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Abstract— The article describes a novel approach for de-
ployment of a swarm of heterogeneous autonomous vehicles.
Each vehicle is treated as the agent of a network, which
cooperates in order to cover a given area according to its own
capabilities. A general framework is introduced, which aims
at providing tools for solving a large class of coordination
problems. The capabilities of each agent are modeled with
Descriptor Functions; the sum of these functions constitutes the
swarm’s descriptor. The goal of the swarm is to match a desired
descriptor, by minimizing an appropriate cost functional. A
control law is proposed, which is capable of driving the agents
towards the achievement of the goal. The existence of local
minima and of a global minimum is discussed. Theoretical
results on the existence of the global minimum are given. The
Area Coverage problem is selected as a preliminary test for
the algorithm. Simulation results show the effectiveness of the
proposed approach.

I. INTRODUCTION

Multi agent systems have received much attention from

the scientific community due to their theoretical challenges

and potential applications. Despite the growing research

literature in the field, less attention has been paid to systems

composed of heterogeneous agents. Agents’ heterogeneity

occurs primarily at two different levels: different agents may

be associated to different tasks (mission level heterogeneity)

and/or agents may have different capabilities in executing the

same task (task level heterogeneity). Obviously the above

mentioned differences could constitute a big advantage in

performing more complex missions, and/or in performing the

same task at different levels of quality. The other advantage

is that the coordination among the subtasks of a mission

can be improved if the ensemble of heterogeneous agents is

treated as a single system (swarm). Furthermore, in such a

situation, all the agents could be managed at a macro level

(high level coordination).

In order to achieve adaptation and robustness of the system

to changing environment conditions or evolution of the mis-

sion execution, agents capable of performing more than one

task are preferable. Some kind of swarm self-organization

can be in fact obtained by letting each agent switching

between different tasks. Due to this self-organization process
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and, since some agents may execute more than one task at

the same time, mission level heterogeneity may arise.

The scenario considered in this paper describes the swarm

mission as a set of tasks, with each agent capable of

performing one or more tasks, possibly at the same time,

and with the agents executing the same task with different

skills.

Under these assumptions, the challenge we are facing

is to design a general framework such that many tasks

can be described using the same mathematical tools and

accomplished using the same or a minimally modified control

law.

The paper is organized as follows: Section II reviews

recent results of interest in this field and discusses analogies

and differences with the proposed approach, Section III in-

troduces and motivates the concept of Descriptor Functions,

Section IV defines and proposes a solution to the general

control problem addressed in this paper, finally Section V

presents some simulation results for the selected case study.

II. RELATED WORK

An approach similar to the one proposed in this paper

can be found in [1]. The authors introduced the concept

of effective coverage: ”Given a sensor network and mission

domain D, how should the motion of each sensor agent be

controlled such that the entire network surveys D by sensing

each point in D by an amount of effective coverage equal

to C∗?” Agents were modeled by an instantaneous coverage

function that describes how effective the agent senses each

point of the environment. An error function was used to

describe the difference between the desired and the attained

effective coverage in the environment. Agents are driven

towards the global minimum of a norm-like measure of the

error function so that the attained coverage equals the desired

one.

Improvements to this approach were presented in ([2]-[3]),

where collision avoidance terms and penalization terms on

the maximum acceptable inter-agent distance were added.

This constraint was relaxed in [4] where a network of

heterogeneous vehicles is used.

In [5] the non-stationary problem for the effective coverage

was formulated. The attained coverage was updated with an

information decay term, so that the agents would continu-

ously keep gathering information. The problem of coverage

over large scale domains, i.e. domains too large to be covered

by a static sensor network, using instantaneous coverage

function was improved in [6]. Instead of using a flocking

strategy to achieve strong communication channels among

sensors, another differential equation, which represents the
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individual state of awareness, was fed back in the control

law. The information sharing process would then reduce the

amount of redundant coverage.

In [7] a new optimization algorithm for the coverage

problem was formulated. A sensor is modeled with a function

that describes the probability of event detection by the agent

in the environment. The objective is encoded in a cost

function that represents the joint detection probability of all

the agents, weighted with a probability density function.

