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Abstract— We investigate the application of particle filters
to estimate the orientation of a mobile agent based on an
omnidirectional video stream. By applying spherical signal
analysis to sequences of low resolution input images we perform
a real-time estimation of the relative camera rotation. We use
normalized cross-correlation computed with a fast frequency
domain approach that yields unbiased estimates which can be
further processed by a particle filter. We discuss the quaternion
representation of the rotational state space and evaluate meth-
ods for meaningful averaging. A prototype system is presented
and experiments with real image sequences show that robust
estimation of the rotational motion is achievable even when the
input images are corrupted, e.g. due to occlusions.

I. INTRODUCTION

The problem of estimating the relative motion of a camera
between a pair of images has been studied extensively over
the last years. While the approaches differ greatly in the way
translation and rotation are estimated, most algorithms have
been typically developed for conventional perspective images
and were later adapted to different types, such as panoramic
images.

The larger information content inherently present in im-
ages with a large field of view (FOV) has made omnidirec-
tional vision become popular for different applications, e.g.
in robot vision and scene acquisition, where spherical images
alleviate the recovery of ego-motion [1] or provide for stable
position referencing for mobile navigation [2]. When we
constrain the motion to 3D rotations one could even consider
spherical images the perfect device to reconstruct this motion
since image content remains the same and the rotation
equals a shift operation. Thus, estimating this shift is a
key technique, e.g., for ego-motion estimation or localization
that can be performed robustly on omnidirectional images.
Additionally, correct rotation estimation is not only important
for further processing of the data, but also for visualization
purposes (e.g. stabilizing the video of a tele-operated mobile
agent).

Many applications for orientation estimation that have
been developed are limited to three degrees of freedom
(DOF) due to the approximation that navigation of ground-
based robots is limited to planar surfaces. The more exact
estimation of all six DOF is especially important with the
advent of unmanned air vehicles (UAVs). Here, for orienta-
tion estimation, data from inertia measurement units (IMUs)
is often used (see e.g. [3] for further references). However,
when imaging devices are present on the agent and the data
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can be processed in real-time, these sensors can also be used
to estimate the orientation.

The task of estimating the relative rotation from image
data is typically done by detecting local salient features in the
template and signal image. Examining the correspondences
between these features allows for an estimation of quite large
camera motions (e.g. using SIFT features). An application on
panoramic images was presented by Fiala [4]. Alternatively,
the optical flow can be computed to extract the motion
parameters on a global scale subject to sufficiently small
motion. Only recently, a technique was presented where
motion estimates are computed from the optical flow at a
single pair of antipodal points on the image sphere [5].

The fact that panoramic images can be mapped onto the
unit sphere allows for the use of spherical signal analysis.
Similar to estimating the translational movement in 2D
images ([6]) we estimate rotation by calculating the correla-
tion in spherical Fourier space. In contrast to feature-based
approaches, at least for normalized signals, correlation is a
very natural and meaningful similarity measure. Taking into
account the whole image assures a robust estimation even in
difficult situations, such as dynamic environments and low
resolution or unfocused/blurred input images. The spherical
harmonics approach to orientation estimation was originally
introduced by Kostelec et al. [7] and several analysis and
application papers followed during the last years, e.g. [8],
[9], [10]. Friedrich et al. presented an application of this
technique to the problem of robot localization [11] limited
to rotations on the plane.

To predict or smooth orientation estimates over time, the
Kalman filter is very popular. When dealing with image
data, however, we are interested in more robust filters since
in real world environments, due to occlusions or abruptly
changing lighting conditions for example, single estimates
can completely fail. We therefore investigate the application
of a particle filter to the task of orientation estimation.

After introducing the necessary transforms from spherical
signal analysis (Sec. II) and the representation of rotations
that we use in the filter (Sec. III), we discuss the issues of
particle filters applied to rotation estimation in Section IV.
An evaluation on real image sequences is given in Section V.

