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Abstract— Teaching a robot to learn new knowledge is
a repetitive and tedious process. In order to accelerate the
process, we propose a novel template-based approach for robot
arm movement imitation. This algorithm selects a previously
observed path demonstrated by a human and generates a path
in a novel situation based on pairwise mapping of invariant
feature locations present in both the demonstrated and the
new scenes using a combination of minimum distortion
and minimum energy strategies. This One-Shot Learning
algorithm is capable of not only mapping simple point-to-point
paths but also adapting to more complex tasks such as
those involving forced waypoints. As compared to traditional
methodologies, our work require neither extensive training
for generalisation nor expensive run-time computation for
accuracy. This algorithm has been statistically validated using
cross-validation of grasping experiments as well as tested for
practical implementation on the iCub humanoid robot for
playing the tic-tac-toe game.

Index Terms - movement imitation, path planning, grasping,
learning by imitation, tic-tac-toe

I. INTRODUCTION

Since the mid 1980s, programming by demonstration

(PbD) has emerged as a promising research topic in robotics

due to its relative merits over traditional methodologies [1].

An increased interest in learning algorithms that will equip

robots to learn by imitation of actions from both humans and

other robotic agents has resulted in many research directions

within the area. For instance, a hierarchical model [2] was

proposed in the domain of human-robot interaction (HRI) for

attention and perception, while some other research focused

on skill teaching methodologies ([3], [4]) using a range

of techniques. Many of these research directions can be

encapsulated by the 5 “W”s of imitation - namely who,

where, when, what and how. Very often, it takes numerous

trials of learning for a robot to generalise each of these

abstract aspects in an action.

In an attempt to reduce the number of trials involved in

learning, we propose an algorithm to address the “how-to”

question in imitation. We introduce a novel computational

model for learning path planning by imitation which makes

use of a fundamental idea in plan adaptation - the presence of

invariant feature points in both the demonstration and a given

situation - to generate a motion path for the new scenario.

The following sections of this paper will present some related

work to our approach followed by the detailed description

of the methodology. Experimental results to validate the
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statistical fitness of the algorithm using data from human

demonstrations will be presented before discussions on an

experiment to implement the algorithm for a real-life tic-

tac-toe game on a humanoid robot.

II. RELATED WORK

For a given observed trajectory, in order to reproduce it in

an unseen situation, simple copying does not always work

well. Furthermore, in a new situation, additional constraints

might be present, such as forced waypoints that require

plan adaptation along the imitated route. Thus, a robot

must have the ability to adapt in addition to generalise.

Research work in the area focused on approaches either to

produce a new path based on a subset of competent tasks

to accommodate additional constraints [5], or to generate a

unique yet exact corresponding imitation of the previously

demonstrated trajectories ([6], [7]).

Most imitation algorithms require several demonstrations

of a single task to work successfully ([5], [8]). This tedious

and time-consuming process is not favourable to human

demonstrators, especially in emergency situations. To speed-

up the learning process and reduce fatigue in giving demon-

strations becomes crucial in future robotic advancement.

Thus, One-Shot Learning, a popular niche area in machine

learning might help to address this issue. However, limited

literature[9] has been found to address this issue. Some of

such works focus on explanation-based methods[10] which

are slightly difficult to be implemented on physical robots.

In [11], the authors argue that paradigms generalising

observed behaviours into a set of intrinsic complex model

parameters limit the ability of user interaction after demon-

stration. However, many state-of-the-art paradigms in path

imitation are in favour of such models. For instance, in

algorithms that use Gaussian Mixture Models[1], the gen-

eralised parameters are the weights with associated Gaus-

sian parameters. These algorithms deter direct user interac-

tion/intervention, as the abstract meaning of these parameters

is not easily manipulable by users. For example, when

a demonstrator accidentally perform a wrong movement,

instead of amending the model parameters, the user has to

either redo all demonstrations or perform many more correct

ones.

