
 
 

 

Abstract — In this paper we present a new method for 
measuring forces using piezoresistive sensors. This method 
dramatically increases the accuracy and repeatability of the 
readings compared with traditional methods. These 
improvements will allow the common use of piezoresistive 
sensors in robotic applications, where only expensive and 
sophisticated force sensors such as load cells are currently 
used. We also present a sketch of a haptic interface under 
development, consisting of a data glove in which these force 
sensors are integrated. This interface is intended to control an 
Intelligent Assist Device by measuring operator-applied forces 
to the load. The new method proposed for measuring forces in 
piezoresistive sensors consists of reading conductance and 
capacitance by applying DC and sinusoidal waveforms to the 
sensors, thereby allow us to determine a multivariable 
estimation of force, instead of using the traditional, purely 
resistive model that has been used up to now. 

I. INTRODUCTION 
EASURING force has always been a task of great 
importance in robotics. The number of robots that 

work in direct cooperation with humans has increased 
dramatically over the last ten years [1], [2], [3]. This 
collaborative human-robot environment requires continuous 
monitoring of the forces exerted by robots on humans in 
order to keep those forces within comfortable and safe limits 
[4]. Many fields of research and applications such as 
intelligent assist devices [5], haptic interfaces [6], [7], 
human grip force analysis [8], [9], [10], instrumented gloves 
[11], [12], footwear design [13], and medical robotics are 
seeking solutions for measuring force. As a general rule, the 
ideal sensor for measuring force must have the following 
characteristics: high repeatability of readings, small size, 
light weight, increased robustness and reliability, low drift, 
low cost, and independent readings of temperature and 
magnetic field. 

In the early stages of robotics, force was measured by 
installing strain gauges on a robot’s links [14]. A 
Wheatstone bridge made of strain gauges provided a 
reliable, small, and non-invasive method for measuring 
deformation, then the forces applied to the robot’s links 
could be deduced from Young’s modulus of material and the 
link’s dimensions. This method is still used, but it must be 
noted that a flexible element is required to achieve a 
variation of resistance. In some applications, material 
deformation is measured by light intensity on optical fibers 
[15].  

Load cells are another type of force sensor. They are 
typically used in applications that require force measurement 
on several axes and that require high repeatability, high 
robustness, and low drift. Unlike strain gauges, they do not 
need to be mounted on a bendable surface and are available 
in many sizes, depending on the range of forces they can 
withstand.  

The major drawbacks of load cells are their volume and 
weight, which make them unsuitable for use in some 
applications, such as studying human grip force and haptic 
interfaces. These applications require the least invasive 
methods available for measuring force. Piezoresistive 
sensors are the best solution, since they are light-weight, 
thin, and small. They can be fashioned to fit inside a data 
glove [10] or in a human joint, such as a knee [16] or an 
elbow, and they are also inherently safe because they are 
passive. However, piezoresistive force sensors offer 
significantly lower repeatability than load cells, and they 
exhibit considerable hysteresis and drift. These undesirable 
characteristics limit the use of these sensors to applications 
that do not need to be highly accurate [4], but the reduced 
price of piezoresistive sensors compared with load cells is 
generating an increase in use and research interest. 

In this paper, we compared two prior studies on the most 
widely used piezoresistive force sensors [17], [18]. Previous 
studies performed by Lebossé et al. [4] and Vecchi et al. 
[19] show the comparative behavior of both sensors. We 
chose FlexiForce sensors for our study, because the 
manufacturer has developed many specific task sensors [13], 
[16] used in several research and industrial applications.  

A new type of haptic interface [20], under development, 
is being designed to control an Intelligent Assist Device 
(IAD) that requires non-invasive force measurement. This 
control interface consists of a data glove with a 3DOF 
Orientation Device (yaw, pitch, and roll), which is based in 
an Inertial Measurement Unit (IMU) and a force 
measurement system installed in the palm-side of the glove.  

As an operator uses his hand to push a load carried by the 
IAD, the haptic glove measures the forces, thereby 
generating a vector magnitude, and depending on the IMU 
readings, consequent direction is given to the force vector. 
The IAD motion is controlled by this force vector, and 
therefore an amplification of operator’s force is obtained 
without using joysticks, buttons, or handles. An overview of 
the haptic glove is depicted in Fig.1  
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Since high correspondence is desired between the forces 
exerted by the operator and the consequent IAD motion, 
every force contribution must be accurately measured in 
order to achieve high colinearity and a proportional 
response. However, piezoresistive sensors such as 
FlexiForce sensors are not accurate enough, and therefore a 
new method for reducing force estimation errors is required. 
Note that inherently accurate force sensors, such as load 
cells, are unsuitable for a haptic glove due to their bulk.  

