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Abstract—Differential-drive mobile robots are usually
equipped with video-cameras for navigation purposes. In order
to ensure proper operational capabilities of such systems,
several calibration steps are required to estimate the following
quantities: the video-camera intrinsic and extrinsic parameters,
the relative pose between the camera and the vehicle frame and,
finally, the odometric parameters of the vehicle. In this paper
the simultaneous estimation of the above mentioned quantities
is achieved by a systematic and effective calibration procedure
that does not require any iterative step.
The calibration procedure needs only on-board measurements

given by the wheels encoders, the camera and a number of
properly taken camera snapshots of a set of known landmarks.
Numerical simulations and experimental results with a mobile
robot Khepera III equipped with a low-cost camera confirm
the effectiveness of the proposed technique.

I. INTRODUCTION

In the case of differential-drive mobile robots equipped with

a video-camera, several calibrations problems need to be

tackled: namely, the odometry calibration, the video-camera

calibration and the relative vehicle-camera pose calibration.

Odometry is the reconstruction of the mobile robot con-

figuration, i.e., position and orientation, resorting to the en-

coders’ measurements at the wheels. Starting from a known

configuration, the current position and orientation of the

robot is obtained by time integration of the vehicle’s velocity

corresponding to wheels’ velocity. Video-camera calibration

concerns both the intrinsic parameters (e.g., the focal length)

and the extrinsic parameters (e.g., the relative pose with

respect to an inertial frame). It is a mature topic on which

a wide and assessed literature exists [8]. Moreover, when

a camera is mounted on a robot, an additional calibration

procedure is required; namely, the so-called hand-eye cal-

ibration [11], which is aimed at determining the relative

pose between the camera and a robot-fixed frame. Although

its name is inherited from the specific problem of a camera

mounted on the end-effector of a robot manipulator, this step

is, of course, required for a camera mounted on a mobile

robot as well.

Several research efforts have been focused on the above

mentioned calibration problems, although they have been

tackled individually; e.g., for odometric calibration, external

video-cameras (already calibrated) have been used, while
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hand-eye calibration is usually solved by resorting to al-

ready calibrated robots. Concerning the odometric calibra-

tion, starting from [17], there has been an intense research

activity; one of the most used algorithms is presented in [3].

Recently, in [6], an algorithm, based on the boundedness

property of the error for Generalized-Voronoi-Graph-based

paths, has been proposed and experimentally validated. In

[7] it is proposed to drive the robot through a known

path and then evaluate the shape of the resulting path

to estimate the model parameters. The works [13], [14]

present a method to identify two systematic and two non-

systematic errors. In [9], [10], the error propagation in

vehicle odometry is analytically discussed and two main

results are given: quadratic dependency of the estimation

error with respect to the distance traveled and existence

of path-independent systematic errors. In [2] a calibration

method aimed at identifying a 4-parameter odometric model

has been proposed that shows a linear relation between the

unknowns and the measurements; it is thus possible the

use of linear estimation tools. In [1] the linear estimation

approach developed in [2] is further improved so as to

estimate the physical odometric parameters, thus yielding a

3-parameter model. It is worth noticing that all the methods

above require external measurement systems such as, e.g.,

calibrated video-cameras or ranging sensors. Recently, in [4]

simultaneous calibration of odometry and range sensors is

achieved without resorting to external sensors.

In this paper simultaneous calibration of the intrinsic and

extrinsic video-camera parameters, hand-eye and odometric

parameters is achieved by a novel, systematic and non-

iterative calibration procedure. This procedure only needs

on-board measurements given by the wheels encoders, the

camera and a number of properly taken camera snapshots of

a set of landmarks whose position is known in the inertial

frame.

Moreover, differently from other approaches, no specific path

is required to be followed: the vehicle is asked to roughly

move around the landmarks and acquire a minimum of three

snapshots at some approximatively given configurations. In

addition, since the whole calibration procedure does not use

external measurement devices, it can be used to calibrate, on-

site, a team of mobile robots with respect to the same inertial

frame, given by the position of the camera calibration tool.

