. This in turn

changes the Voronoi partition and the process begins anew.

Partition

∂Hi

∂xi

Optimization

ẋi = fi(xi, ui)

Robot dynamics

Hi ui xi

Fig. 1. Feedback loop of the exploration scheme

This procedure forms a closed loop and finding motion

control laws resulting from the optimization step is of par-

ticular interest from a controls perspective. One of the most

appealing properties of DisCoverage is that the additional

step of path planning and motion control can be skipped.

Another advantage is that our approach inherently avoids

collisions as long as the robots remain in the assigned

Voronoi cells.

The article is organized as follows: In the next section
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we formulate the problem properly and give necessary

definitions and assumptions used throughout the paper. In

Section III we derive the objective function and show how

distributed optimization leads to appropriate motion control

laws exploring new territory. In Section IV we provide

computer simulations demonstrating the effectiveness of the

proposed method and conclude the article in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

To simplify the set-up, we assume ideal measurements,

i.e., we neglect any uncertainty in the robot positions and

the omni-directional sensor model. We assume ideal, bidi-

rectional communication between Voronoi neighbors, so that

robots of adjoining Voronoi cells communicate each other’s

position and synchronize the map at any time. Further, we

consider a convex, obstacle-free environment Q ⊂ R
2.

We limit our attention to the simple dynamics

ṗi = ui, (1)

with the previously used state vector pi = xi ∈ R
2, where

pi denotes the position and the vector ui denotes the control

input of robot i.

Let P = {p1, . . . ,pN} be the configuration of N robots.

Then, Vi = {q ∈ Q | ‖q − pi‖2 ≤ ‖q − pj‖2,∀j} is the

Voronoi cell of robot i and V = {V1, . . . ,VN} the Voronoi

partition. Note that Q = ∪iVi, i.e., V is a partition of Q. We

refer to robots with adjoining Voronoi cells as neighbors.

Similar to the solution of the coverage problem in [1], [3]

we use an objective function of the form

Hcover(P)=

N∑

i=1

Hcover,i(P)=

N∑

i=1

∫

Vi

f(q,pi)φ(q)dq, (2)

where q ∈ Vi. We call f(·) performance function and

φ(q) density function, which encodes any location dependent

information gain at a point q ∈ Q. Our idea is to modify

(2) such that optimization solves the exploration problem

in a distributed manner. The fundamental difference to ex-

isting exploration strategies is that each robot is able to

create and optimize (2) autonomously due to Hcover being a

composition of N independent objective functions Hcover,i.

Hence, all robots perform the optimization in parallel and

not successively as e.g. in [2]. Distributed construction of a

Voronoi cell is guaranteed as long as each robot is aware of

the positions of its neighbors [3]. Hence, communication of

robot positions and map synchronization between neighbors

are the only requirements for our approach.

Focusing on exploration, we define S ⊆ Q as the explored

space with ∂S denoting the frontiers. Let Si = S ∩ Vi, i.e.

S = ∪iSi. Further, define ∂Si = ∂S∩Vi\∂Q as the frontiers

in Vi. How to achieve exploration will be subject of the next

sections, and we conclude with the definition of our problem

as follows:

Given a configuration P = {p1, . . . ,pN} of N robots in a

convex, obstacle-free environment Q ⊂ R
2, find an objective

function of the form (2) to derive control laws ui such that

S → Q as t → ∞.

pi

y

x

q

si
n

δ i

cos δi

1

δi

α

∢(q − pi)

∂Si

Fig. 2. Relation of the robot’s orientation δi and angle α of the frontiers.
The coordinate system in pi is axis parallel to the global system and
independent of the orientation δi.

III. FINDING A SOLUTION

A. Optimization Problem

Our goal is to find control laws ui computable in a

distributed manner such that each robot autonomously moves

into a direction of unknown area in its Voronoi cell.

The significant property of the centroidal search in [3]

is to cover all points as good as possible. Contrary, in

the exploration process we want to focus on specific target

points, where a robot will likely explore large parts of the

environment, which is similar to the utility of frontiers in [2].

To find optimal target points, we first equip each robot with

an orientation δi ∈ [−π, π], which defines the current moving

direction of robot i. Inspired by the anisotropic sensor model

in [7], where the performance depends on the distance and

the orientation from the sensor to the target, we want to find

orientations δi for each robot such that as many frontiers as

possible are located directly in front of each robot. That is,

we want to minimize the angle α ∈ [−π, π] between the

orientations δi and all frontiers q ∈ ∂Si (Fig. 2) with

α(pi, δi, q) = ∢(q − pi) − δi
︸ ︷︷ ︸

γ

+







2π if γ < −π,

−2π if γ > π,

0 else.

(3)

For instance, an angle of α = π implies that the considered

point q lies behind pi, whereas an angle of α = 0 implies

that q lies in the direction of the robot’s current orientation.