In [8] this algorithm was extended to teams of anisotropic

sensors, i.e. sensor models with performance depending not

only on the distance to the point of the environment but also

on its orientation.

III. THE PROPOSED APPROACH

Three main definitions are essential to the understanding

of the key points of the proposed methodology:

• Agent: entity that operates in the environment in order

to achieve one or more objectives;

• Task: coordination in space of agents that are pursuing

the same sub objective of the mission;

• Mission: coordination in space and time of the tasks.

The capability of an agent of executing a task, relative

to a given point of the environment, can be quantified, in

general, using some function of the relative distance from

the specific point. From a qualitative point of view, agents

can be defined as carriers of resources of one or more kind,

and they are described by a set of functions, which we call

agent Descriptor Functions (DFs). The number of DFs used

to describe an agent capability equals the number of tasks

that must be accomplished. If an agent is not capable of

executing some of the tasks, the DFs relative to those tasks

are set to zero for each point of the environment. Using this

approach, mission level heterogeneity arises naturally. Task

level heterogeneity can be included by assigning different

DFs to the various agents. Since the tasks are defined in the

operation space of the agents, a task can be specified as the

request of resources of a given type for each point of the

environment: the Desired Task Descriptor Function (TDF).

For each task, the sum of all the agents’ DFs is a measure

of the spatial distribution of resources pursuing the same

objective, and can be used to describe its current state of

execution: the Current TDF.

The difference between the Desired TDF and the Current

TDF represents, for any point in space, the amount of

resources needed, if positive, or in excess, if negative, for

the accomplishment of each task: the Task Error Function

(TEF).

The control objective can then be stated as the minimiza-

tion, with respect to the position of the agents, of some cost

function of the TEF. In this way, many different tasks can be

formulated under the same framework by the use of different

Desired TDF, while the architecture of the control law can

be maintained for all the tasks.

It is well recognized that the awareness of the current

state of execution of the tasks is a necessary condition for

self-organization and adaptation. In our framework, some

level of awareness is represented by the knowledge of the

Current TDFs. This knowledge can then be used by the

agents to accomplish the task they are executing (task level

self-organization) and to switch between the tasks they are

capable of executing (mission level self-organization). Fur-

thermore, decentralized estimation (interpolation) techniques

could be used to estimate (interpolate) the Current TDFs and

the whole approach would then be decentralized.

This paper deals with the task level self-organization, and

each agent is assumed to execute only one task. Furthermore,

each agent knows exactly the Desired TDF and the Current

TDF relative to the task it is executing.

A. Nomenclature and Definitions

This section presents the mathematical formulation of the

proposed methodology.

The swarm is made up of N heterogeneous agents Vi, i =
1, ...N . The mission is composed of a set of M tasks. At

each time instant, the set of agents executing the same task

forms a team. The number of teams may be up to M , and

each agent may be part of one or more teams simultaneously.

The tasks that agent i is executing at time t are denoted by

Ti(t) and the teams are defined as

T k(t) = {Vi : k ∈ Ti(t)} , k = 1, ..., M (1)

The space where agents operate is Q ⊂ ℜn and the position

of agent i at time t is pi(t) ∈ Q. Without loss of generality, Q
is assumed to be closed and bounded. All agents are modeled

by a single integrator kinematics with unity gain, i.e.

ṗi(t) = ui(t), ui(t) ∈ ℜn (2)

Note that, even if an agent is capable of multi tasking, it

optimizes its behavior for one task only.

1) Agent Descriptor Functions: M continuous functions

are assigned to each agent

Dk
i (pi, q) : P × Q → ℜ+, k = 1, ...M, i = 1, ..., N (3)

They describe the capability of the agent in executing the task

k at location q ∈ Q. For a sensing agent, the Descriptor Func-

tion could be directly related to its sensing performance, i.e.

to how much information the agent is capable of gathering

at position q ∈ Q as a function of its position. Examples can

be found in the field of sensor networks, where it is common

to model the sensors as functions, which are decreasing with

the distance from the sensor location, [9]. For tasks, which

are not sensing tasks, the DFs can be used to account for

agents’ presence. If the agent is not capable of executing a

task then the DF relative to that task is set to zero for each

q ∈ Q.

