
RSS-Based Relative Localization and Tethering
for Moving Robots in Unknown Environments

Stefan Zickler and Manuela Veloso
Computer Science Department, Carnegie Mellon University, Pittsburgh, USA

{szickler,veloso}@cs.cmu.edu

Abstract— The LANdroids project requires robots to au-
tonomously localize, track, and follow (a task also known as
tethering) other robots or humans in an unknown environment
with limited sensing abilities. In this paper, we present a
localization and tethering approach that relies solely on wireless
signal strength and robot odometry without requiring any
known reference points in the domain. We introduce a data-
driven, probabilistic model that maps received signal strength
(RSS) values to real-world distance distributions and embed this
model in a grid-based localization algorithm that successfully
performs the LANdroids tethering task. We furthermore show,
that it is possible to improve localization through the addition
of a compass sensor and inter-robot information sharing.

I. INTRODUCTION

The LANdroids project aims to develop an intelligent
wireless mesh network consisting of multiple small, low-cost
robots [1]. Once deployed, this self-organizing robot network
can then be used as a sensing and communication platform.

One particular sub-goal of LANdroids is to support teth-
ering functionality. Tethering is the task of a robot localiz-
ing, tracking, and following a moving target (either human
or robot) in order to provide it with continuous network
coverage. Solving the LANdroids tethering problem is very
challenging for several reasons:
• Random initialization and lack of domain map.
In a LANdroids domain, robots are not provided with any
prior map of their domain. Additionally, at initialization,
all LANdroids robots are placed at random locations
with random orientations. Therefore, robots lack a shared
reference frame and are unaware of their mutual relative
positions and orientations.
• Limited sensing.
Due to their desired low-cost design, LANdroids robots
have very limited sensing abilities, providing only a
2.4GHz wireless radio, odometry feedback, and some
reactive sensing (push bump-sensor and a single short-
range IR).

To solve the tethering problem, we introduce a data-driven,
probabilistic approach that relies on the robot’s received
signal strength (RSS) as its primary means for localiza-
tion. Although developed for the LANdroids domain, our
approach is very general and should therefore also be con-
sidered applicable in other scenarios, such as mobile sensor
networks or other multi-robot tasks.

This paper is organized as follows: In Section II we
review related work. We then introduce our data-driven

probabilistic model for RSS-based ranging in Section III.
Section IV presents our grid-based localization algorithm and
its integration into the tethering behavior. Finally, we show
results of our approach in Section V, followed by concluding
remarks and ideas for future work in Section VI.

II. RELATED WORK

Much work on RSS-based localization originates from
the realm of sensor networks. Several papers cover the
problem of localizing a mobile node in relation to an existing
static network of nodes [2]. The RADAR project early on
performed WLAN-based localization of a moving user by re-
lying on signal strength readings [3], [4]. Recent approaches
have refined this technique by modeling the localization
estimate using Bayesian Methods [5]. However, all of these
approaches assume some prior sensor network configuration
knowledge, such as the locations of static wireless nodes
in the domain, or at least an environmental map with pre-
recorded observed signal strengths of static access points [6].
Even when attempting to localize nodes in a non-static sensor
network, it is typically assumed to have a subset of known
reference beacons [7]. Compared to such localization tasks,
the LANdroids domain is significantly more challenging
because there is absolutely no prior knowledge about trans-
mitter locations and because of the added task of tethering.

The challenge of the RSS-based localization problem
arises from the difficulty of extracting range information
from signal strength (see also Section III). To overcome
these issues, some work makes use of sophisticated hardware
to improve the accuracy of the ranging task. Arrays of
custom directional antennas can be used to better localize
sensor nodes using RSS [8]. Other approaches rely not only
on signal strength, but try to infer distance based on the
“time-of-flight” signal propagation time between nodes [9].
However, in the LANdroids domain, robot nodes need to
rely on single low-cost off-the-shelf omnidirectional antennas
without time-based ranging capabilities, thus requiring a
localization approach that is able to accommodate readings
from such unsophisticated hardware.

Some approaches completely abandon the idea of directly
extracting detailed distance information from RSS values,
and instead employ a boolean connectivity model [10], [11].
In these approaches, nodes are considered connected if the
RSS value lies above a certain threshold, which in turn im-
plies that a receiving node lies within a particular maximum

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 5466

range of the transmitter. Given a boolean connectivity model,
it is possible to employ a Monte Carlo localization method
to construct a probabilistic localization estimate by letting a
mobile node gather RSS samples from varying locations [12].
Our work is distinctive from these approaches because it does
not rely on boolean connectivity, but instead introduces a
data-driven model that provides a mapping from RSS values
to range distributions. Additionally, we not only solve the
localization task, but also deal with the LANdroids mobile
tethering task.

