
Stacked Integral Image

Amit Bhatia, Wesley E. Snyder and Griff Bilbro

Abstract— Filtering in digital images via Integral Image
yields fast computation times for uniform filtering. The ex-
tension by Heckbert [1] to perform filtering via repeated
integration provides a way for non-uniform filtering, but has
its own limitations. A recent method by Hussein et al. [2]
provides non-uniform filtering by Euler expansion of filtering
kernels, and is called kernel integral method. We propose
a simplification for non-uniform filtering by stacking of box
filters from a single integral image. 1 Results show speedups
of as much as 40:1, similar to run time performance gains
in kernel integral method, when comparing to naı̈ve non-
uniform filtering, while at the same time reducing the setup
time drastically.

Keywords: Integral Image, Kernel, Box Filter

I. INTRODUCTION

The process of filtering in image processing applications is
a significant sink for computer time, especially in real-time
visual control of robotic systems and target tracking.

For uniform filtering the concept of Summed Area Tables,
as introduced by Crow [3], provides constant time results.
This idea of filtering was generalized as Repeated Integration
by Heckbert [1] which shows that convolution of a signal
with any piecewise polynomial kernel of degree n − 1 can
be computed by integrating the signal n times and point
sampling it several times for each output sample. But there
is a cost associated with integrating the image n times.

In computer vision, the idea of summed area tables was
introduced as Integral Images by Viola et al. [4] to compute
rectangular features. For rectangular regions, the filtering is
achieved in constant time using box filters. This idea was
used for computing integral histograms by Porikli in [5] and
for covariance matrices in [6]. It was used by Zhu et al. [7]
for fast computation of histogram of oriented gradients.

Most of the usage of Integral Images listed above pertains
to uniform filtering using box filters. But some applications
perform better using non-uniform filtering. For example
Dalal et al. [8] use bilinear interpolation to enhance their fea-
ture detector. In kernel based object tracking [9], Comaniciu
et al. use kernel based non uniform filtering for mean shift
tracking. For such applications, the non-uniform filter needs
to be applied recursively at overlapping regions of the image
to match against a given model. This tends to become very
costly computationally as the naı̈ve method performs direct
convolution at every pixel in the image. Hence, Zhu et al.
[7] bypass the non-uniform (Gaussian) weighting to speed
up their detection algorithm. But, as pointed out by Dalal et
al. [8], using weighting schemes gives much better results.

1This work was partly supported by AFOSR under grant no. FA9550-07-
1-0176 and ARO under grant no. W911NF-05-1-0330.

A recent method proposed by Hussein et al. [2] provides
non-uniform filtering by splitting the filtering function into
region-independent and point-independent functions. They
resolve the filtering function for bilinear interpolation and
Gaussian weighting kernels, using a linear combination of
integral images. This method is called kernel integral image.
They show that this method provides exact weights for
bilinear interpolation and approximate weights for Gaussian
filter. There is a performance penalty in the setup time while
a performance gain in the actual filtering time, when the
kernel integral image method is compared with the direct
convolution method.

In this paper we propose to reduce the setup time by
stacking multiple box filters from a single integral image.
The idea closest to this can be seen in [10], where Bay et
al. use integral images to approximate Gaussian derivatives,
for feature detection and description. Our paper is organized
as follows. In section 2, the basic idea of integral image and
filtering by repeated integration is revisited. In section 3, the
kernel integral method is summarized. In section 4, the pro-
posed stacked integral image method is described followed
by box stack calculation in section 5 and experiment results
in section 6. Section 7 describes using the proposed method
for multi-stage detection.

II. INTEGRAL IMAGE AND REPEATED INTEGRATION

The idea of Integral Image [4] is the same as that of
Summed Area Tables [3]. Given a feature of interest f ,
e.g. intensity, at every point in an image, the feature of any
arbitrary rectangular region in the image can be computed
using four operations on the integral of an image.

