
A Novel Framework for Closed-Loop Robotic Motion Simulation -

Part II: Motion Cueing Design and Experimental Validation

P. Robuffo Giordano, C. Masone, J. Tesch, M. Breidt, L. Pollini, and H. H. Bülthoff

Abstract— This paper, divided in two Parts, considers the
problem of realizing a 6-DOF closed-loop motion simulator by
exploiting an anthropomorphic serial manipulator as motion
platform. After having proposed a suitable inverse kinematics
scheme in Part I [1], we address here the other key issue,
i.e., devising a motion cueing algorithm tailored to the specific
robot motion envelope. An extension of the well-known classical
washout filter designed in cylindrical coordinates will provide an
effective solution to this problem. The paper will then present
a thorough experimental evaluation of the overall architecture
(inverse kinematics + motion cueing) on the chosen scenario:
closed-loop simulation of a Formula 1 racing car. This will
prove the feasibility of our approach in fully exploiting the
robot motion capabilities as a motion simulator.

I. INTRODUCTION

In Part I of this work [1] we addressed the problem of

achieving a 6-DOF closed-loop motion simulation through

the use of an anthropomorphic serial robot arm — the

CyberMotion Simulator, see Fig. 1. This manipulator, based

on the commercial KUKA Robocoaster [2], is exploited as

motion platform for reproducing the motion cues that would

have been felt on a given (simulated) vehicle. Compared

to standard Stewart platforms, a serial 6-DOF industrial

manipulator offers higher dexterity, larger motion envelopes,

the possibility to realize any end-effector posture within the

workspace, and the ability to displace heavy loads (up to

500 [kg] in our case) with large accelerations and velocities.

By attaching a cabin to the end-effector, one can then take

advantage of the robot motion envelope to obtain a highly

versatile tool for interactive vehicle simulation.

There are, however, some challenges that need to be ad-

dressed when adopting a manipulator arm as motion platform

for closed-loop motion simulation, mainly the design of the

motion cueing and of the inverse kinematics algorithms.

The motion cueing subsystem is responsible for transform-

ing the ‘ideal’ vehicle motion into a Cartesian trajectory

compatible with the motion platform limited workspace, but

still inducing a realistic motion perception onto the user. A

well-know example is the classical combination of washout

filters and tilt-coordination algorithms [3], [4] and all their

P. Robuffo Giordano, J. Tesch, and M. Breidt are with the Max Planck
Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen,
Germany {paolo.robuffo-giordano@tuebingen.mpg.de}.

C. Masone is with the Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Via Ariosto 25, 00185 Roma, Italy.

L. Pollini is with the Dipartimento di Sistemi Elettrici e Automazione,
Università di Pisa, Via Diotisalvi 2, 56126 Pisa, Italy.

H. H. Bülthoff is with the Max Planck Institute for Biological Cy-
bernetics, Spemannstraße 38, 72076 Tübingen, Germany, and with the
Department of Brain and Cognitive Engineering, Korea University, Anam-
dong, Seongbuk-gu, Seoul, 136-713 Korea.

variants. Anyway, such schemes are typically designed for

Stewart-like platforms, while the motion envelope of a se-

rial manipulator is inherently different, in particular more

cylindrical than rectangular in Cartesian space. Therefore,

some modifications are required to fully exploit the robot

capabilities.

In addition, the filtered cabin motion is in general un-

predictable and geometrically arbitrary, since it eventually

depends on the (unpredictable) user’s inputs to the simulated

vehicle. This makes it hard to design an effective inverse

kinematics scheme: the sought algorithm must realize the

desired (but unknown in advance) cabin motion and, at the

same time, cope with all the typical robot constraints (joint

limits, actuator limitations) and avoid singularities in real-

time. As discussed in Part I, one has to assume that the

desired cabin trajectory may in general violate any or all

robot constraints, and design an inverse kinematics scheme

that aims at realizing online the best feasible motion.

Goal and contribution of this Part II is to conclude the

discussion opened in Part I, and to demonstrate the feasibility

and effectiveness of the proposed architecture for closed-

loop motion simulation. To this end, we will first present the

design of a motion cueing algorithm tailored to the specific

robot motion envelope (Sect. II). This algorithm will then

be used to generate the reference cabin trajectory tracked by

the robot via the inverse kinematics illustrated in Part I. We

will subsequently focus on the experimental evaluation of the

whole architecture (motion cueing combined with the inverse

kinematics of Part I) on the chosen test scenario: closed-

loop simulation of a Formula 1 racing car. We will first

illustrate the dynamical model adopted for the car simulation

(Sect. III), and then analyze the experimental data collected

while driving the car along a lap on a virtual track (Sect. IV).

A video of this lap showing the robot motion is also attached

to the paper. We will then conclude by summarizing the

results and discussing the open points (Sect. V).