III. RSS-BASED RANGING

Our approach uses the wireless radio’s received signal
strength indicator (RSSI) to perform ranging. RSSI aims to
represent the strength of a received radio signal, but does
not deliver values in any physical unit such as mW or dBm.
Instead, RSSI provides a unitless measurement in a pre-
specified range. For all wireless receivers used in our work,
RSSI is expressed as an integer in the range from 0 to 100.

To use RSSI as a means for range estimation, we need
to first understand and model the relationship between trans-
mission distance and signal strength. Intuitively, modeling
this relationship might seem simple, as one might expect
signal strength to decrease (ideally monotonically) as the dis-
tance between transmitter and receiver increases. However,
attempts to model this signal/range relationship through a
simple mapping function (i.e. a polynomial) are likely to fail
for any real-world domain because of multiple reasons:
• Environmental Interference
Any physical structure has the potential to significantly
weaken signal strength. RSSI between two nodes can
vary greatly depending on the number of walls and other
physical structures between them. Additionally, many
environments carry sources of active wireless interference,
especially in the commonly used frequency bands, such as
2.4GHz. Given the fact that our robot is not provided with
a map of its environment a priori, a low signal strength
can either indicate a great distance between transmitter
and receiver, or simply heavy interference.
• Multipath Interference
Another reason that makes it extremely difficult to ac-
curately infer distance from RSSI is the phenomenon of
multipath interference [13]. Multipath interference occurs
if multiple instances of the same original signal wave
arrive at the receiver after traveling on multiple paths
of different length. The addition of these multiple waves
can lead to significant interference if they are received
out of phase. The typical observed result of multipath
interference is the creation of many local signal strength
peaks and valleys scattered throughout the domain.

A. Probabilistic, Data-Driven RSS/Distance Model

Due to the difficulty to accurately model the relationship
between distance and signal strength analytically, we pursue
a data-driven probabilistic approach instead. Rather than
attempting to generate a unique mapping from RSSI to
distance, our model probabilistically represents the likelihood

of a node being at a particular distance, given an observed
RSSI reading. Formally, we define the likelihood function

L(dist|rssi).

To compute this likelihood, we use an explicitly constructed
model consisting of a finite discrete set of probability distri-
butions, for the different RSSI integer values 0 to 100:

{D0, . . . , D100}.

The purpose of a distribution Di is to compute the probability
p of a receiving node being at a particular distance from
the transmitter, that is p = Di(dist). Each probability
distribution Di corresponds to a particular observed RSSI
signal strength of value i. We can now fully define L such
that

L(dist|rssi) = Drssi(dist).

Each probability distribution Di is modeled as a sym-
metric trapezoidal distribution defined by the tuple 〈µ, τ, σ〉
where, as shown in Figure 1, µ is the mean of the distribution,
τ is the radius of the trapezoid’s uniform center component
(where p = 1), and σ is the radius of the trapezoid’s linear
falloff component. Given this tuple, we can now define how
Di computes the probability p given a particular distance
dist:

p = Di(dist) =
max (0, σ −max (0, |dist− µ| − τ))

σ
.

Fig. 1. A symmetric trapezoidal probability distribution.

The trapezoidal model was chosen because it acts as a
good approximation of typically observed real world distance
distributions. Due to the various interference effects (see
Section III), such distributions tend to have a wide and nearly
uniform body without strong modal peaks, thus making
a trapezoid a much more preferable model over, e.g., a
Gaussian distribution.

B. Model Generation

To obtain a usable likelihood function L, it is required
to collect a sufficient amount of real-world data to ap-
proximate the values of 〈µ, τ, σ〉 for each distribution Di.
We do so by collecting pairs of observed RSSI values and
their corresponding ground-truth measured distance between
transmitter and receiver. In order for the resulting model to be
applicable in target domains of arbitrary configurations, this
data-set should be as extensive as possible, encompassing
the full range of transmitter/receiver distances and varying
numbers of walls between them as can be expected for any
typical LANdroids domain. Such a data-set can be generated

5467

by running multiple robot-nodes in parallel, placing them at
randomly selected locations that are carefully measured in
some global coordinate frame, and then recording RSS values
between all connected pairs. Furthermore, it is possible to
let robots drive a fixed distance (depending on odometry
accuracy) to automatically obtain additional RSSI samples
from varying ground-truth positions.