Finally, numerical simulations and experimental results with

a mobile robot Khepera III equipped with a low-cost camera

confirm the effectiveness of the proposed technique.
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II. BACKGROUND

A. Variables definition

All relevant quantities are listed in the following table (see

also Figure 1).

Σi − {oi, xi, yi, zi} Inertial frame

Σv − {ov, xv, yv, zv} Vehicle-fixed frame

Σc − {oc, xc, yc, zc} Camera-fixed frame

x, y, θ vehicle configuration

v, ω vehicle linear/angular velocities

ωR, ωL right/left wheel angular velocities

θR, θL right/left wheel angular position

rR, rL, b right/left wheel radii, wheelbase

αR, αL intermediate odometric variables

Rx(α) rotation of α around the x axis

R
j
l ∈ IR3×3

rotation from frame l to frame j

tl
lj ∈ IR3 vector of the origin of frame j

with respect of the origin

of frame l expressed in frame l

A
j
l ∈ IR4×4 homogeneous transformation

from frame l to frame j
x homogeneous vector of x

pi ∈ IR3
landmark expr. in inertial frame

pc ∈ IR3
landmark expr. in camera frame

[pu pv]
T pixel in the image plane

fc ∈ IR2
camera focal length expr. in pixel

kr radial distortion coefficient

P number of different poses

N = P (P − 1)/2 possible combinations of poses

B. Unicycle kinematics

Let x and y the coordinates of the origin of Σv, expressed

in the frame Σi, and θ the heading angle between the x-axes
of Σv and Σi; then, the robot kinematics is given by











ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω .

(1)

It can be recognized that (see Figure 1) the body-fixed

components, v and ω, of the robot velocity are related to

the left and right angular velocity of the wheels, ωL and ωR,

respectively, by










v =
rR

2
ωR +

rL

2
ωL

ω =
rR

b
ωR − rL

b
ωL,

(2)

in which rR and rL are the radii of the right and left wheels,

respectively, and b is the length of the wheels axis.

C. Frames relationships in different vehicle’s poses

It is assumed that the vehicle is equipped with an on-board

camera, with a corresponding frame Σc.

Let us further define as Rc
i ∈ IR3×3 the rotation matrix

from the inertial frame to the camera frame, and as tc
ci ∈ IR3

the vector of the origin of the inertial frame with respect

to the origin of the camera frame, expressed in the camera

x

y

θ

v

XvYv

bω

rL

rR

Fig. 1. Top-view sketch of a differential-drive mobile robot with relevant
variables.

frame. It is possible to define the following homogeneous

transformation matrix

Ac
i =

[

Rc
i tc

ci

0
T 1

]

(3)

where 0 is the (3 × 1) null vector and the homogeneous

vector is given by

pc =
[

pcT 1
]T

. (4)

The following holds

pc = Ac
ip

i. (5)

Matrices Av
i and Av

c can be defined in the same way.

Let us now consider different vehicle poses, where the term

pose denotes a configuration at which the vehicle is still; a

numbered subscript univocally indicates a specific pose. Let

us now also introduce the homogeneous transformations Ac2
c1

and Av2
v1 (see Figure 2), where the subscripts 1 and 2 denote

two different poses.

oiov1

oc1

ov2

oc2

x

x

x

x x

y

y
y

y y

z

zz

z z
pu

pu pv

pv

pi

Av
c

Av
c

Ac2
c1

Av2
v1

Fig. 2. Sketch with the frames definition

It can be shown that [11], [15]:

Av
cA

c2
c1 = Av2

v1A
v
c , (6)
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where the subscripts 1 and 2, denoting the poses, have been

omitted in Av
c , since it is constant. Equation (6) can be

decomposed into the rotational and translational parts as

follows

Rv
cR

c2
c1 = Rv2

v1R
v
c (7)

Rv
ctc2

c2c1 − tv2
v2v1 = Rv2

v1t
v
vc − tv

vc. (8)

Assuming that Ac
i is known (it can be obtained, e.g., via a

vision calibration procedure) for all the poses, it is possible

to write

Ac2
c1 = Ac2

i Ai
c1. (9)

As noticed in, e.g., [5], the motion of the vehicle, which

is constrained to be planar, does not allow to identify all

the unknowns of eq. (6) (or, equivalently, in eqs. (7),(8)).

