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Abstract—In this research, a Universal map, which can be
converted to individual maps for heterogeneous mobile robots,
is proposed. A Universal map can be generated using our devel-
oped measurement robot, and it is composed of a textured 3D
environment model. Therefore, every robot can use a Universal
map as a common map, and it is utilized for various localization
technologies such as view-based and LRF-based methods. In
LRF-based localization, accurate localization is achieved using
a specific map, which is generated from Universal map. In a
view-based approach, localization and navigation are achieved
using rendered images. The use of a Universal map enables
generation of these maps automatically. The effectiveness of
this approach is confirmed through experiments.

I. INTRODUCTION

Maps are essential for localization and navigation, thus
methods for generating maps have been studied. Recently,
indoor and outdoor navigation have been achieved, so coop-
erative work of various robots is expected to work effectively
in the near future. However, even if robots work at the same
location, each robot has to create an individual map such
as an LRF-based or a vision-based map. Furthermore, when
the same sensor is installed in each robot, it is impossible to
use a common map unless each sensor is set up at the same
position. Therefore, “Map sharing” hasn’t been achieved in
heterogeneous robots.
Simultaneous localization and mapping (SLAM)

have been studied actively for generating a map
automatically[1][2]. Additionally, it has become possible
recently to measure 3D environment maps by laser range
sensors. For instance, abandoned mines were explored
autonomously, and a 3D map was acquired[3]. Textured
3D maps were created using Laser Range Finders(LRFs)
and a camera [4][5]. Furthermore, a 3D laser measurement
system using multiple mobile robots was proposed[6].
Outcomes of these works show the feasibility of creating a
3D map automatically. Most of the researchers measured 3D
environments for exploring and archiving, but they didn’t
consider reusing the 3D environment model. Therefore, we
propose a “Universal map” for heterogeneous robots as
reuse of the 3D environment model. The Universal map can
be converted to some individual maps, thus it is possible
to share the map as a common map in heterogeneous
robots. The Universal map has 3D environment information
including geometric and textural information, and we
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Fig. 1. Concept of the Universal Map

confirmed the feasibility of our proposed method to apply
vision-based and LRF-based navigation.
The rest of this paper is organized as follows: Section II

describes an overview of the Universal map, and generation
methods are described. Section III shows the results of
localization and navigation based on the Universal map.
Finally, we conclude the paper and describe future work in
the last section.

II. UNIVERSAL MAP

Generating a map requires time and effort, so it is effective
to share a common map for economy. However, robots
cannot utilize a common map because system configurations
are different in heterogeneous robots. In order to solve
this problem, we propose using a 3D environment model
,which is called Universal map, as a technique for sharing a
common map. In our concept, a Universal map that has rich
information duplicating the real world can be converted to
various individual and specialized maps. As shown in Fig.1,
the Universal map has 3D geometric model and textures, so
the Universal map can be converted to LRF-based and vision-
based maps. We believe that “map sharing” is achieved by
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Fig. 2. measurement robot(Two laser range sensors and an omnidirectional
camera are installed)

converting to an individual map that is suitable for each
system. Additionally, the Universal map includes not only
a 3D textured geometric model but also useful information
such as trajectory of persons and illumination condition. If a
3D environment can be scanned completely, various types of
maps can be generated, and robots can move more robustly
and safety.

A. Measurement robot

Robots for measuring 3D environments have been devel-
oped. In general, there are no fast 3D sensors available, thus
most researchers use a 2D laser range sensor working on an
extra rotation device[7][8]. It is necessary to stop to measure
at each scan in the case of using rotation devices; thus the use
of an extra rotation device isn’t suitable. Therefore, we built a
mobile robot in order to measure details of a 3D environment
easily as shown in Fig.2. An omnidirectional camera and two
laser range sensors are installed in the robot. The laser range
sensor (UTM-30LX), which can measure horizontal area, is
utilized for SLAM, and the robot can acquire 3D points
using the other laser range sensor(URG-04LX). In each step,
3D points are correlated with each estimated robot position
by SLAM for generating a 3D map. Additionally, projected
3D points on the omnidirectional image are computed for
coloring each 3D point.