II. CORRELATION ON THE SPHERE
A. Spherical Harmonics

Images captured with a catadioptric sensor, or, as in our
case, with a spherical camera system can be mapped onto a
sphere given the intrinsic parameters of the camera system.
Therefore, these omnidirectional images can be considered
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a function f(θ, φ) = f(ω) on the 2-sphere where the
angle θ denotes the colatitude angle in the range [0, π] and
φ the azimuth defined in [0, 2π). Driscoll and Healy [12]
showed that the spherical harmonic functions Y ml form a
complete orthonormal basis over the unit sphere and any
square-integrable function f(ω) ∈ L2(S2) can be expanded
as a linear combination of spherical harmonic functions
(Spherical Fourier Transform, SFT)

f(ω) =
∑
l∈N

∑
|m|≤l

f̂ml Y
m
l (ω). (1)

Here, Y ml denotes a spherical harmonic function of degree l
and order m and is given by

Y ml (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ, (2)

where f̂ml ∈ C are the complex expansion coefficients and
Pml (cos θ) denote the associated Legendre polynomials. Our
input data, the spherical functions f(ω), are defined on a
uniformly sampled equiangular grid. A perfect reconstruction
from a 2B × 2B grid is possible when bandlimiting f(ω)
to B.

B. Fourier Transform on SO(3)

Similar to the phase correlation method on planar images,
Kostelec and Rockmore [7] presented a method to estimate
the alignment of images defined on the sphere using cross-
correlation as similarity measure. They showed that the
correlation between two images g and h as a function

C(R) =
∫
S2
g(ω) Λ(R)h(ω) dω (3)

of rotations can efficiently be evaluated in the Fourier
domain. Here, Λ(R) denotes the rotation operator corre-
sponding to the rotation R = R(α, β, γ) where α, β, γ
are the Euler angles (in ZYZ representation) defining the
rotation. Further, the spherical harmonic functions Y ml form
an orthonormal basis for the representations of SO(3) and
the SO(3) Fourier transform (SOFT) coefficients of the cor-
relation of two spherical functions can be obtained directly
by calculating the bandwise outer product (denoted by �) of
their individual SFT coefficients. Taking the inverse SOFT

C(R) = SOFT−1
(
ĝ � (ĥ)?

)
, (4)

where (ĥ)? denotes the complex conjugate of ĥ, yields the
correlation C(R) evaluated on the 2B × 2B × 2B grid of
Euler angles G and its maximum value ideally indicates
the rotation separating the two images. The accuracy of
the rotation estimate R̃ = arg max(α,β,γ)∈G C(R(α, β, γ))
is directly related to the resolution of the likelihood grid
which in turn is specified by the number of bands used in
the SFT. Given images of bandwidth B, the resolution of the
likelihood grid implicates an inaccuracy of up to ±( 180

2B )◦ in
α and γ, and ±( 90

2B )◦ in β. The cubic computational cost
when evaluating the grid, in practice, restricts this method to
bandwidths in the order of B = 256.

Makadia and colleagues [8] showed that it is also possible
to compute the same correlation function with a three-
dimensional discrete Fourier transform (3DFT).

C. Spatially Normalized Cross-Correlation

When acquiring omnidirectional images, in practice, the
sensors do not cover the whole sphere and the images have
limited support. It is therefore necessary to normalize the
correlation function with regard to the intersection of the
support of both image functions, resulting in

NC(R) =

∫
S2 f

′
W (ω) [Λ(R)p′W (ω)] dω√∫

W
[f ′W (ω)]2 dω

∫
W

[p′W (ω)]2 dω
, (5)

with

f ′W (ω) = f(ω)− fW (6)
p′W (ω) = p(ω)− pW , (7)

where W = W (R) denotes the intersection of the support of
both functions and fW and pW their respective means with
regard to W . Note that when the term normalized cross-
correlation is used, it sometimes only refers to a normal-
ization with regard to the global energy of both functions
(e.g.in [8]). In our previous work [13] we showed that the
the function NC(R) can be expanded in terms of simple
correlations and therefore can be computed with multiple
applications of the inverse SOFT transform. Introducing two
mask functions that indicate the support of both signals,
the NCC grid (NC(R) ∀ R ∈ G) can be computed from
six cross-correlation evaluations involving the images, their
squared versions and the mask functions. In the remainder
of the paper we use this function as the similarity measure
to estimate the orientation.