However, the following derivation, inspired by the work

in [5], shows how to project (7) to determine the relevant

quantities on the basis of the available motion variables.

In detail, the vehicle rotates only around the zi-axis of the

inertial frame, i.e.,

Rv2
v1 = Rz(θ), (10)

where Rz(θ) is an elementary rotation around the z axis.

Hence, eq. (7) becomes:

Rc
vRz(θ)R

v
c = Rc2

c1. (11)

It is possible to represent the rotation matrix Rv
c in terms

of elementary rotations (Euler angles) ZYZ, i.e., Rv
c =

Rz(α1)Ry(α2)Rz(α3). Hence, the following holds

Rz(−α3)Ry(−α2)Rz(−α1)Rz(θ)Rz(α1)Ry(α2)Rz(α3) = R
c2
c1.

(12)

It is straightforward to demonstrate that the above equation

can be simplified as

Rz(−α3)Ry(−α2)Rz(θ)Ry(α2)Rz(α3) = Rc2
c1. (13)

The left-hand side of (13) corresponds to the definition

of axis-angle representation of the orientation [16] (with

the proper angles’ sign). Assuming Rc2
c1 known, all the

characteristic quantities of the left-hand side of (13), i.e.,

θ, α2 and α3, can be computed. In detail [16]:

θ = cos−1

(

r11 + r22 + r33 − 1

2

)

, (14)

where rij denotes the generic element of Rc2
c1. The rotation

axis

r =





rx

ry

rz



 =
1

2 sin θ





r32 − r23

r13 − r31

r21 − r12



 (15)

allows to compute α2 and α3:

α2 = atan2(
√

r2
x + r2

y , rz) (16)

α3 = atan2(ry ,−rx). (17)

From eq. (13) it can be noticed that θ 6= 0 is required to

avoid a trivial equation satisfied for every axis-angle couple.

The physical interpretation is obvious: a nontrivial vehicle

rotation is needed to estimate the relevant variables of the

left hand side of (13).

D. Pinhole model

The camera model corresponds to a standard pin-hole

projection with radial distortion truncated at the first term

as reported in [8]. Let

f c =
[

fc,u fc,v

]T ∈ IR2

be the effective focal lengths,

cc =
[

cc,u cc,v

]T ∈ IR2

be the principal point, both expressed in pixels, and kr be

the radial distortion coefficient. The vector

pc =
[

xc yc zc
]T ∈ IR3

is a point in the camera reference frame, expressed in meter.

The pin-hole projection is defined by the following equations

pu = fc,u

{

1 + kr

[

(

xc

zc

)2

+

(

yc

zc

)2
]}

xc

zc + cc,u

pv = fc,v

[

1 + kr

[

(

xc

zc

)2

+

(

yc

zc

)2
]}

yc

zc + cc,v ,

where pu and pv are the pixels coordinates. Of course,

the given point can be expressed in a different reference

frame, e.g., the inertial frame, by the known relation (in

homogeneous coordinates)

pi = Ai
cp

c.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

Let us assume that the following sensing devices are

available

• incremental or absolute encoders mounted at the shafts

of both vehicle wheels;

• a video-camera mounted on the vehicle body.

Additional (external) sensing devices are not necessary.

Moreover, it is assumed that a set of landmarks, of known

inertial positions, are provided.

It is required to calibrate, simultaneously, the vehicle’s

odometry (3 parameters: rR, rL and b), the intrinsic camera

parameters (3 parameters: fc and kr) and the camera-vehicle

homogeneous transformation (the 6 independent parameters

in Av
c ). Also, the extrinsic camera parameters (the 6 inde-

pendent parameters in A
cj
i for pose j) are needed.

The solution consists in moving the robot in P configurations

(poses); in each pose an image of the landmarks is acquired,

during the motion the encoders data are recorded.