Once this dataset is obtained, we can extract the parame-
ters for each distribution Di by computing statistics over all
collected data-pairs with an RSSI value of i. We compute
the parameters 〈µ, τ, σ〉 of a particular distribution Di from
a set of n ground truth distance values d1, . . . , dn that all
occurred when an RSSI value of i was recorded. We compute
the values as follows:

µ =
min (d1, . . . , dn) + max (d1, . . . , dn)

2

τ = max
(
τmin,

max (d1, . . . , dn)−min (d1, . . . , dn)
2

)
σ = max (σmin, stddev (d1, . . . , dn))

where τmin and σmin are user-defined constants, used to
enforce a certain minimum width of each trapezoidal dis-
tribution.

C. Post Processing: Model Smoothing
Even when collecting a large dataset, one should expect

the resulting model to be noisy and possibly incomplete.
For example, there might exist gaps where no ground truth
distance measurements have been observed for a particular
RSSI value. Similarly, one might find strong fluctuations in
the parameters of neighboring distance distributions. Neither
of these effects are desirable as they essentially lead to
“overfitting” to an incomplete model. To alleviate these
problems, we perform a post-processing step that attempts
to smooth out any remaining gaps and inconsistencies in
the data model. The smoothing itself is performed through
a convolution filter that uses a multi-row sliding window to
average the parameters of neighboring distributions. During
smoothing, this filter also enforces monotonicity by ensur-
ing that the boundaries (the min and max distance values
modeled by Di) over all trapezoidal distributions Di do not
decrease as i decreases. Figure 2 shows an example of the
likelihood model before and after post-processing.

(a) Unsmoothed (b) Smoothed

Fig. 2. Plots of the RSSI/distance likelihood model before (a) and after (b)
post-processing. Each horizontal slice represents a trapezoidal distribution
Di for a particular RSSI value i from the vertical axis.

IV. LOCALIZATION AND TETHERING

A LANdroids network consists of multiple nodes. A node
in LANdroids typically refers to a mobile robot, but can
also refer to a human who is participating in the network.
A node’s state s is defined as its 2D position (x, y) and
orientation (θ) in its local coordinate frame:

s = 〈x, y, θ〉.

At initialization, each node’s local coordinates are set to
the local origin of 〈0, 0, 0〉. From a global view, nodes
are randomly placed and oriented at initialization which
implies that no two nodes are likely to share the same local
coordinate and orientation frame.

The LANdroids tethering problem is a two-node problem
involving a tracker node (the node performing the localiza-
tion and tethering) with state sa and a trackee node (the node
that is being localized and followed) with state sb.

To perform the tethering task, the tracker robot node needs
to first establish the relative location of the trackee node
that it is supposed to tether to. To establish this location,
our approach makes use of continuous measurements of
RSSI in combination with the robot’s controlled driving and
odometry reading abilities.

Our localization approach uses a discrete probability grid
to model the position estimates of the trackee node. We de-
fine the localization grid G as a set of k cells {c0, . . . , ck−1},
arranged in a 2D grid, w cells wide and h cells high (such
that wh = k). Each cell ci contains a tuple 〈l, p〉 where
l is the 2D location of the center of the given cell in the
tracker node’s local coordinate frame, p is the probability that
the trackee robot is located within that given cell (initially,
p = 1/k for all cells). Note that, for all of our algorithms
we use subscript notation, such as li or pi, to refer to the
parameters of the i-th cell. We furthermore use the dot
symbol to refer to a member of a data-structure (i.e. li.x
refers to the x component of the location vector li).

Fig. 3. A visualization of distance distributions from multiple RSSI
measurements ((a)-(c)) and the resulting progression of the probability grid
((d)-(f)). Darker color indicates higher probability. Dashed lines indicate the
origin in the tracker’s coordinate system. The square indicates the trackee’s
true location.

Figure 3 shows a visual example of how the probability
grid is used for localization. In this example, the tracker
node takes RSSI measurements from three different locations
(annotated 1,2,3). According to the likelihood model L, each

5468

measured RSSI value rss provides a distance distribution
Drss, effectively defining a “donut”-shaped probability mass
of where the trackee is likely located (see (a)-(c)). Although
each independent observation is rather uninformative, in-
tegrating the sequence of observations into the probability
grid via a Bayesian update function (see (d)-(f)), yields a
final distribution that approximates the tracker’s true position
much more closely (see (f)).