II. DESIGN OF THE MOTION CUEING ALGORITHM

As explained in the previous Section, the goal of a

motion cueing algorithm is to ‘filter’ the ideal motion of

the simulated vehicle to make it compatible with the limited

workspace of a motion platform fixed to the ground, while

still inducing the same motion perception onto the user.

This is a fundamental but difficult problem that has been

studied since the early ’70 [5] until nowadays [6], and keeps

drawing the attention of many researchers. Perhaps the most

widespread motion cueing algorithm is the so-called classical

washout filter, i.e., a combination of washout filters for

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3896



XP
YP

ZP

X0

Y0 Z0=ZW

XWYW
α

Fig. 1: A snapshot of the CyberMotion Simulator setup with some
relevant reference frames

reproducing high-frequency motions, and tilt-coordination

algorithms for reproducing low-frequency motions [3], [4].

Such algorithm can be summarized as follows: the vehi-

cle motion, specified in terms of linear accelerations and

angular velocities1, is split into high-frequency and low-

frequency components. The high-frequency component is

reproduced by actually moving the motion platform, since

this component will in general generate small (thus feasi-

ble) displacements. On the other hand, the low-frequency

component, comprehensive of sustained linear accelerations,

is not achieved by physically accelerating the platform,

but by exploiting the local gravity vector as a source of

‘persistent’ acceleration. Indeed, by properly orienting the

gravity vector in the cabin frame, one can reproduce the

illusion of persistently accelerating in a given direction. This

method, of course, has several limitations: for instance, it

cannot reproduce sustained accelerations larger than 1 [g], it

introduces rotational motion artifacts during the coordination

phase, and it reduces the amount of gravity acceleration

perceived by the user because of the tilting. Still, in most

cases the classical washout framework represents the only

viable option as motion cueing algorithm.

Many variants of this framework have been proposed in

the past years, especially in the context of flight simulators.

Just to mention a few, some attempts have been done in the

direction of adaptive algorithms [8], [9], [10], and optimal

control approaches [11], [12]. A thorough comparison can be

found in [13], [14], [15]. Despite the big variety of solutions,

it is worth noting that many authors still indicate the classical

washout filter as one of the most effective algorithm in

terms of design simplicity, easiness of tunability, and human

perception fidelity [3], [16], [17]. Therefore, we decided to

base our motion cueing algorithm on the classical washout

framework, and to modify it in order to take into account the

particular motion envelope of our motion simulator. The next

Sections will illustrate the details of our implementation.

1These are thought to be the motion states sensed by humans [7].

A. High-pass channels

Compared to a Stewart platform, the motion envelope of

the CyberMotion Simulator is closer to a cylinder rather

than a rectangular box in Cartesian space. For instance, by

exploiting the rotation of the first vertical joint, one can

obtain large lateral displacements along circular trajectories,

considerably larger than any achievable linear trajectory. This

motivated us to design the high-pass filters for the linear

acceleration in cylindrical coordinates, similarly to what

proposed for the spherical washout filter [18] implemented

in the Desdemona motion simulator developed at TNO [19].

The idea is to keep linear forward and upwards motions

unchanged, and replace linear lateral motions with circular

motions (i.e., moving on the surface of a vertical cylinder).

Before proceeding, we will define some needed quantities

consistently with the notation introduced in Part I. With

reference to Fig. 1, let F0 : {O; ~X0, ~Y0, ~Z0} be a world

reference frame fixed to the robot base, with ~Z0 pointing up-

wards and ( ~X0, ~Y0) spanning the horizontal plane. A moving

reference frame FP : {OP ; ~XP , ~YP , ~ZP } is attached to the

the pilot’s head (supposed fixed to the cabin) and has its

axes aligned with the pilot’s forward/left/upward direction,

respectively. Let also p = [x y z]T ∈ R
3 represent the

coordinates of OP in F0. We can transform the Cartesian

coordinates p into cylindrical ones ξ = [R α z] defined as







R =
√

x2 + y2

α = atan2(y, x)
z = z

,

and introduce a third moving frame FW :
{OW ; ~XW , ~YW , ~ZW }, denoted as the washout frame,

with OW ≡ O, ~ZW ≡ ~Z0, and ~XW rotated of angle α
w.r.t. ~XO. Therefore, axis ~XW will always point towards

the current angular position α on the cylinder.

Furthermore, let WRP be the rotation matrix from frame

FW to frame FP , and η = [ρ θ ψ]T ∈ R
3 the usual set of

roll-pitch-yaw Euler angles parameterizing WRP , while the

rotation matrix from frame F0 to frame FW is just 0RW =
RZ0

(α). Let us also define g as the gravity vector, and g
as the scalar value of the gravity acceleration. Finally, a pre-

superscript will indicate the reference frame where a quantity

is defined, e.g., in F0 it is 0g = [0 0 − g]T .