D. Refinement of the Grid-based Estimates

As described in section II-B, the accuracy of the rotation
estimates depends on the bandwidth of the involved Fourier
transforms. However, the bandwidth of the SFT, in theory,
does not determine the accuracy of the following rotation
estimation. Also the low-frequency components carry enough
information of the relative rotation, only limited by the
quantization of the coefficients. Fehr and colleagues [10]
therefore proposed their so-called zero-padding, where the
bandwidth of the inverse Fourier transform (they use a
3DFT-approach instead of SOFT; see above) is enhanced
by padding the outer product of the SFT coefficient vectors
with zeros. However, the computation time of the inverse
Fourier transform still increases with O(N3 log2(N)) and
limits this technique. A different way to refine the orientation
estimates is averaging the rotations, i.e. interpolation in the
spatial domain. We incorporate this when determining the
final output of the particle filter (see Section IV).

Makadia et al. proposed to use a direct non-linear op-
timization method starting at the grid cell of maximum
correlation [8]. Whereas they minimize the difference (SSD)
between the SFT coefficient of the reference image and
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the rotated pattern, we use our spatially normalized cross-
correlation function as cost function. The maximum of the
resulting function can be computed with standard optimiza-
tion methods (we use gradient descent with line search).
Following an idea by Makadia et al. [8], the rotation can
be divided into two parts:

R(α, β, γ) = R2(β + π,
π

2
, γ +

π

2
)R1(α+

π

2
,
π

2
, 0). (8)

This way, the computational cost is significantly reduced
since the argument of the Wigner-d matrix dlkm (β) is con-
stant and it has to be evaluated for β = π

2 only:

f(R) =
∑
l

l∑
m=−l

l∑
p=−l

l∑
k=−l

ĝml (ĥpl)? dlpk
(π

2

)
dlkm

(π
2

)
exp (−i(pγ′ + kβ′ +mα′)) , (9)

where α′ = α+ π
2 , β

′ = β + π, γ′ = γ + π
2 .

III. THE ROTATION GROUP

Rotations in 3D space can be represented in various forms.
By far the most popular parametrization is in terms of
Euler angles. However, not only the well-known gimbal
locks are problematic, this representation also suffers from
other shortcomings: Hornegger and Tomasi [14] introduced
the terminology of a fair representation which describes
the sensitivity of a transform with regard to changes in
the parameters. In contrast to the Euler angles, the unit
quaternion representation of rotations is fair following this
definition, as well as the combined axis-angle (a.k.a. rotation
vector [15]) representation. The latter one is also a good
choice when it comes to interpolation or averaging of rotation
estimates. To gain a better understanding, we introduce this
three-vector representation from a different point of view
and provide the formula for correct weighted averaging. For
a more thorough treatise see for example [16]. The unit
quaternions, representing the group of rotations SO(3) in
3D, lie on a smooth three-dimensional manifold in 4D space,
namely on the 3-sphere S3. Since also their multiplication
and inversion are smooth maps, the unit quaternions form
a Lie group. To every Lie group one can associate a Lie
algebra with the underlying vector space being the tangent
space to the manifold at the identity element of the group.
In the case of the unit quaternions we apply the log map
(the exp map being its inverse) and obtain a 3D tangential
space that preserves all distances going through the origin.
This tangential space, also called the exponential chart, is
identical (up to a scaling difference) to the rotation vector
representation, mentioned earlier.