We use the ProbabilityUpdate function (see Algorithm 1)
to integrate new RSSI observations into the probability
grid by performing the Bayesian update step. To perform
the Bayesian update, the algorithm multiplies each grid
cell’s prior probability pi with its respective result of the
likelihood function L (given the cell’s distance from the
tracker dist and the observed RSSI value). The entire
probability grid is then normalized, thus resulting in the
full posterior probability distribution. Note, that to ensure
numeric stability, and to prevent the grid from becoming
accidentally irreversibly localized on the wrong target, we
introduce a user-defined minimum cell probability ε that is
enforced during the probability update.

Algorithm 1: ProbabilityUpdate
Input: rss-value: rss; minimum cell-probability: ε.
for i← 0 to k − 1 do

distance←
p

(li.x− sa.x)2 + (li.y − sa.y)2;
pi ← pi L(distance|rss);
pi ← max(pi, ε);

norm←
“Pk−1

i=0 pi

”
;

for i← 0 to k − 1 do
pi ← pi/norm;

To retrieve the current localization estimate from the grid,
we introduce the GetLocation function (see Algorithm 2)
that is able to retrieve the grid’s probability peak with sub-
cell-width precision. This algorithm first finds the cell with
the peak probability cmax idx and then computes a location
offset vector that incorporates the distances and current
probabilities of all 8-connected cell neighbors through linear
interpolation. Adjusting the peak cell’s center location with
this offset vector provides us with the final 2D location
estimate final loc.

Algorithm 2: GetLocation
max prob← max(p0, . . . , pk−1);
max idx← arg max

i∈(0,...,k−1)

(pi);

final offset← (0, 0);
vsum← 0;
foreach neighboring cell cj of cmax idx do

v← (pj/max prob);
vsum← vsum + v;
final offset← final offset + (v |lj − lmax idx|);

final offset← final offset/vsum;
final loc← lmax idx + final offset;
return final loc;

Besides finding the localization estimate, it is also impor-

tant to model its confidence. For this purpose, the GetUncer-
tainty function (see Algorithm 3) computes the location
uncertainty, acting as a global indicator for how dispersed
the grid’s probability mass is in relation to its peak.

Algorithm 3: GetUncertainty
max idx← arg max

i∈(0,...,k−1)

(pi);

return
qPk−1

i=0 pi

`
(li.x− lmax idx.x)

2 + (li.y − lmax idx.y)
2´;

Given the introduced algorithms, we now define the core
localization and tracking behavior TetherBehavior (see Al-
gorithm 4) that runs on the tracker robot. The algorithm
begins by assuming that it has no initial knowledge of the
trackee’s orientation frame nor its location. Provided that a
wireless connection between the tracker and trackee exists,
the trackee is able to send its odometry pose (in its own local
- and possibly unknown - orientation frame) that is stored
in sb. We then enter the main loop. Here, s′b is the pose of
the trackee from the previous loop iteration, whereas sb is
the current trackee pose. If there is no knowledge of the
trackee’s orientation frame (framesAreSynched = false),
then we model the motion of the trackee by applying a
circular Gaussian blur on the probability grid with a radius
of the odometry distance driven by the trackee plus some
additional user-defined odometry uncertainty constant γ. If
however, the orientation frames between tracker and trackee
have been synchronized (i.e., through the use of an added
compass), then we can model the motion of the trackee more
deterministically by shifting the entire probability grid by the
relative translation component of the trackee motion since the
last update. Odometry uncertainty is again modeled explicitly
by blurring the probability distribution by a radius of γ.

Algorithm 4: TetherBehavior (Tracker Robot)
framesAreSynched←false;
sb ←ReceiveTrackeePose();
repeat

s′b ← sb;
sb ←ReceiveTrackeePose();
if framesAreSynched then

ShiftGrid(sb.x− s′b.x, sb.y − s′b.y);
BlurGrid(γ);

else

BlurGrid(
q

(sb.x− s′b.x)
2 + (sb.y − s′b.y)

2+γ);

loc←GetLocation();
if GetUncertainty() < υ then

DriveToward(loc);
if haveCompass & (dist(sa,loc) < δ) then

SyncOrientationFrames();
framesAreSynched←true;

else
ExploreGrid();

ProbabilityUpdate(MeasureRSSI(),ε);

until aborted ;

After updating the grid with the trackee’s latest odom-

5469

etry, the algorithm then extracts the current peak trackee
location estimate (loc) and selects a particular robot mo-
tion behavior to execute. If the trackee is not sufficiently
localized then the robot runs a simple exploration behavior,
ExploreGrid(), that will continuously drive the robot
through the grid to collect more RSSI localization samples.
If the trackee is considered sufficiently localized (that is,
the uncertainty value is below some threshold υ) then the
robot drives toward this location, essentially attempting to
stay tethered to the trackee.