The integral of an image at any point (x, y) in a sampled
image represents the sum of feature values from the origin
up to and including the point (x, y). Once this integral image
is built, the sum of values within any region is computed as
follows:

As shown in figure 1, the rectangle of interest is bounded
by (x1, y1), (x2, y2), (x3, y3), (x4, y4). If I(x, y) represents
the value of the feature in the image at point (x, y) then the
corresponding Integral Image value II(x, y) is given as:

II(x, y) =
∑

x′≤x,y′≤y

I(x′, y′) (1)

Using the integral image, any rectangular sum can be
computed in four array references, as shown in (2) below.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1530

I(Rect) = I[(x1, y1), (x2, y2), (x3, y3), (x4, y4)]
= II(x4, y4)− II(x3, y3)
−II(x2, y2) + II(x1, y1)

(2)

Fig. 1. Integral Image

Using the above concept, Heckbert [1] proposed to build
more complex filters by repeated integration. The main idea
being that repeated convolution of a box filter by itself gener-
ates higher order filters: triangular filter, parabolic/quadratic
filter, parzen/cubic filter. As the number of convolutions
increase, the box filter approaches a Gaussian filter. In
Heckbert’s approach, using a filter which is produced by con-
volving a box filter n times, is equivalent to first integrating
the image n times and then convolving the nth integral image
with the nth derivative of the filter. Since nth derivative
of nth order box filter is a train of impulses, the final
convolution amounts to evaluation of the nth integral image
at the selected points. Although this approach is attractive, it
involves the repeated integration of the image before the final
simple convolution takes place. Also, the precision required
to represent the integration values grows with n.

III. KERNEL INTEGRAL IMAGE

In [2] Hussein et al. proposed an extension to Integral
Images, by separating the filtering function into region-
independent part and point-independent part.

A filtering of values of a feature function f (e.g. intensity)
over a region r is defined as a mapping Af : r → < which
maps the region to a real value. This can be expressed as:

Af (r) =
∑
x∈r

ar
f (x) (3)

where the contribution function ar
f (x) defines contribution

of point x to filtering of f over region r, and hence depends
on three things: point coordinates, function f and region r
(i.e. extreme points of the region).

When the contribution function is region-independent,
such as af (x) = f(x) or af (x) = ‖x‖f2(x), then the inte-
gral image is calculated easily as IIf (x) =

∑
yi<xi

af (y).
For region dependent contribution function, such as for

bilinear interpolation, denote a rectangular region r bounded
by points xb = (xb

1, x
b
2) and xe = (xe

1, x
e
2) on the top left and

bottom right corner of the rectangle, with center xc = (xb +
xe)/2, and half width and half height as hw = ((xe

1−xb
1)/2)

and hh = ((xe
2 − xb

2)/2), where b implies begin point, e

implies end point, and c implies center point. The filtering
contribution of f at a point x = (x1, x2) is given as:

ar
f (x) =

(
hw − |x1 − xc

1|
hw

)(
hh− |x2 − xc

2|
hh

)
f(x) (4)

By separating variables, this simplifies to:

ar
f (x) = gr

1h1 + gr
2h2 + gr

3h3 + gr
4h4 (5)

where, h1 = f(x), h2 = x2f(x), h3 = x1f(x), h4 =
x1x2f(x) are region independent functions and g′s are the
respective point independent coefficients (see [2]): gr

1 =
((xe

1x
e
2)/(hw×hh)), gr

2 = (xe
1/(hw×hh)), gr

3 = (xe
2/(hw×

hh)), gr
4 = (1/(hw×hh)). Hence, the original filtering func-

tion from (4), is replaced by a linear combination of other
filtering functions. The h functions are region-independent
while the g coefficients are point-independent. For the case
of bilinear interpolation, this combination of other functions
is an exact replica of the original filter.

Similarly, for the case of Gaussian filtering, the filter
function contribution in 1-D at point x is given as:

ar
f (x) = e−(x−x

c

σ)2f(x) (6)

Expanding the above (6) using Euler expansion, and
choosing only the first two terms gives the approximate
contribution function as:

a′rf (x) =
(

1− (
x− xc

σ
)2
)
f(x) (7)

which in 2-D becomes the approximation:

a′rf (x) =
[(

1− (
xc

1

σ
)2
)

+ 2
xc

1

σ2
x1 −

x2
1

σ2

]
×[(

1− (
xc

2

σ
)2
)

+ 2
xc

2

σ2
x2 −

x2
2

σ2

]
f(x)

(8)

This requires generation of the following nine integral
images: f(x), x1f(x), x2f(x), x1x2f(x), x2

1f(x), x2
2f(x),

x1x
2
2f(x), x2

1x2f(x) and x2
1x

2
2f(x).