In this paper, we develop a new method for reducing 
force estimation errors in FlexiForce sensors (model A201-
100) with a range from 0 to 450 N. This method implies 
formulating an electrical model for the sensor in terms of 
passive components such as resistors (R), inductors (L), and 
capacitors (C).  

To determine inductance and capacitance variation along 
force changes, sinusoidal waveforms must be applied to the 
sensor. This is the most innovative aspect of this study, and 

it will allow us to devise a new, multivariable estimation of 
force, instead of using the traditional, purely resistive 
conductance model proposed by the manufacturer [17]. A 
large number of sensors were used for this study to obtain a 
valid generalization of results. 

This paper is organized as follows: Section II describes a 
procedure for obtaining an electrical model of FlexiForce 
sensors in terms of resistance, capacitance, and inductance. 
Sections III and IV show the experimental set-up and the 
results obtained when applying sinusoidal waveforms to 
eight sensors according to force changes from 0 to 250 N, 
including sensor frequency response. Section V presents a 
series of empirical models, based on conductance and 
capacitance changes in FlexiForce sensors as a function of 
force. Finally, the conclusions are presented, and future 
work is discussed. 

II. SENSOR ELECTRICAL MODEL  
The typical response of an A201-100 FlexiForce sensor in 
terms of resistance and conductance according to force 
changes is shown in Fig. 2. Note that the conductance curve 
in Fig. 2 shows step changes. Resistance changes 
hyperbolically as force increases. Since a linear response is 
desired, the circuit introduced in [17] is used, thereby 
allowing us to obtain a linear conductance variation when an 
input DC signal is applied. This method is traditionally used 
for measuring forces in piezoresistive sensors [4], [9], [11], 
[17], [19]. 

To obtain an RLC sensor model, the circuit introduced in 
[17] was modified as in Fig. 3, including a three-position 
selector for switching between three input signals:  

1 5sV V= −  (1) 

( )2 sin 2s SV A ftπ=  (2)  
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where f and As are the signal frequency and amplitude, 
respectively; FSR in Fig. 3 is the FlexiForce sensor under 
study; ( )1/ 2dt f= is the time delay in Vs3 (3); and ( )u t  is 
the unity step function. Therefore, (3) is a square wave with 
frequency ,f amplitude As, and a duty cycle of 50%. 

Fig. 1: Sketch of the haptic glove under development. Note that 
FlexiForce sensors are installed on the palm-side of the glove, while the 
IMU and the Finger Flexion Sensors (FFS) are installed on the dorsal-side 
of the glove. The force contributions generated by each sensor (F1 ~F7) are 
totaled to obtain a resulting Force (Fr) and consequently a resulting 
Velocity (Vr) for the load and the IAD. 

Fig. 2: Typical variation of resistance and conductance, and a fit curve 
for an A201-100 FlexiForce Sensor (Image taken from a Tekscan 
White Paper: Free Sensors for design. The image legend was 
modified for better comprehension). 

            (a)                                        (b) 
Fig. 3: (a) Picture of a FlexiForce Sensor. (b) Linearization circuit 
for FlexiForce sensors (FSR) with multiple input signals.  
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The transfer function of the inverting amplifier of Fig. 3 is 
given by the following:  

( )/g FSRVo R Z Vs= −  (4) 

where ZFSR is the impedance of the FlexiForce sensor and Rg 
is a pure resistor used for controlling the amplifier gain.  

When signal Vs2 (2) was selected, a phase shift of -180º 
was observed at the output voltage (Vo) when operated at a 
very low frequency. As the frequency was increased up to a 
few Megahertz, the phase shift decreased to a minimum of 
-90º, thereby considering the minus sign in the amplifier 
transfer function (4), which caused a -180º phase shift. The 
phase shift due to ZFSR is therefore 90º. This essential clue 
allowed us to formulate a first order resistor-capacitor (RC) 
model for the FlexiForce sensors. An electrical model 
including inductance is not possible since the phase shift 
introduced by the FlexiForce sensor is always positive. Note 
that the sensor’s capacitance introduces a zero into the 
system, thereby causing positive phase shifts, as discussed in 
Section IV.  