To address the above issues and the “how-to” question, a

path imitation problem can be perceived as a plan adaptation

in which the demonstrated path with a set of environmental

features is projected into a warping space. Based on the

preservation of the spatial relationship between the imitated

and the original features in that space, an imitated path can

be generated. Such way of morphing a scene in the current
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context into a new scene exists in the field of both image

processing and motion plan adaptation in which energy

involved in morphing is minimised ([12], [13]).

III. PROBLEM FORMULATION

In this work, we consider the general case of path planning

in a 3-D environment inferred from the demonstration of a

similar task. We assume that all required input features are

observable from vision, i.e. in our case a pair of stereo cam-

eras. Path planning for a planar task can be thus considered as

a special case of this work which requires only one camera.

The ultimate aim of the algorithm is to produce a desirable

path for a given scenario. Generation of the path should be

an inference from a past demonstrated case. Furthermore,

not only should the algorithm be able to generate such path

with great level of stability, but more importantly have some

resemblance to the path produced by human under similar

circumstances.

For a given demonstration viewed from each of the pair

of stereo cameras, we describe the motion path as a set of

p discretised spatial feature points ml : (xl ,yl), l ∈ {1...p}
in the time series images. We also assume that the target

destination in the scene can be fully described by a set, F

of n point-like features, where each is described by (ai,Ai),

i ∈ {1...n}. While ai represents the Cartesian coordinates of

the feature point, Ai encapsulates additional information that

will help to match invariant points of similar objects/targets,

such as SIFT[14] features and textual features. We refer to

such a given demonstration as a template and a new situation

as the task.

In a new situation described similarly by a set F ′ :

(a′ j,A
′
j), j ∈ {1...n′}, we assume that there exists a con-

fidence function for correspondence, fc(Ai,A
′
j), where

fc(Ai,A
′
j) =

{

0 if Ai & A′
j are uncorrelated

1 if Ai matches A′
j

(1)

Depending on the context, we can employ different feature

mapping algorithms to match As and A′s. We, thus, can

identify a maximum k pairs of coordinates in the image

space of both the task, a′ j, and one of the learned templates,

ai, where fc(Ai,A
′
j) = 1, k ≤ n, k ≤ n′. This k pairs of

coordinates should also include the pair of starting positions

in the task and the template.

In a general path planning situation, we might be given

more features in both the task and the templates, such as

objects at far sight and textual features of the background.

However, there are cases which inclusion of such features

generates excessive output distortion which is undesirable.

Thus, we should not impose the matching constraints for

such features in order to preserve the spatial relationship

between the cardinal features and generate a route for the

task, m′ : (x,y).
In a more complex situation, when the agent is required to

pass through waypoints or to avoid en-route obstacles, these

extra feature points can also be described by an additional

set F ′
x(b j,B j). If F ′

x exists in a task, these additional feature

points should be considered only when the planned path m′

contradicts b.

IV. METHODOLOGY

In this section, we will describe, in details, our novel

approach for path imitation. Briefly, we first generate a

distortional mapping of each spatial point present in the

template path into a set of possible locations based on

minimal distortional energy mapping between the k pairs of

coordinates extracted from feature sets F and F ′ as well

as the pair of starting positions. Based on the time series

information of the template path, the task path is created

from the cloud of possible waypoints using minimum-energy

strategy.

A. Feature Distortion Warping

We define the k Cartesian coordinates ai from the template

as the invariant control points(ICP) P and the corresponding

ICPs a j in the task P′. If we can define each mapping from P

to P′ as a function f , to minimise the distortion of feature in

space is equivalent to minimise the following energy function

[15]:

E =
k

∑
w=1

‖ P′
w −Pw ‖ +λE f (2)

where

E f =
∫ ∫

R2
( f

′′

xx +2 f
′

xy + f
′′

yy)dxdy (3)

The introduction of the regularisation parameter, λ , in (2)

is to trade-off between the exact matching of points and the

smoothness, which is particularly useful in the presence of

noise. According to [15], the mapping function f shown can

be defined as:

f (x,y) = α0 +αxx+αyy+
k

∑
i=1

ωiφ(‖ (xi,yi)− (x,y) ‖) (4)

where

φ(r) = r2log(r) (5)