Hence, using (5) for bilinear interpolation with four in-
tegral images and using (8) for Gaussian filter with nine
integral images, the authors provide a fast method of non-
uniform filtering, using integral images.

IV. STACKED INTEGRAL IMAGE

Although by using kernel integral images, there is substan-
tial improvement in the run-time of computing the convolu-
tion, as compared to the run-time of naı̈ve direct convolution,
there is a constant cost in generating the multiple integral
images. Although this setup cost (four integral images for
bilinear interpolation and nine integral images for Gaussian
filter) starts diminishing with increasing size of the image,
it would be even better if this setup cost is reduced too.

To reduce this constant setup cost in computing multiple
integral images, we propose that a set of appropriately
chosen box filters with corresponding weights would closely

1531

approximate the desired non-uniform filter. By using integral
images, the value of the each box can computed using just
four operations as shown in equation (2). A single non-
uniform filter is then approximated as a stack of N boxes of
different sizes (length, width of box) and weights (height of
box). For each non-uniform filter, the number of boxes and
their sizes and weights can be precomputed. When the filter
needs to be applied, only a single integral image needs to be
computed and each box value can be computed using at most
four integral image lookups per box. The number of boxes
in the stack, N , can vary depending on the accuracy of the
approximation desired. A larger number of boxes produces
greater accuracy, but four more lookups would be required
to compute each additional box weight.

For the case of Gaussian 1-D filter, figure 2 shows filter
approximation using 3 boxes. The left side shows the value
of the Gaussian function at the box boundaries. The right
side show the value of the box weights, defined to be the
difference between the Gaussian value of the current box
and the boxes below it, i.e. incremental weight.

Fig. 2. Gaussian 1D filter: 3 box approximation

Figure 3 shows filter approximation of Gaussian 1-D filter
using 4 boxes. As is evident from the figures 2 and 3, the
number of parameters for box sizes and weights increase
with N , the number of boxes parameter.

Fig. 3. Gaussian 1D filter: 4 box approximation

In 1-D, the parameters to be decided for each box are its
width and height. In 2-D, the parameters to be decided for
each box are its length, width and height. Hence, each n-D
box has n+ 1 parameters that need to be chosen.

By using a precalculated stack of N boxes, their sizes
and their weights, a non-linear filter can be approximated
quickly by summing over the corresponding boxes in the
single integral image. We call this method Stacked Integral
Image since it builds a filter using a stack of box filters

evaluated on a single integral image. Compared to the kernel
integral image approach, the stacked integral image uses only
one integral image, and hence saves on the setup cost. When
the kernel integral image approximates a Gaussian filter by
two terms of an Euler expansion, it leads to computation
of nine integral images. The stacked approach on the other
hand increases its accuracy by having more box filters, all
using the same integral image. The main cost of the stacked
integral image approach for Gaussian filter is the calculation
of the box sizes and weights, which can be precomputed and
is explained in the next section.

V. BOX STACK CALCULATION

A. Function Minimization

The parameter N decides how many boxes are to be used
to approximate a kernel filter. Denote the half width, half
height and weight of a box i by wi, hi and ai respectively.
Given an origin centered region R with half width and half
height as w and h, then the function to minimize is:

J =
w∑

x=0

h∑
y=0

[
K(x, y)−

N−1∑
i=0

[H(wi − x)H(hi − y)ai]

]2

(9)
where, K(x, y) is the value of the kernel filter (typically
Gaussian) at (x, y). The Heaviside step function H in (9)
ensures that only those boxes that cover the given pixel
(x, y), have their weight added, where H(y) = 0 for
y < 0, and H(y) = 1 for y >= 0. Minimization of J
by any appropriate numerical method produces the desired
parameter values.