Kim and colleagues [16] showed that a correct blend-
ing of quaternion curves is possible in this space and the
resulting formula is indeed identical to Shoemake’s slerp
operation [17]. The same technique can be applied in order to
calculate the weighted mean q of a set of rotations M [18].
Let ∗ denote the quaternion multiplication. We iteratively
compute

q(j+1) = q(j) ∗ expMap
(
err (j)

t

)
, (10)

where the actual averaging occurs in the exponential chart
(centered at qj):

err (j) =
1∑

i∈M wi

∑
i∈M

wi logMap
(
qi ∗ (q(j))−1

)
. (11)

Convergence is achieved when the norm of err j is negligible.
Note that a quite important detail regarding the implemen-

tation is to perform a consistency check of the set M prior to
every iteration. Since the unit quaternions cover the space of
rotations twice (q = (α,~v) is equivalent to −q = (−α,−~v)),
we have to ensure that all quaternions belong to the same
halfspace of S3. This is easily done by substituting qi with
sign(qi • q(j)) qi (where • denotes the dot product).

IV. PARTICLE FILTERING ROTATIONS
Particle filtering is a robust and versatile technique for

estimating system states in a probabilistic framework. It
can be adapted to a large number of applications, e.g. to
robot localization or visual tracking. Particle filters perform
well even in presence of non-Gaussian noise and can handle
multiple hypotheses.

Following the classification and notation of [19], we apply
a sampling importance resampling (SIR) particle filter to the
problem of rotation estimation. For the model underlying
the filter we assume a smooth rotational movement of the
agent which is characterized by a slowly changing angular
momentum. In the following, we address the issues that arise
when applying a generic SIR particle filter to this problem.

Defining xt as the state vector at time t, the fundamental
idea of particle filtering is to approximate the probability
density function (pdf) over xt by a weighted sample set
St =

{
sit|i = 1, . . . , N

}
. The i’th sample (particle) at time t

is represented by sit = (xit, w
i
t) with state vector xit and

weight wit. In our case, the state of each particle is defined
as xit = [qit,∆q

i
t], where qit is a unit quaternion representing

the rotation in the global reference frame and ∆qit denotes the
angular momentum in quaternion representation of particle i
at time t.

In a standard “kidnapped robot” scenario, the particles
should initially be distributed uniformly in the state space.
However, since in our case the NCC grid can be thought of as
a quantized yet global solution, we spawn the N particles at
the rotations corresponding to the N grid cells with highest
correlation value and set the angular momentum to zero.

We apply the straight forward multinomial approach to
resampling [20] that has been shown to be comparable to
other techniques such as residual, stratified and systematic
resampling [21].

To simulate the process noise in the prediction step we
apply noise from a three dimensional normal distribution
with zero mean and standard deviation σvel to the angular
momentum in the exponential chart

∆qit = expMap
(
N ([0, 0, 0]T , σvel)

)
∗ expMap

(
0.5 logMap

(
∆qit−1

))
. (12)

Finally, the rotation is updated as qit+1 = ∆qit ∗ qit.
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We implemented two different approaches for weighting
the particles in the measurement (sensing) step. In the first
variant, the NCC grid G is evaluated in Fourier space for all
possible Euler angles (see Sec. II-B). For each particle the
rotation state representation qit is converted to a ZYZ Euler
sequence and weighted according to the correlation value cit
stored in the associated grid cell. While this approach suffers
from the quantization, it can be evaluated efficiently for
a large number of particles. In the alternative variant the
NCC is evaluated in Fourier space according to qit for each
particle explicitly. This way, the correlation values are free
from quantization artifacts, however, the computational cost
increases with the number of particles.

Additionally, we investigated the effect of rating also the
angular momentum as part of the state of the particle. This
is achieved by weighting with a Gaussian kernel applied to
the difference of the particle’s angular momentum ∆qit and
the relative rotation of the refined rotation estimate from the
previous time step q̃t−1 to the one of the current time step q̃t:

δit = exp

(
−
∣∣∣∣logMap

(
∆qit

)
− logMap

(
q̃t ∗ (q̃t−1)−1

)∣∣∣∣2
2

σL

)
(13)

The influence of the angular momentum in the sensing step
can be controlled with the parameter σL. The final weight is
then computed as wit = wit−1 δ

i
t c

i
t.