With these settings, we can illustrate our approach with

the help of the block scheme shown in Fig. 2. Let us first

consider the high-pass filter for the linear accelerations (top

block in Fig. 2). The input to this filter is Pa, the linear

acceleration of the vehicle expressed in the frame FP and

without gravity components, i.e., Pa = Pf + Pg where Pf is

the specific force acting on the vehicle2. By following the

classical washout framework, Pa is first scaled and limited to

obtain PaS which is then expressed into FW as WaS . These

Cartesian accelerations are then transformed into cylindrical

2We recall that the specific force Pf is defined as Pa−Pg, so that during
free fall (Pa = Pg) it is Pf = Pg − Pg = 0.

3897



Pilot
inputs

P
ω

P
a

P
a
S W

R
P

W
a
S

C(ξ)
ξ
..

HPA(s)
ξ
HP

..

1/s
ξ
HP

.

1/s
ξ
d

LP(s)

P
a
LP Inertial

compensation

+ - P
a
IN

P
a
T

Tilt coord.
η
T

P
ω
S

T(η)
η
.

HPω(s)
η

HP

.

1/s
η

HP

+
+ η

W
0
R

W

η
d

Vehicle
simulation

High-pass lin. acc.

Low-pass lin. acc.

High-pass ang.vel.

Fig. 2: A block scheme representation of the motion cueing algorithm adopted in this paper. The algorithm is based on the classical
washout filter and tilt coordination [3], [4], but extended so as to take into account the cylindrical motion envelope of our motion simulator.
Compared to the classical design, an additional subsystem, denoted as Inertial compensation, is also present. The purpose of this block
is to compensate for the spurious centripetal and Coriolis accelerations due to the circular trajectories output of the filter

ones as

ξ̈ =





R̈
α̈
z̈



 =









1 0 0

0
1

R
0

0 0 1









WaS = C(ξ)WaS (1)

The simple form of (1) clearly follows from the definition

of FW . Linear forward accelerations in FW correspond

to radial accelerations R̈, and lateral accelerations in FW

correspond to angular accelerations α̈R.

The accelerations ξ̈ are then high-pass filtered through the

transfer function HPA(s) to yield the high-pass component

of the linear motion ξ̈HP , which is subsequently double-

integrated into the desired platform displacement ξHP = ξd.

Many choices are possible for HPA(s). The typical one is

to take

HPA(s) =
s2

s2 + 2ζωns+ ω2
n

·
s

s+ ωb

,

where the natural frequency ωn, the damping ratio ζ, and the

break frequency ωb are in general different for each compo-

nent of ξ̈. This choice ensures the washout characteristics of

the filter, i.e., the fact that, at steady state and for constant

inputs, the platform displacement ξHP = ξ̈/s2 goes back to

the initial position.

The angular high-pass channel (bottom block in Fig. 2)

is designed as in the classical washout scheme. In short,

the input angular velocity Pω expressed in FP is first

scaled and limited, then transformed into the corresponding

Euler rate η̇ which is high-pass filtered through HPω(s)
to obtain the high-pass component of the angular velocity

η̇HP . This is finally integrated into the corresponding angular

displacement ηHP . Here, HPω(s) can be chosen as a second-

order high-pass filter

HPω(s) =
s2

s2 + 2ζωns+ ω2
n

to ensure the washout characteristics.

B. Low-pass Channel and Tilt Coordination

As explained at the beginning of this Section, the purpose

of this step is to orient Pg so as to simulate presence of

sustained linear accelerations. This is achieved by matching

the low-pass components of Pa with the corresponding

components of Pg through the so-called tilt coordination

algorithm. In our case, however, we extended this idea to

also compensate for the undesired inertial accelerations due

to the choice of working in cylindrical coordinates. Indeed,

the benefits of moving along a horizontal circular trajectory

instead of a straight line (i.e., increased robot workspace)

come at the price of introducing spurious centripetal and

Coriolis accelerations during the motion. These disturbances

can be largely attenuated by using the gravity vector Pg to

filter them out.

Let us again refer to the scheme in Fig. 2, in particular

to the middle block. The scaled linear acceleration PaS is

first low-pass filtered through LP (s) into PaLP . We chose

to set LP (s) = 1 − HPA(s) in order to obtain a perfect

coordination between the high-pass and low-pass channels.