B. Computational Complexity

Given a filter size (Fw, Fh) to be applied on an image of
size (Iw, Ih), the box stack can be precomputed once and for
all, for the size (Fw, Fh). Having N boxes with given sizes
and weights, the convolution can be done very quickly. First
the single integral image is computed on the input image.
Then a weighted sum is computed by simply adding the
uniform rectangle filter weights computed for each box size,
using equation (2). The computational cost of the kernel and
stacked integral methods for the case of a Gaussian filter are
compared below. Similar comparisons can be done for other
kernel filters.

As done in [4], computing the integral image ii(x, y) of
an image i(x, y), using cumulative sum s(x, y), is:

s(x, y) = s(x, y − 1) + i(x, y) (10)

ii(x, y) = ii(x− 1, y) + s(x, y) (11)

Hence, using cost of addition/subtraction and multipli-
cation as A and M respectively, the cost for computing
equations (10) and (11) is IwIhA each. So, total cost to
compute an integral image is 2IwIhA.

Since the integral images in kernel integral method involve
multiplication of image values too, their respective costs are
given in table I. So, total setup cost, for kernel integral

1532

Integral Cost Integral Cost
f(x) IwIh(2A) x1f(x) IwIh(2A + M)
x2f(x) IwIh(2A + M) x1x2f(x) IwIh(2A + 2M)
x2
1f(x) IwIh(2A + 2M) x2

2f(x) IwIh(2A + 2M)
x1x2

2f(x) IwIh(2A + 3M) x2
1x2f(x) IwIh(2A + 3M)

x2
1x2

2f(x) IwIh(2A + 4M)

TABLE I
SETUP COST: (GAUSSIAN FILTER) KERNEL INTEGRAL IMAGE

method, is KII = 18IwIh(A + M). Filtering cost, using
kernel integral method, at every pixel in an image involves a
single rectangle lookup, with 3 additions/subtractions, whose
cost is 3AIwIh.

For a stacked integral image, the single integral image
cost is SII = 2IwIhA. Filtering cost, for stacked integral
method, at every pixel in an image involves N rectangle
lookups, with 3 additions/subtractions each, whose cost is
3ANIwIh.

Hence, total computation cost for kernel integral im-
age is KIItot = [18IwIh(A + M) + (3AIwIh)], while
that for stacked integral image is SIItot = [(2IwIhA) +
(3ANIwIh)]. Since, typically a small number of boxes, N ,
can approximate a given filter, the cost of stacked integral
image SIItot would be lower than kernel integral image cost
KIItot.

The setup demonstrated here is a 2D Gaussian approx-
imation of a filter of size 7x5, with the number of boxes
ranging from 3 to 6. A numerical search for the box sizes
and weights yields the results as given in the next section.

VI. RESULTS

A. Finding optimal box sizes and weights

Numerical methods were used to solve the parameter
values (length, width, height) of each box in the stack. The
problem is considered in a 2-D setting. The choice of number
of boxes N per stack is varied between 3 and 5. The results
for filter dimension 7x5 are given below.
* Filter size: 7x5, Num. boxes N=3
Box 3: 7 x 5 Weight : 0.004409
Box 2: 5 x 1 Weight : 0.075215
Box 1: 3 x 3 Weight : 0.033750
Error=0.256872

* Filter size: 7x5, Num. boxes N=4
Box 4: 7 x 5 Weight : 0.005482
Box 3: 5 x 1 Weight : 0.057108
Box 2: 3 x 3 Weight : 0.049716
Box 1: 1 x 3 Weight : 0.025052
Error=0.187201

* Filter size: 7x5, Num. boxes N=5
Box 5: 7 x 5 Weight : 0.006245
Box 4: 5 x 3 Weight : 0.012192
Box 3: 3 x 3 Weight : 0.036766
Box 2: 3 x 1 Weight : 0.058444
Box 1: 1 x 3 Weight : 0.030773
Error=0.131658

A plot of how the error changes for filter size 7x5, as the
size of box 2 and box 1 are changed for the case of N=3
boxes, is shown in figure 4. The axis values are compressed
so that a value e.g. 35 on the axis implies a box size of 3x5.