2) Current Task Descriptor Functions: The Current De-

scriptor Function of a task is defined as the sum of the DFs

of the agents that are executing that task, i.e. Dk(p, q) :
P × Q → ℜ+:

Dk(p, q) =
∑

Vi∈T k(t)

Dk
i (pi, q), k = 1, ...M, i = 1, ..., N

(4)
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By using the terminology in [9], this is equivalent to the

Sensor Intensity Field of a team of sensing agents. For agents

that have no sensing capabilities it describes how they are

deployed in the environment, i.e. it is a measure of their

physical density.

3) Desired Task Descriptor Functions: The Desired Task

Descriptor Function of a task specifies how the agents that

are executing that task should be distributed. Specifically, it

encodes the need of resources of a given type at each point

q ∈ Q of the environment and is formalized as:

Dk
∗(q, t) : Q ×ℜ+ −→ ℜ+, k = 1, ...M (5)

4) Task Error Functions: The Task Error Function is

defined as the difference between the Desired TDF and the

Current TDF:

Ek(p, q, t) = Dk
∗(q, t) − Dk(p, q), k = 1, ...M (6)

For each task, the error function measures the lack of

resources if Ek(p, q, t) > 0, and the excess of resources

if Ek(p, q, t) < 0.

IV. SWARM DEPLOYMENT AS AN OPTIMIZATION

PROBLEM

The control objective here is to move the agents so that all

the TEFs are minimized at every point of the environment.

For each task, a cost function Jk(p) : p ∈ Q → ℜ+, can be

used as a measure of the TEF for each configuration of the

agents. A possible cost function is:

Jk(p) =

∫

Q

f(Ek(p, q, t))σ(q)dq (7)

where f(·) is a limited and continuous function of Ek that

verifies f(τ) ≥ 0, ∀τ ∈ ℜ, and σ(q) ≥ 0, ∀q ∈ ℜ, is

a weighting function which may drive the attention of the

swarm towards specific areas of Q.

The optimization problem can then be formulated as the

minimization of the cost function with respect to the position

of the agents that participate actively to the task, i.e.

p̂k = arg min
p∈T k

Jk(p) (8)

Note that, from Measure Theory, the cost function represents

a weighted measure of the error over the whole environment.

A. Main results

Since only the self-organization at the task level is con-

sidered in this paper, the superscript relative to the task is

dropped. In order to minimize the cost function consider the

following gradiental control law:

ui = ṗi = −α
∂J(p)

∂pi

(9)

with α > 0. For the above control law, the following holds:

Proposition 1. Under the control law

ui = ṗi = −α
∂J(p)

∂pi

= α

∫

Q

∂Di(pi, q)

∂pi

∂f(E(p, q))

∂E(p, q)
σ(q)dq

(10)

each agent reaches a stable equilibrium position with a finite

control effort and the cost function is nonincreasing in time.

Proof. Each component of the control law is the partial

derivative of the cost function with respect to each compo-

nent of the position vector of the agents. The gradient of the

cost function is:

∇J(p) = [∂J(p)
∂p1

. . . ∂J(p)
∂pN

] (11)

The control law of the i − th agent is then:

ui = −α
∂J(p)

∂pi

= −α [∂J(p)
∂pi1

. . . ∂J(p)
∂pin

]T (12)

where pij is the j − th component of the position vector of

the agent i. Since D∗(q, t) and σ(q) do not depend on p, the

j − th component of the input vector of agent i is:

uij = −α∂J(p)
∂pij

= −α
∫

Q

∂f(E(p,q,t))
∂pij

σ(q)dq

= −α
∫

Q

∂E(p,q,t)
∂pij

∂f(E(p,q,t))
∂E(p,q,t) σ(q)dq

= α
∫

Q

∂Di(pi,q)
∂pij

∂f(E(p,q,t))
∂E(p,q,t) σ(q)dq

(13)

Using the chain rule the time derivative of J(p) can be

rewritten as:

J̇(p) =
dJ(p)

dt
=

N∑

i=1

n∑

j=1

∂J(p)

∂pij

ṗij (14)

where N is the number of agents and n is the dimension

of the space where the agents move. Since ṗij = uij =

−α∂J(p)
∂pij

then

J̇(p) = −α
N∑

i=1

n∑

j=1

(
∂J(p)

∂pij

)2

≤ 0 (15)

this proves that the cost function is nonincreasing in time.