At this point, the standard tilt coordination algorithm would

compute the required cabin orientation ηT to match the first

two components of Pg with −PaLP . By imposing PRW
Wg =

3898



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

x [m]

y
 [

m
]

Maximum
displacement

Beginning
of motion

Return to the
home position

(a)

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time [s]

S
p

e
c
if
ic

 f
o

rc
e

 i
n

 c
a

b
in

 f
ra

m
e

 [
m

/s
2
]

(b)

Fig. 3: Left: planar trajectory of the cabin in F0. The cabin starts
from (2.5, 0), travels along a circular path, and then goes back
to the starting position. Right: specific force felt on the cabin
during the motion (dashed lines) versus the input acceleration (solid
lines). The desired lateral acceleration of 4 [m/s2] (upper curve) is
almost perfectly reproduced, as well as the desired (zero) forward
acceleration (lower curve)

−PaLP , one obtains


























ρT = arcsin
PaLPy

g cos θT

θT = − arcsin
PaLPx

g
ψT = 0

.

These angles are typically rate limited to avoid a strong

rotational cueing on the user.

The centrifugal and Coriolis accelerations due to the

cylindrical motion in FW are WaIN = [−Rθ̇2 2Ṙθ̇ 0]T .

These can be transformed into the cabin frame PaIN =
PRW

WaIN , and subtracted from PaLP to obtain the final

acceleration vector PaT = PaLP − PaIN to be sent to

the tilt coordination algorithm. The corresponding ηT is

then added to angular displacement ηHP from the high-pass

angular velocity channel to yield the sought cabin orientation

ηW = ηT + ηHP . The final step is to transform ηW into

the corresponding world frame quantity. By recalling the

definition of FW , this can be easily achieved by adding the

angular displacement α to the third (yaw) component of ηW ,

thus obtaining the desired cabin orientation input to the robot

inverse kinematics ηd = ηW + [0 0 α]T .

C. Simulation results

Here, we present a simulation example that will effectively

illustrate the main features of our washout implementa-

tion. The corresponding experimental data are reported in

Sect. IV. We chose to simulate a lateral constant acceleration

of the cabin Pa = [0 4 0]T [m/s2]. The parameters of

HPA(s) were set to ωn = .5 [rad/s], ζ = 1, and ωb = 1.2
[rad/s] for the three acceleration channels, and no rate

limitation was applied to the tilt coordination angles ηT .

Figure 3(a) shows the resulting planar trajectory in F0.

The cabin starts from (2.5, 0) on the horizontal plane,

travels along a circular arc until reaching a maximum angular

displacement αmax ≃ 0.8 [rad], and then goes back to

the starting position along the same arc (washout effect).

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time [s]

H
ig

h
−

P
a

s
s
 A

c
c
e

le
ra

ti
o

n
 i
n

 c
a

b
in

 f
ra

m
e

 [
m

/s
2
]

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time [s]

L
o

w
−

P
a

s
s
 A

c
c
e

le
ra

ti
o

n
 i
n

 c
a

b
in

 f
ra

m
e

 [
m

/s
2
]

(b)

Fig. 4: Left: high-pass components of the cabin acceleration.
Right: low-pass components of the cabin acceleration. Note how the
lateral accelerations in both plots (red dashed lines) have an almost
symmetric behavior. The initial peak on the high-pass forward
acceleration (solid blue line on the left) is due to the centripetal
acceleration associated to the circular trajectory followed by the
cabin, and is compensated by the corresponding peak on the low-
pass acceleration (solid blue line on the right)

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

ρ
T
, 

θ
T
 [

ra
d

]

(a)

0 2 4 6 8 10
−1

0

1

2

3

4

5

time [s]

S
p

e
c
if
ic

 f
o

rc
e

 i
n

 c
a

b
in

 f
ra

m
e

 [
m

/s
2
]

(b)

Fig. 5: Left: the behavior of the roll (solid blue line) and pitch
(dashed red line) angles (ρT , θT ) needed to properly orient the
gravity vector in FP . Right: the resulting specific force on the cabin
without compensating for the spurious centripetal acceleration.
Compared to Fig. 3(b), an initial peak on the forward acceleration
(dashed blue line) is present

Figure 3(b) illustrates the superimposition of the input ac-

celeration Pa (solid lines) and the total specific force felt on

the cabin (dashed lines), i.e., the vectorial sum of the actual

cabin acceleration due to ξ̈HP , and −Pg. In particular, the

upper curve represents the lateral specific force and the lower

curve the forward specific force. One can then verify an

almost perfect reproduction of the desired cabin acceleration,

thanks to this combined action.

This is also shown in Figs. 4(a–b) where the individual

low-pass component PaT and high-pass component ξ̈HP

are reported. We note that the high-pass component starts

from 4 [m/s2] and then exponentially vanishes over time,

while the low-pass component has an almost symmetric

profile. Note also that the forward component of the high-

pass motion (blue solid line in Fig. 4(a)) has a negative

peak of approx. −0.6 [m/s2] at time 0.76 [s]. This is

the effect of the centripetal acceleration associated to the

circular trajectory followed by the cabin. However, thanks

to the inertial compensation action, the low-pass component

shows a corresponding positive peak (blue solid line in

Fig. 4(b)) that cancels this undesired acceleration in the

final specific force felt by the user (blue dashed line in

3899



Fig. 3(b)). Figure 5(a) reports the behavior of (ρT , θT ) over

time, i.e., the cabin roll and pitch angles output of the tilt

coordination algorithm needed to properly orient the gravity

vector in FP . In particular, ρT (solid blue line) is used to

simulate the sustained acceleration, and θT (dashed red line)

to compensate for the centripetal acceleration.