Fig. 4. Error surface for N=3 for different sizes of box 2 and box 1. Box
3 at size 7x5.

The results for filter dimension 55x115 are given below.
* Filter size: 55x115, Num. boxes N=3
Box 3: 55 x 115 Weight : 0.000032
Box 2: 33 x 41 Weight : 0.000299
Box 1: 19 x 65 Weight : 0.000320
Error=0.344631

* Filter size: 55x115, Num. boxes N=4
Box 4: 55 x 115 Weight : 0.000017
Box 3: 17 x 33 Weight : 0.000306
Box 2: 23 x 79 Weight : 0.000195
Box 1: 37 x 47 Weight : 0.000210
Error=0.275832

* Filter size: 55x115, Num. boxes N=5
Box 5: 55 x 115 Weight : 0.000019
Box 4: 21 x 35 Weight : 0.000273
Box 3: 13 x 81 Weight : 0.000171
Box 2: 31 x 59 Weight : 0.000174
Box 1: 43 x 47 Weight : 0.000091
Error=0.233528
The results for filter dimension 13x25 are given below.
* Filter size: 13x25, Num. boxes N=3
Box 3: 13 x 25 Weight : 0.000656
Box 2: 5 x 15 Weight : 0.005521
Box 1: 7 x 9 Weight : 0.005915
Error=0.334226

* Filter size: 13x25, Num. boxes N=4
Box 4: 13 x 25 Weight : 0.000475
Box 3: 7 x 15 Weight : 0.003557
Box 2: 5 x 11 Weight : 0.005673
Box 1: 9 x 7 Weight : 0.002543
Error=0.262754

* Filter size: 13x25, Num. boxes N=5
Box 5: 13 x 25 Weight : 0.000233
Box 4: 5 x 19 Weight : 0.002917
Box 3: 3 x 9 Weight : 0.005120
Box 2: 7 x 7 Weight : 0.003945

1533

Box 1: 9 x 13 Weight : 0.002697
Error=0.200619
A visual layout for 7x5 and 13x25 filter sizes, using N=5

is shown in figure 5.

(a) 7x5 SII stack (b) 13x25 SII stack

Fig. 5. Stack layout for 7x5 and 13x25 filter sizes

B. Filtering results

1) Experiment 1: The stacked integral image procedure
was applied to perform Gaussian filtering using filters and
images of various sizes. The application of this method
demonstrated here is the case of matching a model image
in a scene image using filter weighted histograms. The color
histogram was used for matching and filtering was done to
match a model in a scene. Using precalculated stack of box
sizes and weights, the scene is searched at every pixel, for the
best matching model location. Thus this method can be used
for numerous other applications by replacing the filtering
function with a stack of box filters.

A sample of one such experiment is shown in figure 6
which shows the model (55x115) and scene (400x300). A
single integral image is used to build the stack and the non-
uniform filtering is achieved using the precomputed box sizes
and weights.

(a) Scene (b) Model

Fig. 6. Sample scene and model

2) Comparison with Direct Convolution: The timing for
the Stacked Integral Image (SII) method was compared
with direct convolution, to calculate the speed improvement
achieved. Using different filter (model) sizes and scene image
sizes gave different improvements. Table II lists the timings
for some experiments conducted with stacked integral image
and direct convolution method. In the table, “Mw” and “Mh”
represent width and height of model image, i.e. size of
filter, “Sw” and “Sh” represent width and height of scene

Mw Mh Sw Sh Direct conv. Stacked conv. Gain
17 27 400 300 9.797 1.859 5.270
19 38 600 450 46.80 5.656 8.270
25 46 400 300 29.11 2.634 11.05
50 44 800 600 245.4 11.91 20.59
57 116 400 300 112.5 4.080 27.57
89 83 800 618 729.9 18.46 39.52

TABLE II
SPEED IMPROVEMENT OVER DIRECT CONVOLUTION.

image, “Direct” shows computation time in seconds using
the direct convolution method, while “Stack” represents time
using the stacked integral method, and “Gain” shows the
speed improvement of stacked integral method over the direct
convolution method.