There are two possible variants for a first order RC 
circuit: RC series or RC parallel (see Fig. 4). To identify the 
proper model for the sensor under study, signal Vs3 (3) was 
selected as the input in the circuit of Fig. 3. When plotting 

the experimental results obtained for Vo and Vs3 (3) in Fig. 5, 
ringing was observed in Vo. The ringing occurred due to 
current spikes flowing through the sensor. This response is 
typical of an RC parallel circuit (see Fig. 4c), but it is not 
possible in an RC series circuit (see Fig. 4b): since the series 
resistor (Rs) in Fig. 4b limits the peak current, the ringing 
would not appear.  

Another way to discard the RC series as the FlexiForce 
model is to apply Vs1 (1) as the input signal to the circuit of 
Fig. 3. An RC series model would not allow Direct Current 
(DC) to flow through the sensor because of the capacitor 
effect (Cs), and Vo would therefore be zero. However, an 
output voltage was observed experimentally, so the premise 
of an RC series model was incorrect.  

III. EXPERIMENTAL SET-UP 
Since the RC parallel electrical model was a fit for the 

response of the FlexiForce sensors, a test bench for studying 
force effects on conductance and capacitance was built (see 
Fig. 6). The test bench could handle up to eight sensors 
simultaneously. An interleaved configuration was used by 
placing a puck between adjacent sensors. The puck’s weight 
was negligible due to the low density of the material used; 

this was important, because we wanted to load every sensor 
with the same weight. Forces were generated by placing 
calibrated weights on the pack of sensors. 

The test bench could apply a maximum force of 250 N to 
the pack of sensors. This force is equal to half of the range 
of the A201-100 FlexiForce sensor. The force step was 5 N, 
so a total of 50 different forces were generated during the 
experiment.  

A differential equation for the circuit in Fig. 3 could be 
obtained by replacing FSR in (4) with an RC parallel 
configuration. The following Equation will let us study the 
variation in resistance, Rs, and capacitance, Cs, along force 
changes. 

 

2 2s s o
s

s g

V dV V
C

R dt R
+ = −  (5) 

 
We chose Vs2 (2) as the input signal in (5) for the 

following reasons: First, formulating expressions for Cs and 
Rs when using (2) as the input allowed us to use phase shift 
and output amplitude measurements, which were easier to 

            (a)                        (b)                          (c)   
Fig. 4: Possible electrical models of the FlexiForce sensor. (a) Black 
box model. (b) RC series model. (c) RC parallel model. 

Fig. 5: Sensor output response, Vo (red solid line), to a square wave 
input, Vs3 (dashed blue line). 

Fig. 6:  Test bench overview. Most relevant parts are marked with arrows. 
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acquire than the maximum peak and the ringing frequency 
when (3) was used as the input. Second, the input signal Vs3 

(3) generated excessive and very noisy ringing in the output 
shape that the sensor could not withstand for extended 
periods of time. The input signal Vs3 (3) was suitable only 
for identification purposes but not for continuous operation. 
Finally, it is impossible to perform capacitance 
measurements by applying a DC signal such as Vs1 (1), so it 
had to be discarded. Solving (5) for Vs2 allowed us to obtain 
the following expression for Vo: 

( ) ( )2
- 2 cos 2

sin
o s g

s

s
ft

V A R fC ft
R

π
π π= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6) 

Equation (6) can be rewritten as a sine function with a 
phase shift (φ ) as: 

( )sin 2o oV A ftπ φ= +  (7) 
Joining (6) and (7) results in: 

( )cos
g s

s
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R A
R

A φ
=   (8) and 
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g s

A sin
C

R A f

φ

π
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where the output amplitude (Ao) and the phase shift (φ ) 
were measured experimentally for every exerted force. Note 
that ,f Rg, and As were already known. 

In order to automate the process of measuring the phase 
shift (φ ) and the output amplitude (Ao) for the sensors, a 
modified version of the circuit in Fig. 3 is shown as a block 
diagram in Fig. 7. Two analog switches (ADG441) were 
used to select only one sensor at a time. A switch was also 
used to select between the sinusoidal input, Vs2 (2), and the 
DC input, Vs1 (1). This will be useful for comparing the 
results obtained from the newly proposed method with the 
traditional conductance model. 