Finally, we show in Fig. 5(b) the cabin specific force

obtained without compensating for the inertial effects due

to the circular motion. In comparison with Fig. 3(b), we

clearly see the presence of a spurious negative acceleration

in the forward cabin axis (dashed blue line) consequence of

the uncompensated centripetal acceleration.

III. CAR DYNAMICAL MODEL

In order to generate the accelerations Pa and angular

velocities Pω input to the motion cueing algorithm, a fully

non linear car model was developed. A detailed description

of the car dynamics is outside the scope of this article;

nevertheless, we will give an overview of the complex

dynamic model used for our motion simulation.

The complete car was modeled as an articulated multibody

system: the chassis including pilot and engine, the four

suspension arms, the four spring/damper groups, the four

wheel hubs, and the four wheels. The whole car is basically

composed by four wheels interacting with the terrain, and

connected together by the suspensions and car chassis.

Figure 6(a) shows the various components of the model. For

simplicity, the masses of suspension arms and spring/damper

groups were included in the chassis mass, while the masses

of the wheel hub and the wheel itself were considered as a

unique body for generating linear motion, and separated for

generating rotational motion.

The 32 system state variables are the following: car

center of gravity CoG, linear velocity vCoG, angular velocity

ωCoG, position pCoG, and Euler angles: [φCoG, θCoG, ψCoG]
defining the car body reference system FCoG w.r.t. FW ,

the position (deflection) δ and velocity δ̇ of the four wheel

hubs along the spring/damper axis, the position pwheel and

velocity vwheel of the four wheel hubs along their respective

vertical axis of motion w.r.t. a reference terrain level, and

the angular velocity ωwheel of the four wheels around their

respective spin axis.

The external forces acting on the system are: gravity

g, contact forces and moments of each wheel (Fx, Fy ,

Mz), traction Q and braking B torques, and longitudinal

FCx, lateral FCy , and vertical FCz aerodynamics loads; the

steering angle λ is modeled as a direct user input.

According to the Newton-Euler formulation, the dynamic

equations of the car dynamics can be written in compact

form as
ẋ1 =

M−1(x2) [J1(x2)F (x1, x2) − C(x1, x2)x1 − S(x1, x2) − g(x2)]

ẋ2 = J2(x2)x1

(2)

where the system state vector is

x1 =
[

vT
CoG ωT

CoG δ̇T vT
wheel ω

T
wheel

]T

x2 =
[

pT
CoG φT

CoG θT
CoG ψT

CoG δT pT
wheel

]T

with δ, δ̇, pwheel, vwheel and ωwheel being 4-dimensional

vectors containing the corresponding variables of the four

wheels.

Matrix M(x2) contains all the mass and inertia terms of

the articulated body and is function of the suspension config-

uration. Matrix C(x1, x2) takes into account centripetal and

Coriolis terms, the term S(x1, x2) represents the suspension

related forces, and the term g(x2) the gravity forces.

The input vector F contains all the wheel/terrain interac-

tion forces for the four wheels, as well as the aerodynamics

forces. Matrix J1(x2) determines how these forces, com-

puted with respect to the wheel (the former) or car chassis

(the latter), affect the car dynamics as a function of the

current suspension state of compression and car attitude.

Matrix J2(x2) contains the relevant rotation matrices and

integrators needed to compute the car position and attitude,

and all the wheel and suspension variables from the corre-

sponding velocity variables in x1.

A. Car Suspensions

Formula 1 front and rear suspensions are very complex,

thus a simplified geometry was adopted. The wheel sus-

pension is usually modeled as an articulated closed chain

made of suspension arms, wheel hub, the car chassis and

possibly the spring/damper group. The wheel-chassis relative

motion, together with the car chassis attitude, determines

how the wheel touches the ground during both lateral ma-

neuvers/cornering and load transfers due to an acceleration

or a braking.

Three main angles define how the wheel is positioned

w.r.t. the terrain: toe (τ ), camber (χ) and caster (γ) angles.