If both the tracker and trackee are equipped with an
orientation sensor (e.g., compass) then the algorithm attempts
to synchronize their two orientation frames. To perform this
synchronization step, both nodes need to be sufficiently close
to each other to minimize any local interference effects of
each compass sensor’s magnetometer.

After executing its motions, the algorithm updates the
probability grid with a new RSSI observation and then
continues to repeat the loop, unless aborted by a user.

V. EXPERIMENTAL RESULTS

We tested our approach both in simulation and on real-
world LANdroids robots. The algorithm was implemented
in the Intelligent Automation, Inc. (IAI) Distributed Control
Framework (DCF) [14]. DCF provides a complete physical
agent control infrastructure, allowing the integration of the
robot behaviors and its related tasks such as inter-robot
messaging and RSSI readout. Additionally, DCF comes with
a complete simulation framework that includes simulation of
RSS interference effects based on walls, as well as simulation
of odometry uncertainty and physical collisions.

Quantitatively evaluating our algorithm’s localization pre-
cision requires ground truth position data for both the tracker
and trackee, obtained while the algorithm is running. This is
best achieved in DCF’s simulated execution environment as it
provides global access to the true positions of the robots that
can then be compared with the localization estimate obtained
by our algorithm.

We performed simulated localization experiments with and
without a global orientation sensor on the robots. For our
experiments, the trackee was set up to remain stationary until
initially localized by the tracker. Once localized, the trackee
then starts to move, thus requiring the tracker to continuously
re-localize and follow it. Figure 4 shows the results obtained
from simulation without the use of a orientation sensor. In
this example, the trackee is considered sufficiently localized
at approximately 50 seconds, after which it starts to move
and the tracker is trying to follow it. Note, that while the
true distance between tracker and trackee typically only
reaches about 3m, the localization error often peaks highly at
about 7m. Figure 5 shows results with the use of orientation
sensing. Enabling this synchronization of orientation frames
dramatically improves the localization accuracy of the algo-
rithm, now typically remaining in range of 1m during the
mobile tracking stage.

The reason for this improvement becomes clear when
we look at the probability grid for both scenarios. Without

Fig. 4. Localization without orientation sensing.

Fig. 5. Localization with orientation sensing.

synchronized orientation frames, the odometry information
that is shared by the trackee is relatively uninformative, thus
requiring us to apply the BlurGrid() function repeatedly,
leading to a very uncertain localization (see Figure 6 (a)-
(c)). With orientation sensing however, the peak of the grid’s
probability distribution is well maintained as the trackee’s
odometry information can be accurately applied to the prob-
ability grid (see Figure 6 (d)-(f)).

A simplified real-world tethering demonstration of our
algorithm is shown in the video accompanying this paper
(also available at http://www.cs.cmu.edu/˜szickler/
landroids/). Unlike the simulated experiments, this real-
world demonstration was limited to a large single-room
environment to help overcome some remaining limitations in
the real-world implementation of our approach. One major
such limitation is that ExploreGrid and DriveToward
are mostly reactive and currently do not perform any so-
phisticated mapping of walls and other obstacles. Due to
that fact, it is extremely challenging for our robot to drive
to an arbitrary grid-cell without accumulating an excessive
odometry-error or getting physically “stuck” due to some
real-world obstacle. However, our single-room testing en-
vironment still contained large variances of RSS (due to
multipath) and required the robot to reactively navigate to
reach all steps of the tethering sequence.

Figure 7 shows the two LANdroids robots used for
the real-world tethering test of our algorithm. For optional

5470

(a) (b) (c) (d) (e) (f)

Fig. 6. Two time series of tracking simulation screenshots of a moving target without ((a)-(c)) and with ((d)-(f)) synchronized orientation information.
The node (very small grey circle) with the IP 172.25.1.2 is the tracker, the other node is the trackee. Blue shading indicates grid cell probabilities. Cell
width is 2m. A small green dot indicates the interpolated predicted position of the trackee.

orientation sensing, each robot carries a Hitachi HM55B
compass module. Using the likelihood model shown in
Figure 2 (b) and a grid of 400 cells, each with a width of
1.6m, the algorithm performed efficiently, even on the robot’s
limited computational hardware. In the real-world test, local-
ization of a static target took approximately 1 minute. The
magnitudes of visible localization errors encountered during
real-world tethering were similar to the ones obtained in
simulation, resulting in a successful tracking and following
behavior.