In contrast to [7], frontiers q do not necessarily lie within

the maximum sensing range or maximum sensing direction.

Hence, we need to find a different performance function.

To this end, we introduce a continuous differentiable perfor-

mance function f , which includes an angular component and

a distance component, as follows:

f(pi, δi, q)=exp

(

−
α(pi, δi, q)2

2θ2

)

︸ ︷︷ ︸

angular component

exp

(

−
‖q−pi‖

2
2

2σ2

)

︸ ︷︷ ︸

distance component

. (4)

Note that the orientation δi represents an additional degree

of freedom for the optimization and θ and σ describe the
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standard deviations of the Gaussians. We will refer to θ as

opening angle. Small values of α lead to large values of

the angular component, which reflects exactly the desired

behavior described previously. The same holds for small

values in the distance component, i.e., frontiers q closer to

pi imply a larger distance component.

Finally, with ∆ = {δ1, δ2, . . . , δN} we formulate a modi-

fied version of (2) given as

Hdiscover(P, ∆) =

N∑

i=1

Hdiscover,i(pi, δi)

=

N∑

i=1

∫

∂Si

f(pi, δi, q)φ(q)dq,

(5)

with the aforementioned performance function f in (4). Note

that (5) still is a composition of N objective functions, i.e.,

each robot can evaluate Hdiscover,i autonomously.

Finding the optimal orientations δ∗i is equivalent to the

optimization problem

δ∗i = arg max
δi

Hdiscover,i(pi, δi). (6)

In δ∗i the partial derivative of Hdiscover,i with respect to δi

vanishes, i.e., δ∗i satisfies the necessary condition

∂Hdiscover,i(pi, δi)

∂δi

=

∫

∂Si

∂f

∂α

∂α

∂δi

φ(q)dq

=

∫

∂Si

−
α(pi, δi, q)

θ2
f(pi, δi, q)φ(q)dq

!
= 0.

(7)

Using the optimal orientations, the design of a simple control

law for each robot is possible.

B. Robot Dynamics

The solution to the optimization problem (6) yields opti-

mal orientations δ∗i , which can be used as control vectors in

the first order dynamic system

ṗi = ui = v

(
cos δ∗i
sin δ∗i

)

, (8)

with v ∈ R
+ being a constant velocity of all robots. As

depicted in Fig. 1, equation (8) represents a closed loop as

the optimization of the orientations depends on the robot po-

sitions and the Voronoi partition, which change continuously

in time.

C. Impact of the Angular Component

Next, we focus on the proper choice of the opening angle

θ in the angular component. For a better understanding we

consider the scene depicted in Fig. 3.

In (a) the scene Q contains a single robot in p1 = (2, 2)⊤

with an omni-directional vision radius of one meter and a

mixture of two Gaussians, with means at (1, 3)⊤ and (3, 1)⊤,

as distribution function φ, illustrated by the contour lines.

The robot already explored the environment S so that there

is a circular border ∂S1 separating the explored parts from

the unknown area.

0 1 2 3 4
0

1

2

3

4

QS∂S1φ

δ∗1,1 = 3
4π

δ∗1,2 = −π
4

p1

(a) Scene with opening angle θ = 0.5

θ2 = 2 θ1 = 0.5

0

exp
(

− α2

2θ2

)

α
−π π−1 1−2 2

1

(b) Gaussians with different opening angles θ1,2

δ1

0

Hdiscover,i(pi, δi)

π−π π
4−π

4
3
4π− 3

4π

δ∗1,2 δ∗1,1

(c) Objective function Hdiscover,i with opening angle θ = 0.5

Fig. 3. Influence of the opening angle θ on the angular component

0

Hdiscover,i(pi, δi)

δi

−π −2 −1 0 1 2 π

Fig. 4. Example of Hdiscover,i with small θ in a grid map

(a) Optimal orientation: δ∗
i

= 0 (b) Optimal orientation: δ∗
i

= π

Fig. 5. Optimal orientation without distance component
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The graph in (b) illustrates the Gaussian of the angular

component with an opening angle θ1 = 0.5 and θ2 = 2 in

the valid domain [−π, π].
In (c) the graph shows the objective function Hdiscover,i as

a function of δ1 with an opening angle of θ = 0.5 for the

robot’s current position in (a). Optimizing (5) leads to two

maxima δ∗1,1 = 3
4π and δ∗1,2 = −π

4 , which reflects the desired

behavior as each robot is supposed to first move to space with

larger φ during the exploration process. Both orientations are

equally well suited due to the symmetry in the scene. The

distance component does not have any effect in this case as

the Euclidean norm to all frontiers q ∈ ∂S1 is the same.