Figure 6(b) shows the complete suspension geometry im-

plemented in the simulation, where the subscript FL stands

for Front Left wheel. Wheel camber and caster angles are

not constant and vary with the suspension motion, and the

car roll, and pitch angles. The complexity of simulating

the closed kinematic chain of the suspension was overcome

by using suitable kinematic constraints. The camber and

caster angles values during the simulation are defined by

the respective rest values χ0 and γ0, by the Suspension Arm

rotation angle θ, which represents the current state of the

suspension, and by the car attitude:

χ(t) = fχ

(

χ0, θ(t),
WRCoG(t)

)

(3)

γ(t) = fγ

(

γ0, θ(t),
WRCoG(t)

)

(4)

The angles θ and β are not actual state variables, but their

value depend via algebraic equations from the spring/damper

group compression δ, the CoG position pCoG, the wheel hub

position pwheel, the chassis attitude WRCoG and from the

suspension geometry:

θ(t) = fθ

(

δ(t), pCoG(t), pwheel(t),
WRCoG(t)

)

(5)

β(t) = fβ

(

δ(t), pCoG(t), pwheel(t),
WRCoG(t)

)

(6)

The steering angle λ(t), together with toe τ , determines

the orientation of the tyre w.r.t. the car chassis, and thus the

car velocity vector. The wheel/terrain interaction produces

the longitudinal reaction force Fx(t), the lateral or cornering

3900



x y

z
CoG

θFL

αFL Car Chassis

Suspension Arms

Wheel

Wheel Hub
Spring/Damper Group

(a) (b)

Fig. 6: Left: the various components of the multibody system modeling the Formula-1: chassis, wheels, spring/damper groups, wheel
hubs, and suspension arms. Right: detailed view of the suspension geometry

force Fy(t), and the aligning moment Mz which are all

function of the vertical load Fz(t) and other wheel variables.

The complete car dynamic equations are then constituted

by (2) and by the kinematic constrains (3–6).

Modeling of the tyre(wheel)/terrain interaction poses se-

vere challenges that are usually approached by using simpli-

fying assumptions. For the goals of this paper, the Pacejka’s

Magic Formula [20] was adopted. Although the Magic For-

mula approach does not try to model the physical interaction

between tyre and terrain, it represents an effective way

of approximating the effects of this interaction by using

interpolating functions, and is widely used in automotive

simulators.

IV. EXPERIMENTAL EVALUATION

In this Section we will discuss several experimental results

conducted on the CyberMotion Simulator and aimed at

analyzing the performance of the whole proposed architec-

ture, i.e., the combination of the motion cueing algorithm

with the inverse kinematics presented in Part I. The goal

is to determine how these two subsystems interact when

plugged together, and to clearly assess the robot suitability of

being exploited as a motion simulator. We will first present

the experimental data collected during the execution of the

same motion discussed in Sect. II-C, i.e., a lateral constant

acceleration of the cabin Pa = [0 4 0]T [m/s2]. This will

allow an easy comparison of performance with the ideal

simulation case. We will then focus on the data collected

while driving the Formula 1 car along a lap on the virtual

track of Monza [21], the Italian official track of the Formula 1
world championship. Figures 8(a–b) show a screenshot of

the 3D environment displayed to the user, and an overall

view of the Monza track. The complex and sudden motions

experienced during this lap will constitute a solid benchmark

for our motion simulator.

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

time [s]

S
p

e
c
if
ic

 f
o

rc
e

 i
n

 c
a

b
in

 f
ra

m
e

 [
m

/s
2
]

Fig. 7: Actual specific force felt on the cabin during the motion
(solid lines) and desired specific force output of the motion cueing
algorithm (dashed lines). Compared to the corresponding ‘ideal’
case of Fig 3(b), some lag is present in the robot motion due to
the limited maximum joint accelerations. Nevertheless, the desired
specific force is reasonably reproduced

A. Reproduction of a sustained acceleration

Analogously to Fig 3(b) in Sect. II-C, Fig. 7 shows the

specific force felt on the cabin during the actual motion of

the robot. This was evaluated by plugging the measured joint

angles into the robot forward differential kinematics so as to

compute the corresponding cabin accelerations. The resulting

specific force (solid lines) is superimposed to the output of

the washout filter (dashed lines) illustrated in Fig 3(b).

Apart from some distortions, we can essentially note some

lag between the desired specific force and the actual one.

The lateral component of the specific force (upper curve)

reaches the nominal value of 4 [m/s2] after about 0.3 [s], but

then overshoots and settles back after a couple of seconds.

This discrepancy is mainly due to the limitations in the

robot actuators, in particular to the constraints on maximum

joint accelerations that limit the responsiveness of the whole

system. Indeed, as explained in Part I, the chosen design of

3901



(a) (b)

Fig. 8: Left: a screenshot of the 3D environment displayed to the user on the onboard projection screen. Right: a bird’s eye view of the
Monza track

the motion cueing algorithm does not allow to take explicitly

into account all the robot constraints expressed at the joint

level. This is a clear example where the output trajectory

of the motion cueing violates some robot constraints (max.

joint acceleration), but the inverse kinematics block still tries

to achieve the best feasible robot motion, i.e., a slightly

‘delayed’ response.