Conditioning of the phase shift readings was performed 
using two comparators: an XOR logic gate and a low pass 
filter. The output amplitude was converted to a DC value by 
a precision rectifier circuit. A superdiode configuration was 
therefore used with DC filtering. A microcontroller 
(DSPic30F) controlled the activation of analog switches for 
the sensors and inputs, and it also digitized the phase shift 
and output amplitude readings using an ADC converter. 
This data was sent to a PC for post- processing and analysis.  

IV. SENSOR RESPONSE ALONG FORCE CHANGES 

A. Determination of parameters for sinusoidal input 
signals  
It was necessary to determine an adequate set of 

parameters for the input signal (2), wherefore As and f had 
to be chosen so that the sensor model was valid for any 
applied force. This implied that the sensor’s response had to 
correspond to equations (8) and (9). The input amplitude, As, 
had to avoid sensor overloading by limiting the sensor 
current to less than 2.5 mA, as recommended in [17]. 
Considering that the lowest sensor resistance, Rs, is obtained 
at the maximum force (Fig. 2), As was tuned according to 
this condition.  

Choosing an adequate frequency value, f , was rather 
complicated due to the fact that nonlinear effects appear as 
the frequency is increased. A phase bode plot of the sensor 
depicted in Fig. 8 shows the experimentally measured phase 
shift (φ ) and the expected phase shift. The expected phase 
shift expression is built up by joining (8) and (9) as follows:  

arctan(2 )s sfC Rφ π=             (10) 
The values of Rs and Cs used in (10) were measured at a 

very low frequency, where the sensor had a linear response. 
Figure 8 shows that both phase shift curves (experimentally 
measured and expected) are quite similar until reaching a 
certain frequency, which we called the divergent frequency. 
The divergent frequency was the frequency where the RC 
parallel model described up to now was no longer valid.  

The divergent frequency changed from one sensor to 
other, depending on the force applied to the sensor. We 
deliberately chose 125 N as the applied force in Fig. 8, 
because this value was equal to half the maximum exerted 
force during all experiments.  

A detailed study of the divergent frequency along force 
changes was beyond the scope of this article. However, we 
had to choose an input frequency in (2) that was reasonably 
smaller than the divergent frequency but high enough to 

Fig. 7: Block diagram of the final circuit for measuring up to eight 
sensors simultaneously. 
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produce noticeable phase shifts as the force changed. In 
practice we used 3sA V= and 4f KHz= . 

B. Variation of conductance and capacitance along force 
changes 
The typical values of Cs for the eight sensors measured 

using the circuit of Fig. 7, the input signal Vs2 (2), and 
expressions (7) and (9) were 100-250 pF when unloaded and 
700 pF-900 pF when 250 N was applied to the sensor. This 
means that the sensors exhibited a piezocapacitive behavior. 
The piezocapacitive property of the FlexiForce sensors had 
been unknown up to now, and only the piezoresistive 
property of the sensor had been used for estimating forces 
[4], [6], [9], [11], [17], [19]. Figure 9 shows the variation of 
Cs and Vo for a given sensor. Note that the curves are linear, 
but they both exhibit considerable step changes as in Fig. 2. 

The main contribution of this paper consists in using this 
piezocapacitive property to reduce force estimation errors, 
given that additional information on the applied forces that 
can be found in sensor capacitance. 

V. MULTIVARIABLE SENSOR MODELING 
To reduce force estimation errors in measurements of 

FlexiForce sensors, we have developed four empirical 
models based upon conductance and capacitance changes.  

The first one is the traditional conductance model 
obtained when Vs1 (1) is selected as the input in the circuit of 
Fig. 7. This method will be used as a reference for further 
comparison. The second model is a linear regression of the 
capacitance values, so input Vs2 (2) is chosen as the input in 
the circuit of Fig. 7, and then expressions (7) and (9) are 
used for estimating Cs. The third model consists of 
averaging the output forces predicted by the first and second 
models.  

The fourth model is a feedforward neural network with 
two inputs (Vo and Cs), one hidden layer with two neurons, 
and one neuron output. The same network topology was 
used for all sensors but training data was taken individually 
for each sensor; this is necessary because capacitance is 
different from one sensor to other as stated previously in 
Section IV-B. The neural network was trained offline. 