Moreover, since f(τ) ≥ 0, ∀τ ∈ ℜ, J(p) has a lower limit,

then:

lim
t→∞

J(p(t)) = J̄ ≥ 0 (16)

Since Eq.(16) holds, from Eq.(14) and Eq.(15) we have that

limt→∞ uij = 0. Then each agent converges to a postion p̄
for which J(p̄) = J̄ . For each agent in p̄i the following is

verified:

uij = α

∫

Q

∂Di(pi, q)

∂pij

∂f(E(p, q, t))

∂E(p, q, t)

∣
∣
∣
∣
p=p̄

σ(q)dq = 0

(17)

∀i = 1, . . . , N, ∀j = 1, . . . , n, and p̄ is a stationary point

for the system of agents under the control law in Eq.(10).

Finally, since f(·) is a limited and continuous function and

the set Q is closed and bounded, the control law in Eq.(10)

is finite.

�

Corollary 2. Under the control law

ui = −β(t)ζ (p, t) (18)
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with

sign (ζ (p, t)) = sign

(

∂J(p)

∂pi

∣
∣
∣
∣
p=p(t)

)

(19)

and β(t) ≥ 0 ∀t ≥ 0, each agent reaches a stable equilibrium

position with a finite control law and the cost function is

nonincreasing in time.

Proof. The proof is identical to that of Proposition 1,

except that Eq.(15) is replaced by:

sign
(

J̇(p)
)

= −β(t)sign





N∑

i=1

n∑

j=1

∂J(p)

∂pij

ζ (p, t)



 ≤ 0

(20)

�

The class of possible functions ζ is very large and allows

an additional degree of freedom control law design. Just as

an example, β and ζ can be selected to produce a velocity

command ui which has a constant modulus and varies in

direction only, at least when far from the goal; this approach

may be particularly useful for vehicles like UAVs with speed

constraints.

B. Local Minima and Selection of f(·)

It is important at this point to make a few comments

relative to the nature of the stationary points achieved by

the proposed control law. Since the controller is based on a

steepest descent optimization method, the system may end up

in local minima. It is important to note that it is not possible

to identify the global minimum and local minima only by

evaluating the cost function. In fact, given a generic swarm

and a generic Desired TDF, the global minimum attainable

by any cost function is not known a priori. A similar issue

arises with the control law derived in [1]. In that work, the

minimum value of the cost function is known to be zero.

Once an agent reaches a local minimum, it evaluates the cost

function and, if not zero, it switches to a different control law

that brings the system out from the local minimum. Clearly,

this strategy cannot work if J̄ is not known.

The behavior of the control law depends mainly on the

derivative of the DF of the agents, on the Current TEF, and

on the function f(·). Each point of the environment can be

seen as generating a force on the agent with a direction that

depends on the value of each component of the integrand

vector at that point. The final direction of motion of the

agent is the vector sum (integral) of all vectors generated by

each point of the environment. When the vector sum gives

the zero vector, the agent stops and Eq.(17) holds.

To better clarify how the technique works and when the

system is more likely to reach a local minimum, let us

consider a Gaussian agent DF in a 1D space. Moving in

1D space (Q : q1 ⊆ ℜ), the control is completely specified

by the sign and magnitude of the velocity of the agent.

The DF has a maximum value at the agent position, and

decreases with the distance to the agent. The derivative of

the Descriptor Function of agent i is positive for q1 > pi

and negative for q1 < pi.