B. Driving a lap

For this closed-loop experiment, we tuned the parameters

of the motion cueing algorithm by trial and error, and no

rate limitation was applied to the angles ηT . Indeed, proper

tuning of this action, as well as of all the other washout

parameters, is a relevant but difficult problem that will be

extensively addressed in future studies with the help of

experienced drivers. At this step, we focused more on the

motion reproduction capabilities of our system rather than

on the quality of human motion perception. For the linear

acceleration high-pass channel, we chose ζ = 1, ωn = .5,

ωb = 1.2 for the lateral acceleration, and ζ = 1, ωn = .6,

ωb = 20 for the forward and upward accelerations. As

for the angular velocity high-pass channel, we set ζ = 1
and ωn = 1 for all components. To produce PaS , we first

scaled the forward/lateral accelerations by a factor 0.8 and

0.2, respectively, and then saturated all the components to

a maximum value of ±4 [m/s2]. The angular velocity was

neither scaled nor saturated.

Figures 9(a–c) show the forward (top plots) and lateral

(bottom plots) accelerations during the whole lap. In par-

ticular, Fig. 9(a) reports the accelerations Pa, direct output

of the car dynamical model. We can notice that the car

can achieve quite large accelerations: the peak values are

8 [m/s2] as forward acceleration, −12 [m/s2] during braking,

and about 34 [m/s2] during the roughest turns. Of course,

no tilt coordination algorithm could reproduce such motions.

After the scaling and saturation, we obtain the profiles shown

in Fig. 9(b) which are more feasible for our robot, and must

be compared with Fig. 9(c) where the actual specific force

of the cabin is reported. Apart from some unavoidable noise,

we can notice a substantial agreement among the two plots,

thus confirming the good performance of our simulator also

in reproducing such complex motions. We also encourage the

reader to examine the attached video where the whole lap

is shown from an external and onboard (camera-car) view-

points. The robot response to the car motion, consequence

of the user inputs, can then be fully appreciated.

V. CONCLUSIONS AND FUTURE WORK

In this paper and its companion Part I we presented a com-

plete architecture for realizing a 6-DOF closed-loop motion

simulator based on an anthropomorphic serial manipulator

— the CyberMotion Simulator. The main motivation behind

this work lies in the fact that, compared to standard Stewart

platforms, an industrial anthropomorphic manipulator offers

a considerably larger motion envelope and higher dexter-

ity, the possibility to realize any cabin posture within the

workspace, and the ability to displace heavy loads (up to 500
[kg] in our case) with large accelerations and velocities. This

clearly indicates a promising perspective for applications of

motion simulation. However, in order to fully exploit a serial

manipulator as motion platform, some specific issues must

be addressed. In particular, the need of a special inverse

kinematics scheme was tackled in Part I, while in this

Part II we focused on designing a motion cueing algorithm

tailored to the particular motion envelope of the robot (more

cylindrical rather than rectangular).

We then presented experimental results collected during

a closed-loop motion simulation on our testing scenario:

driving a Formula-1 car along a lap on a virtual track.

Although the proposed framework has a general validity, we

chose to test it on this particular scenario also because of the

challenges it involves, namely high and abrupt accelerations.

The obtained performance was quite satisfactory, as can be

also appreciated in the attached video, thus confirming the

effectiveness of our approach.

The work presented in this paper is, of course, still subject

to many improvements, and should be considered as a solid

and rigorous basis to lay down any future development.

These will include, for instance, a careful tuning of the

motion cueing algorithm to improve the simulation realism,

also with the feedback of experienced pilots. More in general,

our aim is to exploit the CyberMotion Simulator as a

versatile tool for simulating a variety of vehicles, ranging

from cars to airplanes, helicopters, and ships, for training and

telepresence purposes. This will require a specific tuning, or

even re-design, of the motion cueing algorithm case by case.

The planned modification of the first robot joint (enabling

continuous rotation), and the construction of a new closed

3902



0 10 20 30 40 50 60 70 80
−15

−10

−5

0

5

10

15

time [s]

P
a

S
x

 [
m

/s
2
]

0 10 20 30 40 50 60 70 80

−40

−20

0

20

40

time [s]

P
a

S
y

[m
/s

2
]

(a)

0 10 20 30 40 50 60 70 80

−4

−2

0

2

4

time [s]

P
a

S
x

 [
m

/s
2
]

0 10 20 30 40 50 60 70 80

−4

−2

0

2

4

time [s]

P
a

S
y

[m
/s

2
]

(b)

0 10 20 30 40 50 60 70 80

−4

−2

0

2

4

time [s]

P
a

S
x

 [
m

/s
2
]

0 10 20 30 40 50 60 70 80

−4

−2

0

2

4

time [s]

P
a

S
y

[m
/s

2
]

(c)

Fig. 9: Top: the forward (top) and lateral (bottom) linear accelera-
tions Pa of the car during the lap. Middle: the scaled accelerations
PaS . Bottom: the actual specific force felt on the cabin as a
consequence of the robot motion. Note the substantial agreement
between plots (b) and (c). This confirms the good performance of
our whole architecture, i.e., the motion cueing algorithm combined
with the inverse kinematics of Part I

cabin will also contribute to improve the overall fidelity of

the simulation.