Once the particles have been rated, there are several
options to find the most likely estimate that should be output
by the system, e.g., for use in higher level applications. We
tested two different methods to compute this state x̃t =
[q̃t,∆q̃t] given the current sample set St. The first one is
a winner takes all (WTA) approach where we just search
for the particle sjt with highest weight wjt = max (wkt ) :
i = 1, . . . , N and assign the state vector associated with
this particle (x̂t := xjt ) to x̃t. The second option is what
we call averaging in the tangential space. In general, the
particles might represent a multimodal distribution. In order
to choose the most likely mode, we restrict the averaging to
a region in the exponential chart of q̂t, which denotes the
rotation estimate of the best rated particle. This means, we
select a subset M of particles whose rotation states qit deviate
from q̂t by an angle less than κ, which has to be chosen
according to the grid quantization. Applying the iterative
scheme described in Section III to the subset M with q̂t as
the initial estimate provides the mean rotation qt after few
iterations. Finally, q̃t = qt denotes the most likely rotation.

If real-time computation is not obligatory, a further refine-
ment is possible by numerically optimizing the normalized
cross-correlation function with regard to the orientation as
described in Section II-D.

V. EXPERIMENTS AND RESULTS

Our prototype implementation is realized in C++ and uses
the S2Kit [22] and SOFT library [7]. The refinement proce-
dure makes use of the recurrence relations of the Wigner-d-
matrices proposed by Dachsel [23] and FFTWlib [24].

A. Ground-Truth Evaluation

In the first experiment, we capture data with a spherical
camera mounted on a high-precision pan-tilt unit (PTU) and
compare the rotation estimates to the encoder readings.

We use the mean squared errors (MSE) of the overall
angle separating the estimated rotation q̃t from the reference
rotation qreft as error measure. Note that the origin of the
camera does not coincide with the rotation center and there-
fore, an additional translational movement (up to ≈ 50cm)
is induced. Correspondingly, a correct rotation estimate in
this experiment also approves a certain robustness to small
translational movements.

In Table I we show the MSE for a sequence of 180 frames
where the PTU rotates stepwise around both axes simultane-
ously from (0,−50◦,−90◦) to (0,+50◦,+90◦) in the ZYZ-
Euler representation. The simultaneous rotation around two
axes is challenging, since due to the incomplete spherical
field-of-view of the camera (about 360◦× 130◦ of the entire
sphere) a great amount of new image content is introduced.
We applied the particle filter with different refinement meth-
ods in comparison to the unfiltered estimate relying solely
on the maximum grid value. For all experiments we use
a bandwidth of 16 which corresponds to an image size of
32 × 32. The particle filter is evaluated using 200 particles
for the explicit evaluation and 2000 particles for the grid-
based approach. Note that an explicit evaluation of 5 particles
would result in about the same frame rate as the grid-based
approach. The threshold κ was set to 28◦ and we chose 10
for the parameter σL. Since the additional weighting of the
particles with regard to their angular momentum showed
consistently improved performance, we chose to use this
method in all experiments.

We see, that, especially for the WTA approach, the gain
in accuracy from the explicit evaluation of the correlation
function is significant. However, this gain diminishes com-
pared to the grid-based evaluation if an additional averaging
is performed on the weighted particles. Furthermore, the
computation time differs significantly.

When comparing the SOFT-based evaluation of the cor-
relation grid and the method proposed by Makadia et al.
(3DFT, [8]) the error for the 3DFT for a bandwidth of 16
is quite large. This is due to the fact that using 3DFT the
correlation grid is computed for Euler angles in the range of
[0, 2π]3 which covers the space of rotations twice resulting
in only half of the accuracy in the rotation around the Y-
axis compared to SOFT. We therefore included an estimation
using a bandwidth of 32 in the table. When measuring only
the time spent in 3DFT and SOFT, the computation times of
both methods are comparable, since both make use of a fast
implementation of the Fourier transform. Including the time
used by the SFT, however, leads to longer execution times
for a comparable accuracy of the rotation estimation.