In order to study the effect of selecting different functions

f(·) consider the following two cases:

• Square of the error: f(x) = x2;

• Integration of the square of positive errors only: f(x) =
max (0, x)2.

In the first case, f(x) = x2, the control law in Eq.(10),

becomes:

ui = 2α

∫

Q

∂Di(pi, q)

∂pi

E(p, q)dq (21)

From Eq.(21), with the considerations made on

∂Di(pi, q)/∂pi, it follows that each point q generates

an attractive force if E(p, q) > 0, and a repulsive force

if E(p, q) < 0. This is consistent with the fact that a

positive task error function represents a lack of resources,

while a negative one represents an excess of resources. The

resulting forces are determined by the signed sum of the

forces generated by all the points of the space. Due to the

signed sum, local minima are harder to recognize and to

manage than if the positive error only is considered. In the

latter case, only the lack of resources is penalized. This

yields better performance with respect to the presence of

local minima in the cost function J .

In order to asses numerically the existence of local minima

in J , a scenario was set up with a Desired TDF D∗ and two

agents. D∗ was chosen as the sum of two Gaussians identical

in shape and dimensions to those of the two agents; this

guarantees that an exact solution exists and that J̄ = 0.

Figure 1(a) shows J for various values of p1 and p2,

that is for various positions of the agents, for case 1. Two

global minima and four local minima exist for J due to the

simmetry of the problem.

Figure 1(b) shows J for various values of p1 and p2 for

case 2. Two global minima exist, with no local minima.

However, areas of the solution space exist where the slope

of J is very limited and a slower convergence should be

expected.

C. Algorithm Decentralization

The proposed approach assumes that all the agents know

the Desired TDF D∗(q, t) and can sense the presence of all

the other agents through their respective Di(pi, q).

From Eq.(10) it can be noted that if the agent DF is limited

in space, i.e. Di(pi, q) = 0 if |pi − q| > RD ∈ ℜ+, and

so is its derivative, then the control law can be computed

exactly using only information in a neighborhood of the

agent. The integrand of the control law is in fact zero where

the derivative of the agent DF is zero. Even if this condition

is appealing, it may yield local minima. An example of this

occurrence is the case of a symmetric agent DF and constant

TDF. In this case, if the agents DFs have no common points

or do not intersect the environment boundary, integrand

results to be a symmetric function and so the control signal

is zero.
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(a) f(E(p, q)) = E(p, q, t)2

(b) f(E(p, q)) = max (0, E(p, q, t))2

Fig. 1. Local and global minima of the cost function for different positions
of two Gaussian agents that move in 1D.

V. APPLICATION EXAMPLES

The deployment problem of a swarm of agents is consid-

ered as an example of application of the presented technique.

The agents, starting from some compact initial configuration,

must spread out such that the area covered by the network

is maximized. A similar approach to solve this problem is

found in [10] using a potential-field method: the network

spreads itself throughout the environment using repulsion

forces between the agents and the environment boundary.

The network is considered homogeneous and the repulsion

forces are computed as a function of the distance between

the agents.

The control law proposed in this paper is capable of

deploying the agents in the environment taking into account

their sensing heterogeneity as well. The self-deployment

objective is specified using the following Desired DF:

D∗(q) =

{
d̄ if q ∈ P
0 otherwise

(22)

where P is a generic polyhedron, non necessarily convex,

that represents the area that the agents must cover. The

weighting function σ(q) is assumed to be constant for all

q ∈ Q. The agents spread out due to the attractive forces

generated by the error in the polyhedron. In fact, the initial

task error function is very low in the compact set where the

agents start, and larger in the rest of the polyhedron.

The final value attained by the cost function depends on

the number of agents so the value of the global optimum

is not necessarily zero. As the number of agents grows, the

value of the cost function at the global optimum decreases,

and reaches 0 only if there are enough agents to cover the

request of the D∗(q). Under some assumptions on the agent

Descriptor Functions, and for the specific choice of D∗(q)
as in Eq.(22) the following proposition holds.