(5) is a 2nd order polyharmonic spline commonly known as

a Thin Plate Spline. In order to ensure that E f exists, the

2nd derivatives of f (x,y) must be square integrable, i.e. the

following three conditions have to be met:

k

∑
i=1

ωi = 0 (6)

k

∑
i=1

ωixi =
k

∑
i=1

ωiyi = 0 (7)

By letting Φi j = φ(‖ (xi,yi)− (x j,y j) ‖) and υi = f (xi,yi),
based on (4) - (7), we can form a linear equation as follows:

[

ΦΦΦ L

LT 0

][

ωωω
ααα

]

=

[

υυυ
0

]

(8)

where ωωω is a column vector of ωi, ααα = [ α0 αx αy ]T

and the ith row of L, Li = [ 1 xi yi ].
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In [16], it has been shown that the square matrix in (8) is

non-singular. Thus, we can define the upper left k× k sub-

matrix of the inverse of this square matrix by M′
k. It can

be shown that E f ∝ υυυT M′
kυυυ = ωωωT Mωωω . Thus, the optimal

solution of ωωω and aaa with minimum bending energy can be

solved either by analytical method or approximation methods

described in [17] and [18] depending on the importance of

accuracy or computational cost.

For each ml in the template, there exists q ≥ 0 mapped

coordinates as possible candidates for m′
l in the task defined

by (4). As these coordinates are often at sub-pixel level, the

minimum energy enforcement is relaxed and thresholded to

accommodate neighbouring coordinates.

B. Minimum-Energy Route Plan

Given the time series point clouds of m′, the goal-directed

movement is simply represented by stepping through the

variable l, and connect the best points from each m′
l to

form the trajectory. We shall make use of the translational

energy as the cost function to derive the task path. Thus, the

optimisation criterion CE is to minimise this cost function

which is proportional to the sum of changes in positions.

CE =
p

∑
i=2

(‖ m′
i −m′

i−1 ‖)
2 (9)

Instead of evaluating the full mesh of discrete energies

through steps, if we define SDi j =‖ m′
i −m′

j ‖
2, U as a

possible waypoint in a given time-stage l, CEl(U) as the

minimum energy from the starting point to the waypoint U ,

we can simplify the computation into a dynamic program-

ming problem[19]:

CEl(U) = min
waypoints v in l−1

{SDuv +CEl−1(V )} (10)

C. Iterative Plan Adjustment

Recall that we have defined F ′
x as the features denoting

extra features in a more complex situation. After the task path

is generated, we will then check if any m′
l contradicts with

b j in F ′
x . In the case of having forced waypoints, suppose

we define the contradiction evaluation Ct as

Ct(b j) =

{

1 if b j 6⊆ m′

0 otherwise
(11)

The algorithm should iterate the following steps until all

Ct(b j) = 0:

1) Compute Ct(b j) for all i

2) For any Ct(b j) = 1, locate the point m′
l on the task

path that is nearest to b j. Find the corresponding point

ml in the template. Put ml into set F and b j into F ′

3) Re-perform the distortion mapping algorithm described

above to find a new task path

V. EXPERIMENTS

Our planning algorithm was implemented and validated

on the iCub (Fig. 1a), a humanoid robot developed by the

RobotCub Consortium1. Two different sets of experiments

1www.RobotCub.org

were conducted to test the statistical fitness (Experiment A)

and practical application (Experiment B) of the algorithm re-

spectively. In both cases, we made use of the SIFT matching

algorithm as the confidence function fc defined in (1).

(a)

(b) (c)

(d)

Fig. 1: The experiment set-up for testing the path planning algorithm.

The iCub in (a) is developed by the RobotCub Consortium. It has a total
of 53 Degrees of Freedom, 32 of which are distributed on the arms. (b)
and (c) are an instance of a human subject with markers captured by the
left and right cameras of the iCub respectively.(d) shows the locations of
markers placed on the left arm of the human subjects in Experiment A.

