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Abstract— Localization in multi-robot systems is a key prob-
lem in multi agent systems. In many cases, specially involving
legged robots, like the Robocup soccer competition, it relies
on predefined landmarks at known locations. However, when
several objects are in motion, vision occlusions due to agents
in the field of view make this kind of localization unfeasible
for mild time periods. This also happens if landmarks are not
within the field of view. This paper presents a technique to let
a robot estimate its position with respect to objects or robots
by sharing whatever visual data it has with its teammates.
Shared data is used to estimate the relative positions of robots
watching the same object via stereoscopy. The rest of the robots
can be localized via triangulation and acquire information on
the position of hidden or unknown objects that other members
of the team can see. The system has been tested with two Aibo
ERS 7 robots from Sony and an Aiball.

I. INTRODUCTION

Multiagent systems (MAS) have been deployed in the last

decade in a variety of scenarios, and applied to several tasks.

The use of multiple robots allows completion of a given task

faster and more effectively [1] as multiple robots can be in

different places at the same time, can perform concurrent and

cooperative actions and, in general, allow the decomposition

of a complex task into simpler ones. Areas in which MAS

have proven to be useful are: self-organized robots [2] [3],

biologically-inspired robot coordination [4], surveillance and

exploration [5], military [6], etc.

Navigation in robotics can be defined as the problem of

reaching a target in a safe way. This requires the robot

to know its relative position with respect to the target and

obstacles in the way (localization). In MAS, the trajectory

of an agent is not defined only by its relative position with

respect to a target, but also by the relative positions of the

other agents with respect to itself, since they act as obstacles.

In these cases, the environment is highly dynamic, so maps

of the environment are difficult to keep updated and most

systems work at reactive/hybrid level. Hence, localization of

team members and/or rivals must be as fast as possible.

Depending on the environment, there are many different

localization algorithms. They may rely on laser [7], sonar [8],

vision [9] or a combination of sensors [10]. Also, they may

work with artificial landmarks [11] or natural ones extracted

from the environment [12]. Anyway, despite the sensors used,

most approaches work with odometry corrected via Kalman

Filters [12] [8] or Particle Filters [9] to better estimate the

robot position. In absence of odometry, triangulation based

on active or visual landmarks has been used [13] [14] to
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estimate the position of one robot with respect to its reference

system.

In our case, our environment will be a typical test one

for MAS: the RoboCup robot league. In RoboCup, specially

when legged robots are involved, localization is mostly visual

rather than based on dead-reckoning. Indeed, the soccer fields

typically include color landmarks at known positions that

the robot may use for global localization. Landmark based

localization, though, presents two major drawbacks. First,

robots may locate themselves with respect to the landmark,

but do not know the positions of the others. Second, these

systems are very prone to occlusions, specially when there

are many robots in the field. Naturally, it is possible to take

advantage of communication with other team members, so

that the field of view of the team is larger than that of a

robot alone.

In this paper we proposed a technique for cooperative

localization in a MAS. Specifically, we use AIBO ERS-

7 from Sony in our tests. Our system is based on the

properties of stereo vision: given two cameras, the depth of

an object in both fields of view can be estimated e.g. via

disparity. In our case, robots have a single camera each, so

we use a different property: given two robots capturing the

same landmark, we can estimate the separation between their

cameras and, hence, their relative position to each other. If

we know the relative positions of enough agents/objects, we

can estimate the locations of the rest by triangulation. Thus,

the difference with other triangulation approaches (such as

[13]) is that we do not use just information from beacons,

but we use information from other robots to localize through

triangulation. E.g. if a robot sees the ball and two team

members are seeing this robot, we can estimate the relative

positions of all 4 elements. This is explained in section II.

The system has been tested with a navigation layer based

on the Potential Field Algorithm (PFA). Once the robots

share information about significant items in their field of

view, they calculate their relative position and the ball’s, and

try to reach their goal in a reactive way. Our coordination

mechanism is explained in section III. Experiments using

Aibo-ERS7 legged robots, equipped with videocameras, are

shown in section IV. Finally, section V presents our conclu-

sions and future work proposal.

II. LANDMARK BASED VISUAL LOCALIZATION

As commented, Robocup localization may be based in

artificial landmark visual localization. Artificial landmarks

are used because they are easier to detect than natural

landmarks [15][16]. The position, size, shape and color of

these artificial landmarks are usually known a priori to ease
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detection and also to allow size based distance estimation

using a single camera. In a Robocup field, typical landmarks

are beacons, goals and field lines [17][18], but field lines

crossing can also be used [19], as well as the center circle

and corner poles [20].