Larger values of θ increase the width of the Gaussian

of the angular component. This results in values near 1

for larger angles α, see Fig. 3 (b). Hence, optimizing (5)

with too large opening angles θ leads to a compromise in

finding the optimal orientation δ∗i . E.g., for θ = 2 the optimal

orientations are δ∗1,1 = π
4 π and δ∗1,2 = − 3

4π. In the worst

case this could be an orientation pointing to explored space.

Choosing small opening angles θ leads to lots of local

maxima in the objective function Hdiscover,i, especially when

using a grid map representation of the environment, see

Fig. 4. Additionally, very small values θ are numerically un-

stable and cannot be sufficiently represented by the floating

point arithmetic.

D. Impact of the Distance Component

During an exploration process it may happen that frontiers

are very far away from a robot. Without the distance com-

ponent a robot might travel a long distance before exploring

new environment, although frontiers are within immediate

reach in a different direction. Such a situation is covered by

Fig. 5. In (a) the optimization step produces an orientation

δ∗i = 0, although an orientation of δ∗i = π would lead into

unknown space much faster.

Worse, as the optimization of (5) neglecting the distance

component leads to orientations δ∗i with as many frontiers

having a small angle α as possible, the robot in Fig. 5 does

not explore any new area. In (a) the robot moves to the

right. Finally arriving in (b) the optimal orientation points to

the left again. Thus, the robot oscillates in already explored

area and never explores anything new, which is obviously a

behavior we want to avoid.

IV. SIMULATION

A. Implementation Details

As listed in Algorithm 1, we have implemented a discrete

time version of the motion control law (8), which basically

works as follows: Each robot computes its Voronoi cell and

optimizes its orientation δi according to (6) as

δ
(k)
i = arg max

δi

Hdiscover,i(p
(k)
i , δ

(k−1)
i ), (9)

with the time step index k. Next, each robot updates its

position according to the control law

p
(k+1)
i = p

(k)
i + v

(

cos δ
(k)
i

sin δ
(k)
i

)

. (10)

Algorithm 1 Discrete-Time Exploration Process

Initialization of p
(0)
i , δ

(0)
i and S(0)

while S(k) 6= Q do

Communicate robot positions p
(k)
i and map data S(k)

to neighbors

for i = 1, . . . , N in parallel do

Partitioning: V
(k)
i and ∂S

(k)
i

Optimization: δ
∗(k−1)
i 7−→ δ

∗(k)
i

Motion control: p
(k)
i

ui7−→ p
(k+1)
i

Exploration: S
(k)
i 7−→ S

(k+1)
i

end for

end while

Finally, all robots explore new territory at p
(k+1)
i and extend

the map in the vision radius.

To represent the environment we choose an occupancy grid

map [5], [11], where each cell is of type unknown, frontier,

free or obstacle. Cells marked as obstacle only appear at the

border ∂Q of the environment, because Q is convex.

In the following simulation runs, all robots have a vision

radius of r = 2m. We choose θ = 0.5 as opening angle and

set the standard deviation of the distance component to the

vision radius, i.e. σ = 2. Each cell of the grid map represents

A = 0.4 × 0.4m2 of the environment.

B. Single-Robot Exploration

First, we consider an exploration scene with a single

robot to investigate once again the behavior of the objective

function Hdiscover. We choose a convex region Q, similar to

the examples in [1], limited by the corners (0, 0)⊤, (2, 8)⊤,

(6, 15)⊤, (15, 14)⊤, (19, 12)⊤, (20, 10)⊤, (14, 0)⊤ as well

as a mixture of unnormalized Gaussians with means at c1 =
(6, 11)⊤, c2 = (3, 3)⊤, c3 = (8, 1)⊤ and c4 = (15, 6)⊤ as

density function φ, i.e.

φ(q) = 3

4∑

j=1

exp

(

−
‖q − cj‖

2
2

2 · 32

)

. (11)

The velocity in (10) is set to v = 0.4m
s

in each iteration and,

hence, matches the resolution of the grid.

Fig. 6(a) illustrates the exploration process after several

iterations. The initial position of the robot was set to p
(0)
1 =

(10, 9)⊤ with an orientation of δ
(0)
1 = 0. Starting the

simulation, the robot first moves to the heavier weighted

territory until the border is reached. Fig. 6(b) shows the

objective function Hdiscover,i for the scene in Fig. 6(a). As

we can see, there are two maxima in δ
∗(k)
1,1 ≈ 1.31 and

δ
∗(k)
1,2 ≈ −1.99 corresponding to the upper right and lower

left directions.

The optimization step is implemented by using a direct

method. Finding the local maximum of Hdiscover,i in iteration

k is based on the previous orientation δ
∗(k−1)
i . When tracking

the local maximum, robots follow their current path more

steadily. Always choosing the global maximum works as

well, but robots change their orientation more frequently to

move to the most promising frontiers.
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δ
∗(k)
1,1

δ
∗(k)
1,2

unknown
obstacle
frontier
free

(a) Exploration after several iterations.