The following steps, detailed in next subsections, are then

implemented: camera calibration for each pose, estimation of

two suitably defined intermediate odometric parameters, es-

timation of angles α2, α3 in Rv
c , estimation of the remaining

parameters.
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A. Step 1: Camera calibration

For each of the P poses an independent camera calibration

procedure is set-up. The intrinsic parameters fc and kr, as

well as the homogeneous transformation matrices A
cj
i for

j = {1, . . . , P}, are then estimated. Vision calibration is

an assessed topic in the literature and the several effective

algorithm can be adopted; in this paper the calibration is

performed with an algorithm based on the minimization of a

proper objective function by resorting to the Gauss-Newton

method, see, e.g., [12].

It is worth noticing that, once matrices A
cj
i are estimated,

all the matrices Ack
cj (with j, k = {1, . . . , P}), expressing

the relative configuration between poses j and k can be

computed.

B. Step 2: Estimation of intermediate odometric parameters

In order to obtain a linear-in-the-parameters relationship

describing the vehicle odometry, the following parameters

are defined [1]

αR =
rR

b
, αL = −rL

b
, (18)

which implies rR = −αR

αL
rL. Eq. (18) allows to rewrite the

angular velocity as follows

ω = αRωR + αLωL . (19)

By integrating (19) between time instants t1 = 0 and t2 =
t, and assuming, without loss of generality, θ(0) = 0, one
obtains

θ(t) = αR

∫ t

0

ωR(τ)dτ + αL

∫ t

0

ωL(τ)dτ , (20)

which can be rewritten as

θ(t) = αRθR(t) + αLθL(t) , (21)

where θR(t), θL(t) represent the encoder positions of the

right and left wheel, respectively. The linear relationship

between the coefficients αR, αL and θ is obvious; in fact, at

the generic time instant t = ti it is possible to write

θi = Φθi

[

αR

αL

]

, (22)

with θi = θ(ti) and Φθi
=

[

θR(ti) θL(ti)
]

.

Given N different couple of poses (j, k), the angles θi can

be measured from the relative camera orientation matrix (i.e.,

Rck
cj ) by using eq. (14) in Section II-C and considering that

the camera and vehicle frames perform the same orientations

around tha vertical inertial axis zi. By collecting N ≥ 2
samples θi, equation (22) gives







θ1

...

θN






=







Φθ1

...

ΦθN







[

αR

αL

]

= Φθ

[

αR

αL

]

. (23)

The reconstruction error over the angle data collected in the

N samples is then minimized in a least-squares sense by

estimating the unknown parameters αR and αL as

[

α̂R

α̂L

]

=
(

Φ
T

θ Φθ

)

−1

Φ
T

θ







θ1

...

θN






. (24)

It must be noticed that P ≥ 3 poses are required to

perform this step, so as to obtain N ≥ 2 samples of θ.
In addition, it can be easily verified that, if the measured

rotations angles are equal or multiple of each other, the

regressor is numerically badly scaled. From a practical point

of view, this is simply avoided by selecting asymmetric poses

around the landmarks.

C. Step 3: Estimation of α2 and α3

Angles α2 and α3 in (13) can be computed from matrix

Rck
cj , taken in different couple of poses (j, k), by using

eqs. (15)–(17) in Section II-C.

It must be noticed that at least P = 2 poses are required

to estimate r, α2 and α3. Of course, a larger number of

poses may be exploited by properly combining the various

estimations.

D. Step 4: Estimation of α1, tv
vc and rL

In order to estimate the last angle α1 in Rv
c , tv

vc (only

the planar components) and rL, eq. (8) has to be used. The

unidentifiability of the vertical component of tv
vc (i.e., along

the z-axis of the inertial frame) can be understood by direct

observation of eq. (8), since the third equation is identically

satisfied (see [5]).

Let us now rewrite some of terms to better appreciate

the dependency from the unknown variables. Vector tc2
c2c1

is known from the step 1, i.e., the vision calibration, by

resorting to the relationship (9). The rotation matrix Rv
c ,

expressed in terms of three elementary rotations Rv
c =

Rz(α1)Ry(α2)Rz(α3), is a function of the unknown α1,

since α2 and α3 are already available from step 3. Vec-

tor tv2
v2v1 represents the vehicle displacement between two

generic poses, expressed with respect to the final frame.