B. Alignment of image sequences

We recorded an omnidirectional video (300 frames) where
the camera was moved smoothly including small translations.
To visually analyze the performance of the different settings
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Filter Sensing Refinement MSE [deg2] frames/second

unfiltered 17.08 5.68
unfiltered (3DFT, BW 16) 91.39 11.30
unfiltered (3DFT, BW 32) 31.60 1.00
particle filter grid-based WTA 40.22 5.83
particle filter explicit evaluation WTA 12.70 0.51
particle filter grid-based averaging 8.35 5.72
particle filter explicit evaluation averaging 6.62 0.51
particle filter grid-based averaging + optimization 4.13 2.36
particle filter explicit evaluation averaging + optimization 5.52 0.45

TABLE I
MSE AND FRAME RATE FOR CONTROLLED ROTATION USING DIFFERENT CONFIGURATIONS OF THE PARTICLE FILTER.

we de-rotate the image sequence according to the estimated
orientation of the camera. Note that an elegant and efficient
way is to apply this de-rotation using the graphics card:
The images are texture-mapped onto a sphere that is in-
versely rotated according to the estimates. Positioning the
camera inside the sphere, a perspective view is achieved
by a standard perspective projection of this virtual scene.
A video showing the results of this experiment as well as
the results of the template tracking application is included
in the proceedings and available at http://www.gris.

uni-tuebingen.de/people/staff/tschairer/. In the
sequence we simulate twelve situations where a great part of
the FOV is occluded by some object resulting in a misleading
maximum of the correlation grid. The particle filter, however,
compensates this effect successfully. Additionally, due to
its local nature the gradient based refinement starting at
the particle filter estimate converges to the nearest local
maximum of the correlation function resulting in an accurate
rotation estimate. In Figure 1 we show an illustration of the
estimated orientations over time.

C. Template tracking on the sphere

The spatial normalization (see Sec. II-C) allows to test
an application of tracking a small template on an om-
nidirectional image sequence. The combination of a low
bandwidth of the SFT transform and a small template image
(appr. 12% of the entire sphere in this case) can often
lead to erroneous estimates (we counted 32 frames on a
300 frames test sequence). The particle filter successfully
compensates these outliers. Figure 2 shows an illustration
of a part of the sequence of the orientation estimates. The
unfiltered grid-based approach yields erroneous estimates
quite frequently, whereas the result of using the particle
filter and optimization technique leads to a smooth estimated
trajectory. In Figure 2(c) the single particles are visualized
on the unit sphere and multiple modes of the pdf can be
observed. Two single frames showing the estimated rotation
of the templates can be seen in Figure 3.

VI. CONCLUSION
We discussed the application of particle filters to orienta-

tion estimation and presented a novel approach to integrating
rotation estimates based on harmonic analysis in such a
filter. A brief review of the methods to compute the cross-
correlation as similarity measure for the rotation estimate
is given and different techniques for the refinement of the

(a) Result of grid-based unfiltered estimation.

(b) Result of estimation using the particle filter and
optimization.

Fig. 3. Single frames of the template tracking sequence.

grid-based approaches are discussed. Further, we present an
iterative optimization-based method to compute the spatially
normalized cross-correlation using a separation of variables
technique. Since the particle filter works on a state space
consisting of orientations and the angular momentum of the
agent, we also discuss the group of unit quaternions and
their tangent space representation. The system is evaluated
on real image data including a comparison with ground-truth
information from a high precision pan-tilt-unit and a template
tracking application.

In future work we plan to use the system on a mobile agent
and a technique to update the template/reference image will
be included. This is necessary to estimate the orientation
robustly over time for a moving agent.
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