We trained the neural network with Vo, obtained when 
using both (1) as the input in the circuit of Fig. 7 and when 
using (2) as the input. In practice, slightly better results were 
obtained when using (1) as the input rather than (2), because 

the Vo values were more repeatable.  
The histogram in Fig. 10 summarizes the experimental 

results for each sensor in terms of the mean squared error for 
the four models under study.  

An important set of facts can be concluded from Fig. 10. 
First, the capacitance model generated lower errors than the 
traditional conductance model for all sensors. This is an 
important fact, because it shows that capacitance readings 
are more repeatable than conductance measurements.  

Second, averaging the predicted forces from the 
conductance and capacitance always reduced MSE when 
compared with traditional conductance model. 

Third, the neural network model was the best technique 
for reducing output errors. This method worked better than 
the others due to the fact that a two-variable function is built 
from the Vo and Cs values. Conversely, the other three 
methods only take into account one of the two variables at 
any given time. Averaging the predicted forces from the 
conductance and capacitance models seldom produced better 
results than the neural network model (which was the case 
with sensor 1, but not the other sensors).  

A 3D plot of the surface generated by the neural network 
for a given sensor is depicted in Fig. 11. An arrow 
superimposed on the surface indicates the typical variation 
of   Vo and Cs as force increases. When either Vo or Cs   
values deviate from the ideal trajectory described by the 
white arrow, force is estimated incorrectly. However, the 
soft surface generated by the neural network tends to 
mitigate this error and improve sensor response. 

Finally, the traditional conductance model produced 
output errors that were notably different from one sensor to 
another. These imbalances are a frequent source of problems 
in applications in which several sensors are used [6]. Table 1 
summarizes the improvements introduced by the neural 
network, compared with the traditional conductance model 
for the eight sensors under study. 

Note that the neural network model reduces MSE 
dispersion to a narrow range of 0.107 – 0.515, whereas the 
dispersion of the traditional conductance model is noticeable 
higher 0.258- 2.01. The percentage of error reduction is 
computed (PER) from: 

Fig. 10: Mean Squared Error of the four models proposed for the eight 
sensors under study. 

                         (a)                                    (b) 
Fig. 9: Variation of Vo and Cs along force changes. (a) Variation of Vo

when Vs1 (1) is selected as the input. (b) Variation of Cs when Vs2 (2) is 
selected as the input. 
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MSE neural network model
PER 1

MSE traditional conductance model
= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

     (11) 

A high value of PER for a given sensor means that the 
neural network model has substantially reduced estimation 
error compared with the traditional conductance model. An 
average of these values for the eight sensors under study 
was also computed, resulting equal to 64%.  

VI. CONCLUSIONS AND FUTURE WORK 
An equivalent RC circuit of FlexiForce sensors was 

presented. A piezocapacitive property was found in these 
sensors, and a two-variable model of force estimation was 
developed, which reduced the mean squared error in 64% 
when compared with the traditional conductance model. 
This feature is of paramount importance for the efficient use 
of FlexiForce sensors in robotics applications and haptic 
gloves. 

Future work will focus on determining force effects on 
the divergent frequency and will focus on proposing better 
and more accurate sensor models that help to reduce force 
estimation errors. A comparative study in terms of the 
associated complexity between the traditional conductance 
model and the multivariable model is also pending.  
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Fig. 11: 3D plot of the surface generated by the neural network for 
predicting forces applied to FlexiForce sensors. An ideal variation of Vo

and Cs   as force increases is indicated by a white arrow. 

0
1

2
3

4

0
200

400
600

800
0

50

100

150

200

250

300

 

Vo (V)Cs (pF) 

Fo
rc

e 
(N

)

0

50

100

150

200

250

TABLE I 
COMPARISON OF TRADITIONAL CONDUCTANCE MODEL WITH NEURAL 

NETWORK MODEL IN TERMS OF MEAN SQUARED ERROR (MSE) 
Sensor 1 2 3 4 5 6 7 8 

MSE of 
traditional 
conductance 
model  

0.547 0.258 0.285 1.06 2.01 0.527 1.17 0.839 

MSE of  neural  
network model 0.330 0.107 0.156 0.118 0.374 0.145 0.515 0.249

Percentage of 
error reduction 
(%) 

39.7 58.2 44.9 88.8 81.4 72.4 55.9 70.2 

  Average Percentage of error reduction 64%
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