Integration of eq. (1) gives the displacement expressed in the

initial pose, tv1
v2v1. Namely, as shown in [1], the following

discrete-time equations for the position displacement can be

devised from (1)

[

xk+1 − xk

yk+1 − yk

]

=
T

2











„

−

αR

αL

ωR,k+ωL,k

«

cos
“

θk+Tωk/2
”

„

−

αR

αL

ωR,k+ωL,k

«

sin
“

θk+Tωk/2
”











rL,

where the subscript k denotes the k-th time sample and T
is the sampling period. Clearly, the above equation defines a

linear mapping between rL and the position displacement. In

particular, the relationship between the kinematic quantities

at the initial time step (corresponding to pose 1), k = 0, and
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final time step (corresponding to pose 2), k = K , is





xK − x0

yK − y0



=
T

2

















−αR

αL

K−1
∑

i=0

ωR,ici +
K−1
∑

i=0

ωL,ici

−αR

αL

K−1
∑

i=0

ωR,isi +

K−1
∑

i=0

ωL,isi

















rL, (25)

where ci = cos
(

θi + Tωi/2
)

and si = sin
(

θi + Tωi/2
)

. It

is worth noticing that vehicle’s orientation angles θi can be

computed, being αR and αL already identified.

Eq. (25) can be rewritten compactly as

tv1
v1v2 =





β1

β2

0



 rL, (26)

with an implicit definition of the two coefficients β1 and β2.

Eq. (8) can now be rewritten as follows

Rv
ctc2

c2c1 + Rv2
v1





β1

β2

0



 rL −
(

Rv2
v1 − I

)

tv
vc = 0. (27)

The first two components of the above equation are those to

be considered for the estimation of the unknown parameters.

Indeed, the left-hand side of the above equation contains

Rv
c , that is nonlinear with respect to α1. However, the

term Rv
ct

c2
c2c1 can be rewritten in a form linear in sin(α1)

and cos(α1). Hence, the first two components of eq. (27) can

be rewritten in a form linear in the unknown parameters

[

cθβ1 − sθβ2 1 − cθ sθ a −b
sθβ1 + cθβ2 −sθ 1 − cθ b a

]













rL

tvvc,x

tvvc,y

cα1

sα1













=0, (28)

with a = cα2
cα3

tc2c2c1,x−cα2
sα3

tc2c2c1,y+sα2
tc2c2c1,z and b =

sα3
tc2c2c1,x+cα3

tc2c2c1,y.

Eq. (28) can be written for each of the N available

combination of poses, giving

Φζ = 0, (29)

where Φ ∈ IR2N×5. Moreover, ζ is subject to the constraint

imposed by the relation c2
α1

+s2
α1

= 1, leading to ζ2
4+ζ2

5 = 1.
It can be noticed that eq. (29) implies that Φ cannot

be a full rank matrix; otherwise, the only solution to (29)

would be the trivial one (i.e., ζ = 0), which is not possible,

given the physical meaning of the parameters in ζ. Hence,

rank(Φ) < 5. On the other hand, it can be shown that, by

suitably selecting the poses, rank(Φ) = 4. In conclusion,

rank(Φ) = 4; thus, Φ has a 1-dimensional null space, which

can be determined by computing the orthonormal (5 × 5)
matrix, V , of the input singular vectors. This matrix is a

byproduct of the singular values decomposition (SVD) of

Φ. In detail, the 5th column of V , v5, spans the null space

of Φ. Hence, the solution to (29) has the form ζ∗ = κv5,

with κ a constant value to be determined. Among the infinite

solutions the one of interest is the sole value that satisfies

the constraint ζ2
4 + ζ2

5 = 1, which can be easily computed

by choosing κ = 1√
v2

5,4+v2

5,5

.

Once rL is known, it is trivial to obtain rR and b from (18):

r̂R = − α̂R

α̂L

r̂L, b̂ = r̂R

α̂R
or b̂ = − r̂L

α̂L

. (30)

IV. EXPERIMENTS

Due to space constraint no simulation results will be

presented in detail. Nevertheless, several simulations have

been carried out, varying, e.g., the number of poses and the

sample time T in eq. (25), showing as, for T = 0.02s (a

realistic value for Khepera III robots), 5-6 poses are enough

to get a relative error of 0.1% on the odometry parameters,

and 1% on the vehicle-camera roto-translation matrix over a

0.25 average pixel error in the calibration procedure.