A typical problem in Robocup is that landmarks are

symmetrical with respect to the floor plane. This means that

if a single landmark is detected and no information at all on

localization is available, the robot may know how far from

the landmark is, but not from which direction it is seeing

it. The same can be applied to the ball. This uncertainty

can be reduced if two or more landmarks are detected,

as triangulation allows correct positioning with respect to

them both. Besides, since robots are moving, statistical tools

like Markov Fields can be used to remove uncertainty as

well. This is particularly important when landmarks are

not unique, like fields lines, and must be disambiguated.

Hoffmann [21], for example, uses negative information to

improve self-localization. Each time the system expects to

find a landmark, and does not find it, it weights as negative

information. This negative information makes probability

distribution in Markov localization converges more quickly.

Assuming that a robot can be correctly located if it sees

an artificial landmark with respect to that landmark, there are

still cases where visual landmark localization is challenging:

• When the robot can not see any landmark in its field of

view and, hence, does not know its own position.

• When it knows its position with respect to a landmark

but ignores the location of other robots and/or the ball.

• When robots know their position with respect to a mov-

ing landmark -e.g. ball, other robots-, but not respect to

an absolute one -e.g. color beacons-.

Fig. 1. Robot R2 Estimation of position with information of R1 (R2 cannot
see the beacon due to O1) .

These problems could be solved if robots in a team

talk with each other to share localization information. In

Fig. 1, for example, robot R2 can not see any beacon

due to occlusion by robot O1. Robot R1 can see both a

beacon and R2. Hence, they can communicate to calculate

their relative positions via triangulation. However, in many

cases landmarks are partially occluded and their distance to

the robot can not be well estimated from a single image.

Furthermore, it is difficult to keep two of them within the

field of view of a single robot to triangulate.

We propose, instead, to estimate the position of agents

in the environment using information of objects seen at

the same time by different robots. Each image provides

information -correct or not- about the distance from the

object to the watcher. A pair of images provide information

via stereo vision about the location of the watchers with

respect to the perceived object or with respect to each other.

Finally, triangulation is used as an additional equation to the

system to remove degrees of freedom and/or detect errors

if necessary. The larger the number of robots with common

perception, the more precise localization of agents is.

Stereo based depth calculation is based on the fusion of

two slightly different views of a common scene. Depth is a

function of the distance between cameras, their angle, focal

distance, and, mainly, difference between both images in

terms of Disparity. Specifically:

f ∗ B = Z ∗ d (1)

Being f the focal distance, B the distance between the

cameras, Z the distance to the object localize and d the

disparity between the two images. If no information is

available about possible objects in the field of view, disparity

can be calculated via correlation. If objects are defined,

though, like landmarks, it is only necessary to calculate their

shifting in pixels from one image to the other.

In our case, each robot has only one camera and if it

perceives a known landmark -robot, ball or beacon- it can

estimate its distance to that landmark because their sizes are

known a priori. We use equation 1 to estimate instead where

are robots with respect to each other when they are watching

the same object (beacon, ball or other robot). In this case,

we know about Z , extracted from the presumedly known

distances of robot 1 and 2 to the object. For an Aibo, we

heuristically estimated f to be equal to 190 pixels. Disparity

(d) can be easily extracted from the object shifting in the

images captured by both robots. Hence, B can be obtained

via Eq. 1.

For example, Fig. 2 shows a situation in which robots R1

and R2 see two objects in common. Specifically, an opponent

(blue) and the the ball (pink). In this case, R1 does not know

where it is, because robot O1 hides the beacon. Hence, the

only solution to estimate R1 location is to estimate it from

the objects they see. Each robot knows at what distance is

each object (they know the size of the ball and the opponent)

and they know the angle between them, so applying stereo,

R2 can estimate the position of R1.

This differs from classic triangulation in the sense that

each robot may be, in fact, watching a single landmark,

which can be moving (e.g. Aiball). If robots perceive two

landmarks at known positions at the same time, triangulation

is feasible. For example, Fig. 3 shows a situation in which

there are two robots of the same team (R1 and R2) and two

opponents (O1 and O2). R2 cannot see the beacon due to

occlusion by O1, and R1 due to occlusion by O2, so they

can not localize themselves correctly. However, R1 can see

both the ball and R2. Using the law of the cosine (Eq. 2),

R1 can estimate the positions of the ball and opponents O1

and O2 with respect to robocentric coordinates of R2.
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Fig. 2. Example of stereo based distance estimation.

C2 = A2 + B2
− 2ABcos(α) (2)

Hence, although R1 and R2 do not know their position

in the field, they can establish a coordinated strategy, since

they have information about the target, their team mates

and their opponents. In any case, in order to reduce degrees

of freedom in equation systems conformed by stereo pairs

or to detect errors provoked by wrong size based distance

estimation from single images, triangulation can be applied

to threesome of elements located in the field to check if

results are coherent. Naturally, when there are more agents,

there are more unknown factors, but also they cover a larger

field of view, so there are more equations and it is possible

to remove uncertainty.

Fig. 3. Example of triangulation.