Fig. 7. Two LANdroids robots with added compasses (mounted on tall
cardboard pipes to reduce magnetic interference from ground and robot).

VI. CONCLUSION

We introduced a data-driven, probabilistic model for map-
ping RSSI signal strength values to range distributions. We
presented algorithms that employ this model to perform RSS-
based localization and tethering between two mobile nodes
that are initialized without a shared coordinate frame and
that are limited in their sensing capabilities. We introduced an
optional extension to the algorithm allowing the synchroniza-
tion of the nodes’ orientation frames to improve localization
accuracy. Finally, we tested our approach, both in simulation
and on real-world hardware. For future work, it would be
interesting to construct richer behaviors that combine SLAM-
style mapping techniques with the localization and tethering
work presented in this paper. Furthermore, extending our
approach to more than two nodes (multiple trackers and/or
trackees) is an interesting research problem.

ACKNOWLEDGEMENTS

This research was partly sponsored by Intelligent Au-
tomation, Inc. (IAI) under subcontract no. 654-1, and by

United States Department of the Interior under Grant No.
NBCH-1040007. The views and conclusions contained in
this document are those of the authors only.

We would like to thank IAI for performing parts of the
data collection tasks and for providing access and support to
the DCF framework and robot hardware.

REFERENCES

[1] M. McClure, D. Corbett, and D. Gage, “The DARPA LANdroids
program,” in Proceedings of SPIE, vol. 7332, 2009, p. 73320A.

[2] N. Patwari, J. Ash, S. Kyperountas, A. Hero Iii, R. Moses, and
N. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4,
pp. 54–69, 2005.

[3] P. Bahl and V. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” in IEEE infocom, vol. 2, 2000, pp. 775–
784.

[4] P. Bahl, V. Padmanabhan, and A. Balachandran, “Enhancements to
the RADAR user location and tracking system,” Microsoft Research,
2000.

[5] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and
L. E. Kavraki, “Practical robust localization over large-scale 802.11
wireless networks,” in MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and networking. New
York, NY, USA: ACM, 2004, pp. 70–84.

[6] J. Biswas and M. Veloso, “WiFi Localization and Navigation for Au-
tonomous Indoor Mobile Robots,” in IEEE International Conference
on Robotics and Automation, 2010.

[7] P. Pathirana, N. Bulusu, A. Savkin, and S. Jha, “Node localization
using mobile robots in delay-tolerant sensor networks,” IEEE Trans-
actions on Mobile Computing, vol. 4, no. 3, pp. 285–296, 2005.

[8] J. Ash and L. Potter, “Sensor network localization via received signal
strength measurements with directional antennas,” in Proceedings
of the 2004 Allerton Conference on Communication, Control, and
Computing, 2004, pp. 1861–1870.

[9] S. Lanzisera, D. Lin, and K. Pister, “RF Time of Flight Ranging
for Wireless Sensor Network Localization,” Workshop on Intelligent
Solutions in Embedded Systems (WISES), June 2006.

[10] G. Giorgetti, S. Gupta, and G. Manes, “Optimal RSS threshold selec-
tion in connectivity-based localization schemes,” in Proceedings of the
11th international symposium on Modeling, analysis and simulation
of wireless and mobile systems. ACM New York, NY, USA, 2008,
pp. 220–228.

[11] G. Giorgetti, S. K. Gupta, and G. Manes, “Localization using signal
strength: to range or not to range?” in MELT ’08: Proceedings of the
first ACM international workshop on Mobile entity localization and
tracking in GPS-less environments. New York, NY, USA: ACM,
2008, pp. 91–96.

[12] L. Hu and D. Evans, “Localization for mobile sensor networks,” in
Proceedings of the 10th annual international conference on Mobile
computing and networking. ACM New York, NY, USA, 2004, pp.
45–57.

[13] W. C. Jakes, Microwave Mobile Communications, 2nd ed. Wiley-
IEEE Press, 1994, ch. 1, pp. 11–78.

[14] V. Manikonda, P. Ranjan, and Z. Kulis, “A Mixed Initiative Controller
and Testbed for Human Robot Teams in Tactical Operations,” AAAI
Fall Symposium, Technical Report FS-07-06, 2007.

5471