B. Generation of Universal Map

The experiment for generating a Universal map was con-
ducted in the corridor (about 25[m]) and elevator lobby
(about 10[m]) at our university. An overview of generating
the Universal map is illustrated in Fig.3 and the procedures
are as follows:

1) Collect the environmental information including 3D
geometric model and omnidirectional images

2) Estimate the robot position by FastSLAM[9][10]
3) Generate 3D map using vertical range data and the
estimated robot positions

4) Color 3D points using omnidirectional images

Triangle mesh

Colored 3DEM

Universal map

Colored points

Corresponding:
Point - Color

3DMapping

H-LRF 
Observations

Robot
Odometry

Collected data by Mobile Robot  

V-LRF 
Observations

HOV
Images

Localization

FastSLAM

Estimated 
localization

data

Mapping

Fig. 3. Overview of the procedures to generate Universal map

Fig. 4. Result of map building by FastSLAM
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Fig. 5. Relationship between 3D point measured by LRF and its projection
onto the omnidirectional image

5) Convert the colored 3D discrete points to polygon
mesh for filling in blanks

Universal maps are generated offline after collecting the
environmental data. First, the robot collects the environmen-
tal data. Next, FastSLAM is executed using a horizontal
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Fig. 6. Point-cloud(left) and rendering(right). The color of each point is
estimated by projecting its 3D position onto the omnidirectional image

Fig. 7. Actual view of the environment (left) and Universal map (right)

laser range sensor and odometer for localization as shown
in Fig.4. zzzt = {zzz1t , · · · ,zzzmt } is defined as vertical range data
that the robot can acquire at a time t, and zzzkt = [ukt ,v

k
t ,0]

�
is coordinate of k− th observation point. Then 3D map
MMMk
t = [Xkt ,Y

k
t ,Zkt ]

� is computed by the following equation:[
MMMk
t
1

]
=

[
RRRxt TTTxt
000� 1

][
RRRrt TTT rt
000� 1

][
zzzkt
1

]
(1)

where RRRrt ,TTT rt are the rotation matrix and translation vec-
tor from LRF-coordinates to world-coordinates respectively.
Additionally RRRxt ,TTTxt are the estimated pose of the robot in
world-coordinates using FastSLAM. After that, the color of
each 3D point is computed by omnidirectional image as
shown in Fig.5. 3D points that correspond to vertical range
data zzzkt are defined as P

k
t = [X ,Y,Z]T .

[
Pkt
1

]
=

[
Rhov Thov
0� 1

][
zkt
1

]
(2)

where, Rhov and Thov are the rotation matrix and transla-
tion vector from LRF-coordinates to HOV-coordinates. When
the 3D points can be estimated on HOV-coordinates, it
is easy to compute the color of 3D points[11], and the
3D environment model (point-cloud) can be generated as
shown in Fig.6(left). Finally, in order to generate polygon
meshes, the distance of the closest-point pairs are computed.
When the distance is less than threshold (0.40[mm]), points
are connected for composing polygon mesh. Furthermore,
polygon mesh are colored by Grouaud shading as shown in
Fig.6(right). Compared to the actual view, we confirmed that
the real world could be re-created precisely in a Universal
map as shown in Fig.7. It took about 15 minutes to collect
the information of corridor and elevator lobby. Besides, the
process of generating Universal map took about 10 minutes
by Intel Core 2 Duo 2.20[GHz].
For evaluating the Universal map, we compared between

the real environment and the Universal map. Reference points

Top-URG

Fig. 8. System configuration of the service robot (enon) in which two laser
range sensors are installed

S = [s1,s2, · · · ,sN ] are measured in the real world using
total-station, and virtual reference points Q= [q1,q2, · · · ,qN ],
which correspond to reference points in the real world,
are acquired from the Universal map. In this research,
25 (= N) points are measured as reference points, and
Distances between reference points and virtual reference
points di = ‖si−qi‖ are computed. Average and variance
are di = 0.067[m] and σ2 = 0,034[m] respectively, and we
confirmed the accuracy of the Universal map.

III. LOCALIZATION AND NAVIGATION BASED ON

UNIVERSAL MAP

Localization and navigation are conducted for confirming
feasibility of individual maps based on a Universal map. We
applied three methods as follows:

1) LRF-based localization
2) Localization using the ceiling map as view-based ap-
proach

3) Navigation based on view sequence technique

First, the LRF-based method is selected, because LRF-
based localization has been achieved robustly. Second and
third, view-based localization and navigation methods are
conducted for evaluating the textured 3D map.