The experimental setup is composed by a Khepera III dif-

ferential drive robot manufactured by K-TEAM Corporation

and equipped with a Linux embedded operating system, a

standard Logitech QuickCam Web Camera with maximum

resolution 640x480, a WIFI communication card that allows

to communicate with a standard Pc and two 0.1302deg
resolution encoders. The camera calibration is performed

via a 6-sided prism, whose base and height dimensions are

0.25m x 0.25m and 0.2m respectively (see Figure 3). On

Fig. 3. The experimental setup.

each of the four lateral faces of the calibration box, a CAD

designed grid of 135 markers has been attached in such a

way the markers positions are known in the box reference

frame (i.e. the inertial reference frame).

In order to implement the proposed algorithm, the robot

starts from a roughly known initial configuration towards P
via points driven only by odometry or by a wireless emu-

lated joystick in the case of completely unknown odometry

parameters or long paths; at each via point a picture of the

box is taken and the odometry data required by eqs. (23)–

(25) are saved; in light of the simulation results, in our

experiments a 20 via points path has been chosen (i.e.,

P = 20 poses) letting the robot move many times around

the calibration box. With regards to the camera calibration,

although the inexpensive chosen model, the average pixel

error is 0.5 pixels, corresponding to few millimeters over an

average 0.6m x 0.6m scene. Moreover, the mean values of

the intrinsic camera parameters are fc,u = 1013, fc,v = 1024
and kr = 2·10−7 with a very small variance around the mean

taking into account the camera model.

Figure 4 shows the estimated odometry parameters r̂L, r̂R

and b̂ over the number of poses.
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Number of poses

Number of poses

r̂L
r̂R

b̂

Estimated odometry parameters (in meters)

0.087

0.089

0.09

0.091

0.088

0.0195

0.02

0.0205

0.021

0.0215

0.022

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

Fig. 4. Odometry parameters estimation over the poses number. On the
top: estimated wheels axis length. On the bottom: estimated wheel radii.

It can be noticed how the estimated odometry parameters

converge to steady values (i.e. r̂L ≈ 0.0208m, r̂R ≈
0.0209m and b̂ ≈ 0.0891m). With regards to the the

vehicle-camera roto-translation matrix Â
v

c , Figure 5 shows

the translation components t̂vvc,x, t̂vvc,y and the ZYZ euler

angles α̂1, α̂2, α̂3 corresponding to the rotation matrix R̂
v

c

over the poses number; the vectors have been shifted towards

zero to reduce the y-axis range and achieve a better view of

the parameters’ trend.
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Fig. 5. Â
v

c parameters over the poses number. On the top: translational
component. On the bottom: ZYZ euler angles corresponding to the rotation

matrix R̂
v

c .

From Figure 5, it can be noticed as, also in this case,

the roto-translation matrix Â
v

c reaches a steady-state value

whose good approximation can be

Â
v

c =

2

6

4

−0.0338 0.0531 0.9980 0.0311
0.0020 0.9986 −0.0531 −0.0011
−0.9994 0.0002 −0.0339 0.1123

0 0 0 1

3

7

5
,

where the translational components are expressed in meters

and the t̂vvc,z component has been found constraining the

origin of the vehicle reference frame on the inertial x-y plane.

Finally, the analysis of the singular values of the matrix Φ

shows as, in our experiments, the ratio σ5/σ4 is close to

5 · 10−2, while σ4/σ3 ≈ 0.7, confirming that practically Φ

is a rank-4 matrix.

V. CONCLUSIONS

In this paper a practical method for the robotic-sensor

parameters calibration has been presented. In particular, it

allows to simultaneously identify the robot odometry and

camera parameters together with the camera pose with re-

spect to the vehicle and without any knowledge of their

nominal values. The approach has been proved to be effective

also in the case of very inexpensive hardware such as a

Khepera III robot and a Logitech web camera.
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