A. Experimental Setup

The pair of stereo cameras on-board were used to obtain

the demonstrated information. In the following reported

experiments, the iCub captured the demonstrations at the

frame rate of 20Hz and frame resolution of 320×240 pixels

(example shown in Fig. 1b & 1c). Markers were placed on

human subjects (e.g. Fig. 1d) to track the points of interest.

B. Experiment A

A human demonstrator was instructed to perform a grasp-

oriented task while the iCub observed the actions. As

extended from our previous work [20], we conducted 5

experimental tasks, which consisted 20 trials each performed

by different subjects. This has resulted in 100 experiments for

cross-validation of the model against human demonstrations.

(a) (b) (c) (d) (e)

Fig. 2: The sketches of the 5 conducted Experiments. All subjects have
been requested to use their inferior arm (in all cases, left arms). The hand
positions in the diagrams indicate the starting points of the experiments.
The subjects have also been requested to approach the object with their
fore-arms orthogonal to the blue strips indicated in the diagrams. The black
patch indicated in (e) denotes the waypoint area the subject have to navigate
their arms through. The hypothesised paths are denoted by black slashes in
the diagrams.

The 5 experiments were designed to benchmark the ro-

bustness of the proposed model in various ways, which are

described below and illustrated in Fig. 2.
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1) Experiment 1 shown in Fig. 2a is the most general

case of grasping, hypothesised to be most useful for

mapping in complex situations.

2) Experiment 2 shown in Fig. 2b is intended to test the

algorithm with only pure angular rotation of the entire

scene.

3) Experiment 3 shown in Fig. 2c is designed to test the

ability of generalisation of the algorithm into a 3D

situation.

4) Experiment 4 shown in Fig. 2d is to test the general

performance of the warping algorithm.

5) Experiment 5 shown in Fig. 2e is to test the robustness

of the algorithm in a more complex situation, i.e. in

this case with a waypoint.

C. Experiment B

The task of this experiment is to make the iCub to play

the tic-tac-toe game by imitating the basic movement of the

game. During the training phase shown in Fig. 3a, the iCub

was given one single demonstration of how to place a mark

in the grid space. In the demonstration, the human subject

was instructed to constrain his arm movement on a plane.

The iCub was then given a new grid of different size at a

completely new location, as shown in Fig. 3b, to play the

game with a human until the game is finished. The iCub’s

arm position was randomly parked some distance above and

to the left of the playing board at the end of each move. This

parking position would be used as the initial position for

the next move. All these measures are to test the robustness

of the algorithm to generalise in a 3-D environment. In this

experiment, we assumed that the pen was always on the hand

of the iCub and the invariant features were the four corners

of the cell on the grid and the starting position of the arms.

(a) (b)

Fig. 3: Environmental setup for Experiment B. (a) shows an instance
of the demonstrator drawing a circle in a cell of the A4-sized grid. The
iCub was expected to play the game in scene (b), where the grid is 20%
smaller, rotated and 20cm above that in (a).

D. Implementation of the Algorithm

As both cameras on the iCub have certain degrees of fish-

eye distortion (Fig. 1b & 1c), we undistorted the images

with a set of calibration parameters discussed in [21] before

processing the captured frames. The marker positions were

extracted using an efficient colour segmentation technique

proposed in [22]. As the image resolution is limited and

sub-pixel data cannot be recorded, uncertainty in extraction

process with the present of noise is unavoidable. The least

possible amount of uncertainty is thus 0.5 pixel given full

accuracy in extracting the markers. Hence, Gaussian Radial

Basis Function (RBF) smoothing with smoothing parameter

of 0.5 pixels was applied to the extracted path.

The algorithm with intrinsic parameter λ = 0 was then

set up as we believe that the RBF smoothing should have

helped to remove the noise present in the experiments. Thus,

any attempt to relax λ might result in the distortion of the

optimal path. We also thresholded the distortional energy to

accommodate the inclusion of pixel locations up to 2 pixels

away from the mapped sub-pixel location.