Proposition 3. If the Descriptor Function of the agent

satisfies

• I1. Di (pi, q) = Di (|pi − q|) = Di (s)

• I2.
∂Di(s)

∂s
< 0, ∀s 6= 0

i.e. it is a decreasing function of the Euclidean distance s to

the agent, and if f (E (p, q)) in Eq. (7), satisfies

• I3. f (E (p, q)) , ∂f(E(p,q))
∂E(p,q) ≥ 0 if E (p, q) ≥ 0

• I4. f (E (p, q)) , ∂f(E(p,q))
∂E(p,q) = 0 if E (p, q) < 0

then if the agent starts in (or enters) a convex polyhedron, it

will not exit from the boundary.

Proof. The control law of agent i of Eq.(10) can be

rewritten as:

ui = α

∫

Q

∂Di(s)

∂s

∂s

∂pi

∂f (E (p, q))

∂E (p, q)
σ(q)dq (23)

The control law in Eq. (23) is the sum of velocity vectors

generated at each point q ∈ Q for which E (p, q) > 0. Since

s is the Euclidean distance between the agent and the point

q, the quantity ∂s
∂pi

is a vector directed from the point to the

agent position. Moreover, if E (p, q) > 0:

ui = α

∫

Q

∂Di

∂s
︸︷︷︸

≤0

∂s

∂pi

∂f (E (p, q))

∂E (p, q)
︸ ︷︷ ︸

≥0

σ(q)
︸︷︷︸

≥0

dq (24)

then the control law is the sum (integral) of vectors directed

from the agent to points q ∈ Q. Furthermore, the interior

of a convex polyhedron is a convex set, i.e. for each pair of

points within the object, every point in the straight line that

joints them is also within the object. This is true even for

the points on the boundary.

Using this definition, even if an agent reaches the boundary

of the polyhedron, the velocity vectors generated by each

point in Q are directed toward the interior. Then, once inside,

the agent does not exit form its boundaries.

�

Corollary 4. In the same assumptions of Proposition 2, if

the agent starts in (or enters) a concave polyhedron, it will

not exit from the convex hull of its vertices.

Proof. By definition, the convex hull of a set of points is

the minimal convex set containing all the points. If D∗(q)
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satisfies the conditions of Eq.(22) for a generic concave

polyhedron, these conditions are satisfied even for the convex

hull of its vertices. Then, the proof of Proposition 1 can be

applied directly to the convex polyhedron obtained with the

convex hull of the vertices.

�

In order to asses the scalability of the algorithm, sim-

ulations were performed with 5, 8 and 15 agents to be

deployed in a convex area. Fig. 2(a) shows the time histories

of the normalized cost function (left), and the normalized

area covered by the agents (right) for the three simulations.

The agent DFs are Gaussian functions, i.e. Di(pi, q) =

e−
1

4 ((q1−pi1)
2+(q2−pi2)

2), and their initial positions are in a

compact set around the origin. The area covered is computed

as the area in which the Current TDF is greater than 0.2, nor-

malized by the total area of the Desired TDF. Since the area

covered increases, the deployment task can be formulated as

an optimization problem within the DFs framework.

Fig. 2(b) shows the final deployment of the agents

achieved for the convex polyhedron.

Finally Fig. 3 shows an example of deployment of 15

heterogeneous agents in a concave environment. Swarm

heterogeneity is encoded in the parameters of the agent

Descriptor Functions: i.e., each agent has a DF, which is a

Gaussian function with an elliptical level set, with different

parameters.
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15 agents
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(a) Normalized cost functions and area covered
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(b) Contour Plot of the Final TDF

Fig. 2. Deployment in a convex area.

VI. CONCLUSIONS

The paper presents a new framework for the deployment

of a swarm of heterogeneous vehicles. The main contribution

Fig. 3. Final positions of 15 heterogeneous agents in a concave environ-
ment.

is the definitions of Descriptor Functions associated to each

agent, the swarm, and the overall mission objectives. The

stability analysis for the generic case and for the specific

case of Area Coverage are presented. The capabilities and

current limitations of the framework are discussed, together

with numerical simulations for validation purposes.
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