As a function of the filter size, the speed improvement in
the convolution time is shown in figure 7. To get a feel of
order of speed improvement, for a filter size of 89x83 applied
on an image of size of 800x618, the speed improvement of
the stacked integral method is 40 times over naı̈ve direct
convolution.

Fig. 7. Speed Improvement using the stacked integral image vs. direct
convolution

3) Comparison with Kernel Integral Image method and
Direct Convolution: To compare the performance gain of the
proposed Stacked Integral Image (SII) method over Kernel
Integral Image (KII), the matching for model/scene from 6(a)
was done using all the three methods. The matching was
done at decreasing density, i.e. first the convolution is done
at every pixel, then in the next run at every second pixel, then
in the next run at every third pixel and so on. The results of
running this set of experiments are shown in figure 8. The
figure shows that when convolution is done at every pixel,
both the SII and KII methods have many fold improvement
over Direct convolution. But when the density of convolution
decreases, i.e. not done at every pixel, then the setup cost of
computing the integral images becomes significant. This is
where SII scores better over KII, since only a single integral
image needs to be computed.

The results from a similar experiment with scene size
400x300 and model size 13x25 is show in figure 9. Again,
SII performs better than KII or Direct Convolution.

1534

Fig. 8. Speed Improvement using the Stacked Integral Image vs. Kernel
Integral Image and Direct Convolution Scene=400x300, Model=55x115

Fig. 9. Speed Improvement using the Stacked Integral Image vs. Kernel
Integral Image and Direct Convolution Scene=400x300, Model=13x25

4) Accuracy comparison: To compare the accuracy of
the filter output from SII and KII methods over Direct
convolution, an image was convolved using all the three
methods as shown in figures 10 and 11.

(a) Original Image (b) Direct Convolution

Fig. 10. Image and Direct convolution

The difference between the KII and Direct convolved
image and that between SII and Direct convolved image
is shown in figure 12, where the differences have been
increased 10 times for visual clarity. The difference images
show that the accuracy of SII method using only N=4 boxes,
is higher than KII method.

(a) KII convolved image (b) SII convolved image

Fig. 11. KII convolution and SII convolution

(a) KII difference image (b) SII difference image

Fig. 12. KII and SII convolution difference images (increased 10 times)
w.r.t. Direct method

VII. CONCLUSION

The Stacked Integral Image (SII) approach is presented as
an improvement over Kernel Integral Image (KII) approach,
by reducing the setup cost of generating multiple integral
images in the latter approach. Using a single integral image,
and a stack of box filters, the non-uniform filter can be
precomputed. In both speed and accuracy, SII scores better
over KII method.

REFERENCES

[1] P. S. Heckbert, “Filtering by repeated integration,” in SIGGRAPH
Comput. Graph., vol. 20, (NY, USA), pp. 315–321, ACM, 1986.

[2] M. Hussein, F. Porikli, and L. Davis, “Kernel integral images: A
framework for fast non-uniform filtering,” pp. 1–8, 2008.

[3] F. C. Crow, “Summed-area tables for texture mapping,” in SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer graphics
and interactive techniques, (NY, USA), pp. 207–212, ACM, 1984.

[4] P. Viola and M. J. Jones, “Robust real-time face detection,” Interna-
tional Journal of Computer Vision, vol. 57, pp. 137–154, May 2004.

[5] F. Porikli, “Integral histogram: A fast way to extract histograms in
cartesian spaces,” in Proc. of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 829–836, 2005.

[6] F. Porikli and O. Tuzel, “Fast construction of covariance matrices for
arbitrary size image,” in Proc. of IEEE International Conference on
Image Processing, pp. 1581–1584, 2006.

[7] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection
using a cascade of histograms of oriented gradients,” in Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, (Wash., DC,
USA), pp. 1491–1498, IEEE Computer Society, 2006.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. of IEEE Conference on Computer Vision and
Pattern Recognition, pp. 886–893, 2005.

[9] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object track-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2003.

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded-up robust
features,” in 9th European Conference on Computer Vision, (Graz,
Austria).

1535