With the set of predefined intrinsic parameters of the

stereo cameras, the two independently generated paths can

be integrated to form the final 3-D action path. In Experiment

A, the generated paths were then used to cross-validate the

results produced by other experimental trials. For Experiment

B, during the iCub’s term in the game, it generated a

corresponding path to place a mark in the intended grid cell.

This path was then passed to the inverse kinematics module

of the iCub for execution.

E. Statistical Performance Evaluation

Apart from visual inspection, we introduce two per-

formance metrics, namely Mean Squared Difference and

Correlation Coefficient, to evaluate the performance of the

algorithm quantitatively.

1) Mean Squared Difference (MSD): We make use of

MSD to estimate the squared difference between the cal-

culated path and the demonstrated path to gauge how close

the generated paths are to human demonstrated ones.

MSD =
1

N

N

∑
i=1

‖ m′
i −mi ‖

2 (12)

2) Correlation Coefficient (R2): Assuming that the pro-

posed algorithm is an estimation of the resulted path gen-

erated by human under similar circumstances, R2 is an

indicator of how likely our proposed algorithm can be used

to predict paths produced by human.

R2 =
∑N

i=1(mi − m̄) · (m′
i − m̄′)

√

(∑N
i=1(mi − m̄)2)(∑N

i=1(m
′
i − m̄′)2)

(13)

where m̄ denotes the arithmetic mean of mi.

In (12) and (13), both the performance metrics require

the input vectors to be of the same lengths. However, in

actual practice, we cannot ensure all demonstrations to be

completed at the same duration. Thus, we employed the

Cubic Spline Interpolation method to lengthen the path with

fewer waypoints to match that of the longer one.

VI. RESULTS AND DISCUSSIONS

A. Experiment A

For each trial as an input to the algorithm, we generated

100 paths based on the constraint-mapping into all trials,

including the input scenario itself. This has produced a

100×100 matrix of paths for cross-validation.

TABLE I shows the performance metrics for the 100 self-

mapping cases, i.e. the input and output constraints are the
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same. Assuming a given demonstration is the optimal path,

the output from the algorithm should preserve maximally

the input path. We can see that in all cases, the confidence

indicator is greater than 99% with very low MSD which hints

good preservation of paths.

TABLE I: Performances of self-mapping cases grouped in experiments.

Indicators Exp 1 Expt 2 Expt 3 Expt 4 Expt 5

MSD 25.9 14.4 35.3 31.4 30.6

R2 0.995 0.998 0.992 0.993 0.993

In TABLEs II and III, we grouped the performance indica-

tors according to input/output experiments and take the mean

of these indicators. As shown in TABLE III, 88% of the cases

have R2 ≥ 0.7 which suggests that the path generated by the

algorithm are close enough to what human demonstrated.

Simple hypothesis testing indicated little statistical evidence

in performance difference for R2 ≥ 0.83. From TABLE II,

we can see that mapping a simpler path, e.g. straight line or

without forced waypoints, to any scenario results in closer

performance to that of human. Such observation is somewhat

expected due to the lack of complete invariant information

in the complex case. From these results, we can believe

that utilisation of this One-Shot Learning algorithm can

reduce the cost and burden of repeated demonstrations, while

maintaining high accuracy.

We can also see that the algorithm is capable of mapping

paths from Experiments 1-4 accurately to Experiment 5 with

the constraint of an additional waypoint. This implies that

the IPA algorithm works sensibly in such situations. Thus,

we believe that with similar strategy, obstacle avoidance

can also be executed with IPA by carefully moving the

path point to the neighbour of the obstacle with lowest

bending energy. As such, this algorithm can also be treated

as an incremental learning paradigm in path planning to

accommodate additional constraints which is in-line with

human learning pattern [23]. This is probably why mapping

TABLE II: The averaged Mean Squared Difference for mapping from one
experiment to another. Columns indicate input while rows indicate output.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Exp 1 184 312 1158 7165 8244