δ
∗(k)
1,1δ

∗(k)
1,2

δ
∗(k−1)
1

2

0

Hdiscover,i(p
(k)
1 , δ

(k)
1 )

δ1
−π π−2 −1 1 2

(b) Objective function in the current situation

Fig. 6. Single robot exploration process.

C. Multi-Robot Exploration

Next, we simulate the same scene with multiple robots,

namely five, initially positioned in p
(0)
1 = (8, 7)⊤, p

(0)
2 =

(9, 6)⊤, p
(0)
3 = (10, 9)⊤, p

(0)
4 = (10, 10)⊤, p

(0)
5 = (11, 9)⊤

with orientations δ
(0)
i = 0.

The entire exploration process is illustrated in Fig. 7 in

several steps. In Fig. 7(a) we can see the initial configuration

along with the Voronoi cells and the contour lines of the

density function. As we can see in Fig. 7(b) the robots

spread evenly into the unexplored area and explore different

parts of the environment, where the density function returns

a large value. During the exploration it happens that some

cells remain unexplored and form small isles, explaining the

isolated frontier cell, see Fig. 7(b) and Fig. 7(c). This is

caused by the overlapping of the sensing radii over time. In

the worst case, those parts have to be visited towards the end

again.

In Fig. 7(c) the robot at the bottom left has almost entirely

explored its Voronoi cell. Hence, Hdiscover,i is constantly zero

as no frontier cells are in its Voronoi cell in the subsequent

iterations. Instead of continuing the exploration, the robot

defaults to the centroidal search as explained in depth in

[1], i.e., it covers the explored area as good as possible.

After 70 iterations the exploration process is complete. This

is illustrated in Fig. 7(d), where the Voronoi cells and the

grid are omitted for increased visibility of the trajectories of

the robots.

Fig. 7(e) plots the percentage of the environment explored

over the time steps k and the time-optimal solution for

comparison. In the time-optimal case, all robots can explore

2

N∑

i=1

viri

A
= 2N

vr

A
= 50

cells per iteration. In the simulation, the environment ex-

plored increases in a linear fashion until iteration 20. Here,

all robots explore approximately a mean of 36 cells per

iteration, because for the chosen initial configuration the

robot in p1 only explores very few cells (Fig. 7(a)). However,

neglecting this robot, the other robots explore about 45 cells

per iteration, which is a near time-optimal behavior. These

circumstances illustrate, that the effectiveness depends on

the initial configuration P of the robots. The amount of

the explored environment after iteration 20 still increases

linearly although with smaller slope. This indicates that

robots are not in immediate reach of frontier cells anymore

and first have to travel larger distances to explore new area.

After 50 iterations 98% of the environment is explored. The

remaining frontier cells are either isles or corners such as

the top left corner in Fig. 7(c). These circumstances lead to

large distances without exploring any new area. Hence, the

robots require another 20 iterations to finish the exploration

process. However, the aforementioned problems often appear

in exploration strategies (e.g. [8]), as “the actual information

that can be gathered by moving to a particular location is

impossible to predict” [2].

Fig. 7(f) shows the entire exploration process performed

with constant density function φ(q) = 1, proving that φ is

not the main factor driving the exploration process.

Intensive computer simulations show that varying the

opening angle θ in the interval [0.5; 1.0] results in a mean of

58.6 iterations for the entire exploration process in Fig. 7

with a standard deviation of 6.68 iterations. Varying the

standard deviation σ of the distance component in the

interval [1.5; 3] results in a mean of 57 iterations with a

standard deviation of 6.75. The simulations demonstrate the

robustness of the exploration process with respect to the

choice of the parameters θ and σ.

V. CONCLUSION

We presented a novel approach to multi-robot exploration.

Based on a Voronoi partition, each robot optimizes a locally

computable objective function to automatically obtain control

vectors, which assure simultaneous exploration of different

regions of unknown area. Therefore, we introduced the orien-

tation as an additional degree of freedom in the optimization.

The objective function is built such that our approach is

optimal with respect to the orientations of the robots.

In future work, we will extend our approach to support

more realistic scenes. Hence, next to considering more

complex robot dynamics, we will focus on non-convex

regions and take problems like localization into account.
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p1

(a) Initial state (b) Exploration after 10 iterations

(c) Exploration after 30 iterations (d) Exploration after 70 iterations

explored environment

time-optimal exploration

0

Progress

k
10 20 30 40 50 60 70

0%

50%

100%

(e) Exploration progress at each iteration k (f) Simulation with constant density function

Fig. 7. Simulation result of the step-by-step multi-robot mapping

Further, an open issue is to utilize alternative partitions of the

environment to improve the performance of the exploration

process.
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