A. LRF-based Navigation

It is possible to estimate the position robustly using a
LRF; thus, a LRF is installed in a number of mobile robots.
However, the system configuration such as type of LRF and
setting position is different in each robot, and mobile robots
have to create an individual map by themselves. It is inef-
ficient for each robot to measure the environment to create
maps individually; thus, we solve this problem by generating
individual maps from a Universal map. Generally, a grid map
is utilized for LRF-based localization and navigation, thus a
grid map is generated form Universal map for LRF-based
localization. The virtual robot can move in Universal map
for creating the grid map. The virtual robot moves using
path which is included as the path of measurement robot in
Universal map.
For evaluating the LRF-based individual map, we built an

experimental robot based on the Fujitsu service robot “enon”.
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Fig. 9. Results of Monte Carlo Localization using map of wrong height
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Fig. 10. Results of Monte Carlo Localization using map of correct height

Two types of robots can be simulated because the robot has
two laser sensors (h1=0.381[m] and h2=0.794[m]) as shown
in Fig. 8

Experiments of localization are performed as follows:

1) Localization is executed using occupied grid maps
unmatched to position of the sensors

2) Localization is executed using occupied grid maps
matched to the position of the sensors

The robot is controlled manually for evaluation, and Monte
Carlo Localization is executed using a particle filter. In
the case of experiment No. (1), the robot didn’t utilize the
appropriate map; thus, the results of estimated two path are
different, as shown in Fig. 9. One path is estimated using
an upper LRF and lower map, and the other is estimated
using a lower LRF and upper map. Accurate localization is
achieved in area (A) of Fig.9 because there is almost no
variation in each height. However, observational results are
different in area (B), so localization cannot be estimated
accurately. On the other hand, occupied grid maps, which
match sensor position, are selected in experiment No. (2).
Figure 10 shows the results of estimated localization. The
results show that robust localization is achieved because
robot paths are matched completely; hence it is important
to utilize an appropriate map for accurate localization, and
the effectiveness of the individual map converted from the
Universal map was confirmed.

(a) (b)

Fig. 11. Ceiling map created by image mosaic technique (a) and by
threshold operation to Universal map (b)

EMC-230 Laptop

Ceiling Camera

Fig. 12. System configuration of mobile robot with a wide conversion lens

B. Vision-based localization using ceiling map

Navigation and localization based on a ceiling map are
achieved robustly in dynamic environments[12]. The ceiling
map is also generated automatically using the Universal map
by setting the height of ceiling. We assumed a flat ceiling
for converting the ceiling mosaic, and 3D points, which
are higher than threshold, are extracted as points of the
ceiling. Figure 11(a) is created manually and (b) is generated
automatically from the Universal map. Resolutions of (a)
and (b) are about 16[pixel/m] and 25[pixel/m] respectively,
thus we confirmed that Fig.11(b) isn’t inferior as compared
with (a). After generating the ceiling mosaic, it is converted
to a binary image for the remaining light sources. The
robot position is estimated robustly in a variable illumination
condition using a binary image.
Figure 12 shows the developed experimental robot based

on a wheelchair for the localization experiment using the
ceiling map. A camera with a wide-conversion lens, is
installed in the robot for capturing ceiling images. Intrinsic
parameters are estimated for distortion correction by calibra-
tion in advance[13]. In general, particle filter is utilized for
localization, but template matching is utilized for confirming
the feasibility easily as shown in Fig.13. Figure 14 shows
snapshots of running a path, while the robot is controlled
manually, and the robot position can be estimated. It is
possible to estimate the position during meandering and
turning, so application to the ceiling map is effective.

C. Navigation based on View Sequence technique

The view-sequence navigation technique was proposed by
Matsumoto[14]. This navigation method is composed of two
steps. One is “recording run,” and the other is “autonomous
run”. In the navigation using view-sequence, front of view
images are utilized for memorizing a running route. In the
case of using a Universal map, view-sequence images are
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Fig. 14. Snapshots of localization based on ceiling map

Fig. 13. The result of template matching for localization
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Fig. 15. Camera calibration using chess-pattern for view simulation and
geometric camera model

generated automatically by setting a navigation route instead
of the real “recording run.”
For generating the view-sequence images from the Uni-

versal map, we have to estimate intrinsic and extrinsic pa-
rameters as shown in Fig.15. Intrinsic parameters (including
scale factor) A are defined by the following equation:

A=

⎡
⎣ fx 0 cx
0 fy cy
0 0 0

⎤
⎦ (3)

where cx, cy are center in image-coordinates, and fx, fy are
focal length. Iv is defined as the number of image pickup
devices in the vertical direction, and vertical angular field of
view(Fig. 15) is computed by the following equation:

θv = tan−1(
cy
fy

)+ tan−1(
Iv− cy
fy

) (4)

g

Fig. 16. Image of robot camera(left) and view simulation by Universal
map(right)

Figure 16 shows the result of view simulation using
estimated parameters, and we can confirm the image, which
is similar to the captured image by the normal front camera.
The virtual camera moves to a destination at intervals of
0.1[m] in the Universal map. Captured images convert to
gray scale images of 80× 60[pixel], and 40 × 60[pixel]
is defined as the area of template matching. The robot
(Fig.15) is navigated using generated view-sequence images,
which are different in brightness from camera images; thus
normalized correlation is utilized for template matching.
The robot can run using view-sequence based on the

Universal map as shown in Fig. 17, and Fig. 18 shows
the result of template matching at No.(5) in Fig. 17. Left
and right images are generated image as previous and next
node respectively. The center image is the current captured
image by the front camera. Figure 19 illustrates the result of
variance of value of normalized correlation. The value of nor-
malized correlation (red line) between a captured image and
the generated image Tn decreases as frame number increases,
and the value of normalized correlation (blue line) between
a captured image and the generated image Tn+1 increases.
Although the average of normalized correlation is smaller
than the value without the Universal map, the Universal map
has sufficient quality for view-based navigation.
The benefit of using a Universal map for view-sequence

navigation is to be able to move smoothly. The robot is
controlled manually in the “recording run,” so it is difficult
to record a straight path. On the other hand, a straight path is
defined easily in the Universal map. Additionally, dynamic
route planning will be possible. If the robot finds an obstacle
on the recording route, the robot will be able to create another
path.
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Fig. 17. Snapshots of navigation based on View-sequence

Fig. 18. The result of template matching to view simulation
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Fig. 19. Normalized correlation (NC) value

IV. CONCLUSION

In this paper, we proposed a Universal map, which can be
converted to individual maps such as LRF-based and vision-
based maps. First, a 3D colored map is generated as the
Universal map by the developed robot in which two laser
sensors and an omnidirectional camera are installed. Next,
the feasibility of using each individual map is confirmed
through experiments of localization and navigation. Uni-
versal maps have geometric information, thus a LRF-based
map can be extracted. A LRF-based map of appropriate
height is generated for each robot, and robust localization
is achieved. Finally, localizations based on ceiling map and
view-sequence navigation are also achieved as view-based
navigation, and we confirmed the effectiveness of using the
Universal map.
In this paper, we implemented a one-way conversion from

universal map to specific maps. We believe that our concept
can be applied to multiple heterogeneous robot, so we will
try that a robot path will be represented in the universal map.

Additionally, we will implement dynamic route planning in
view-sequence navigation for avoiding obstacles, and we will
try to convert to other maps as future work.

REFERENCES

[1] R. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. The international journal of Robotics Research,
5(4):56–68, 1986.

[2] J. Leonard and H. Durrant-Whyte. Simultaneous map building and
localization for an autonomous mobile robot. In Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 1442–1447, 1991.

[3] S. Thrun et al. Autonomous Exploration and Mapping of Abandoned
Mines. Robotics & Automation Magazine, 11(4):79–91, 2004.

[4] D. Hähnel, W. Burgard, and S. Thrun. Learning Compact 3D Models
of Indoor and Outdoor Environments with a Mobile Robot. Robotics
and Autonomous Systems, 44(1):15–27, 2003.

[5] B. Jensen, J. Weingarten, S. Kolski, and R. Siegwart. Laser Range
Imaging using Mobile Robots: From Pose Estimation to 3d-Models.
In Proc. 1st Range Imaging Research Day, pages 129–144, 2005.

[6] R. Kurazume, Y. Tobata, Y. Iwashita, and T. Hasegawa. 3D laser mea-
surement system for large scale architectures using multiple mobile
robots. In Proc. of the 6th International Conference on 3-D Digital
Imaging and Modeling, pages 91–98, 2007.
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