Exp 2 120 70 1526 3041 5105

Exp 3 781 2785 536 891 2848

Exp 4 1512 645 1216 193 332

Exp 5 1119 865 1391 464 288

TABLE III: The averaged Correlation Coefficients for mapping from one
experiment to another. Columns indicate input while rows indicate output.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

Exp 1 0.960 0.949 0.819 0.453 0.402

Exp 2 0.993 0.984 0.932 0.751 0.710

Exp 3 0.864 0.482 0.896 0.793 0.752

Exp 4 0.773 0.827 0.868 0.967 0.941

Exp 5 0.835 0.817 0.874 0.890 0.962

from complex cases (Exp 5) back to the simplest form (Exp

1) does not yield good results due to the lack of precise

constraints in the task space corresponding to that in the

template space.

There are inevitable cases that the algorithm does not

reproduce a good path most likely due to the quality of

the demonstrated path. Additional layer of algorithm can

be added to generalise repeating templates to address such

problem. It is also interesting to note that Exp 3 yields high

R2 with high MSD, which implies it might not perform better

than others. On the other hand, as the templates are stored

as a set of path waypoints and invariant features, users will

have the flexibility to understand the underlying contexts

and make necessary adjustments such as removing templates

having high MSDs without retraining the model.

B. Experiment B

Fig. 4a captures the camera view of the demonstrated

path, while Fig. 4b shows the generated paths in the iCub’s

coordinates system for execution. We can see from Fig. 4a,

the human hand started from the far left and drew a circle on

the right before leaving the board vertically in space. This

has been well-preserved by the algorithm in the attempt to

perform the same task elsewhere in space as shown in Fig.

4b. Although there are some minor imperfections in terms of

shape preservation, nevertheless the algorithm demonstrated

great level of stability with the board being shifted to a new

location, and the arm being relaxed from planar movement.

And these imperfections can be reduced by introducing more

invariant feature points.

At every move, one of these generated paths was then

passed to the iCub’s inverse kinematics module for execution.

The sequence of drawings performed by the iCub is shown in

Fig. 5. All the symbols marked by the iCub during the game

were fairly accurately placed in the correct cell. Comparing

to the circles generated by the algorithm shown in Fig. 4b,

it appears that the drawn circles are much less smooth. This

is likely due to the path generated by the iCub’s inverse

kinematics module which is not the shortest distance between

two points. However, this does not affect the discrimination

between the 2 different symbols in the game.

VII. CONCLUSIONS

We have presented a One-Shot Learning algorithm for

robot path imitation in this paper. This algorithm has been

implemented and statistically validated using cross-validation

results from the grasp-oriented paths demonstrated by hu-

man subjects. It has also been implemented to equip a

humanoid robot with the capability to play the tic-tac-toe

game without being constrained to the same location. The

experimental results show that this generic algorithm is

capable of reproducing satisfactory path by imitating simple

tasks. However, the experiments have been conducted with

assumptions, such as sufficient invariant feature points were

given for mapping and the destination features were static.

Computationally, this algorithm with the implementation

of the approximation method is an O(n3) problem. This
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Fig. 4: Paths imitated from one single demonstration. (a) shows the
demonstrated path seen from the left camera of the iCub. (b) shows the
generated paths for marking different cells in the iCub’s coordinates system.

(a) (b) (c)

(d) (e)

Fig. 5: iCub playing tic-tac-toe. The iCub started the game by marking
the centre cell (a) with the path learned from demonstration. Subsequently,
it then marked on top-left (b), top-right (c) cells and won by marking the
top-centre (d) cell. (e) shows the resulted grid after the game.

algorithm is much inexpensive with preservation of good

accuracy as compared to imitation algorithms that focus more

on accuracy using fluid dynamics principles [24]. We plan

to extend our research in segmenting the observed templates

into smaller sub-templates that can be reused and recycled

in a new situation by possible combination of specific sub-

templates in the right order.
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