ACKNOWLEDGMENTS

This research was supported the Max Planck Society and

by the WCU (World Class University) program through the

National Research Foundation of Korea funded by the Min-

istry of Education, Science and Technology (R31-2008-000-

10008-0). The authors wish also to thank Michael Kerger

and Dr. Harald Teufel for their intensive technical support.

REFERENCES

[1] P. Robuffo Giordano, C. Masone, J. Tesch, M. Breidt, L. Pollini, and
H. H. Bülthoff, “A novel framework for closed-loop robotic motion
simulation - Part I: Inverse kinematics design,” 2010 IEEE Int. Conf.

on Robotics and Automation, 2010.
[2] Robocoaster, “www.robocoaster.com.”
[3] M. A. Nahon and L. D. Reid, “Simulator motion-drive algorithms:

A designer’s perspective,” J. of Guidance, Control, and Dynamics,
vol. 13, no. 2, pp. 356–362, 1990.

[4] P. R. Grant and L. D. Reid, “Motion washout filter tuning: Rules and
requirements,” J. of Aircraft, vol. 34, no. 2, pp. 145–151, 1997.

[5] S. F. Schmidt and B. Conrad, “Motion drive signals for piloted flight
simulators,” NASA, Tech. Rep. CR-1601, 1970.

[6] C.-I. Huang and L.-C. Fu, “Human vestibular based (HVB) sense-
less maneuver optimal washout filter design for VR-based motion
simulator,” Proc. of the 2006 IEEE Int. Conf. on Systems, Man, and

Cybernetics, pp. 4451–4458, 2006.
[7] G. L. Greig, “Masking of motion cues by random motion: Comparison

of human performance with a signal detection model,” Univ. of
Toronto, Tech. Rep. 313, 1988.

[8] R. V. Parrish, J. E. Dieudonne, R. L. Bowles, and D. J. Martin,
“Coordinated adaptive washout for motion simulators,” J. of Aircraft,
vol. 12, no. 1, pp. 44–50, 1975.

[9] D. Ariel and R. Sivan, “False cue reduction in moving flight simula-
tors,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 14, no. 4,
pp. 665–671, 1984.

[10] M. A. Nahon, L. D. Reid, and J. Kirdeikist, “Adaptive simulator mo-
tion software with supervisory control,” J. of Guidance and Dynamics,
vol. 15, no. 2, pp. 376–383, 1992.

[11] R. Sivan, J. Ish-Shalom, and J. Huang, “An optimal approach to the
design of moving flight simulators,” IEEE Trans. on Systems, Man,

and Cybernetics, vol. 12, no. 6, pp. 818–827, 1982.
[12] R. J. Telban, F. M. Cardullo, and J. A. Houck, “A nonlinear, human-

centered approach to motion cueing with a neurocomputing solver,”
NASA, Tech. Rep. 2002-4692, 2002.

[13] L. D. Reid and M. A. Nahon, “Flight simulator motion-base drive
algorithms: Part 1 – developing and testing the equations,” Univ. of
Toronto, Tech. Rep. 296, 1985.

[14] ——, “Flight simulator motion-base drive algorithms: Part 2 – select-
ing the system parameters,” Univ. of Toronto, Tech. Rep. 307, 1986.

[15] ——, “Flight simulator motion-base drive algorithms: Part 3 – pilot
evaluations,” Univ. of Toronto, Tech. Rep. 319, 1986.

[16] L. Nehaoua, H. Arioui, H. Mohellebi, and S. Espie, “Restitution
movement for a low cost driving simulator,” Proc. of the 2006

American Control Conference, pp. 2599–2604, 2006.
[17] L. Nehaoua, H. Arioui, S. Espie, and H. Mohellebi, “Motion cueing

algorithms for small driving simulator,” Proc. of the 2006 IEEE Int.

Conf. on Robotics and Automation, pp. 3189–3194, 2006.
[18] M. Wentink, W. Bles, R. Hosman, and M. Mayrhofer, “Design &

evaluation of spherical washout algorithm for Desdemona simulator,”
Proc. of AIAA Modeling and Simulation Technologies, 2005.

[19] W. Bles and E. Groen, The DESDEMONA Motion Facility: Applica-

tions for Space Research. Springer, 2009.
[20] H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle

System Dynamics,, vol. 21, no. 1, pp. 1–18, 1992.
[21] Monza racetrack, “www.monzanet.it.”

3903