III. COORDINATION

In order to check how the proposed localization sys-

tem works, we have implemented a coordinated navigation

mechanism with Sony Aibo ERS 7 robots. It is important

to note that MAS do not necessarily imply coordination.

Robots could have different agendas or even be competitive.

Most coordination mechanisms, though, fit into one of the

following categories:

• Explicit coordination. In this category, agents commu-

nicate explicitly with each other and the actions of

each agent in the group are calculated by deliberative

planning. In explicit coordination team actions can be

calculated in parallel to determine the best individual

action for reducing duplication of effort and furthering

the goals of the team. This approach can be strongly

centralized [22], weakly centralized [23] or distributed

[24]. In any case, there is a process that takes into

account all different individuals’s targets, position and

skills to choose a course of action.

• Implicit coordination. This technique relies on the dy-

namics of interaction among robots and the environment

in order to achieve the desired collective performance,

often in the form of designed emergent behaviors. In

these methods, agents do not explicitly work together,

but simply act on their own behalf, taking into account

the existence of the others either to modulate their

actions or simply to avoid getting in their way. Their

acts generate an emergent combined action [25], which

is accepted as cooperative, such as in insect colonies

[26], for example. This mechanism is typical in animals

and it is quite efficient when all robots are similar.

Since our goal is to check how MAS coordinated localization

works, we rely on implicit coordination. It is interesting to

note that agents do communicate, but just to localize each

other rather than to make decisions together. Specifically,

each robot relies on a Potential Field Approach (PFA) [27],

where the goal is set depending on the relative positions

of robots and ball and agents in the environment are simply

modelled as moving obstacles. PFA is one of the best known

reactive algorithms due to its simplicity and easy imple-

mentation. PFA simply models the robot as a free particle

moving in a potential field, where the obstacles have the

same charge as the robot (and hence, generate an repulsion

force), and the goal has a different charge (attracts the robot).

All in all, the robot tends to move towards the goal, avoiding

obstacles in the way and preserving smoothness. The easiest

PFA formulation simply consists of:

U(q) = Ug(q) +
∑

Uo(q) (3)

where the attractor Ug(q) and repulsors Uo(q) are calculated

as:

Ug(q) = k1dist(q, goal)2 (4)

Uo(q) = k2 ·

1

dist(q, obstacle)
(5)

k1 and k2 being constants to tune how fast we approach to

the goal and how close we get to obstacles, respectively. All

described forces are presented in Fig. 4.

Coordination works as follows. Communication between

AIBOs uses Telepathy. Telepathy is a communication class

included in last version of Tekkotsu, an useful programming

framework for AIBO. The telepathy class of Tekkotsu let

an AIBO subscribe to events in other AIBO if they are

wirelessly connected. Thus, a subscribed AIBO can process

remote events and its own events. The class let the AIBO

know if an event is remote or not and, if remote, it can know

which AIBO detected it. This class translates communication
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Fig. 4. Example of forces (F) over robot using PFA.

to events, simplifying communication, and making it easier

to manage.

In our case, Aibos are subscribed to color detection events,

where each color is associated to a different item, e.g. the

pink ball, orange for a robot in a rival team, yellow for

a robot in our team, etc. Whenever an Aiboi receives an

event (Ei(t)) calculates its distance (diC(t) if local or dkC(t)
if remote) to the object and it checks if it is local. If

local it adds it to PFA of the robot (U(t)). After that, it

checks for all previous distances (djC(t)) calculated (local

or remote) associated to this color object in last 2 seconds.

If any, it calculates the distance (dij(t) if local or dkj(t)
if remote), using disparity. The more color events a robot

has, the more precise the position. This estimations are

added to PFA. Localization can be still ambiguous after

checking all distances associated to color events. In this

case, triangulation is used to reduce ambiguity. Finally, next

movements of the robots are added to PFA. Fig. 5 shows the

flow diagram of event processing.

IV. EXPERIMENTS AND RESULTS

In this section we present some tests of the proposed local-

ization system. Since behavior coordination is not our main

goal, tests are simple, in plain environments. As commented,

we have used two AIBO ERS-7 and an Aiball. In the first

experiment both AIBOs have to coordinate to catch the ball

without crashing by sharing their visual data to localize each

other, even though they are focusing on the ball and, hence,

most of the time out of the other’s field of view. The second

test adds a new object, an orange obstacle. The two AIBOs

see the ball and the obstacle. The objective of this test is

to estimate the position of both AIBOs using information of

the objects and to catch them. Each AIBO has its own goal.

The AIBO that is nearest to the orange box have to catch

it, so the other AIBO has to catch the rose ball. The third

test is similar, but the obstacle prevents one of the AIBOs

from seeing the ball. Thus the other AIBO has to send this

information, and then cooperate to catch its own goal and

not to crash meanwhile.

As commented, in our experiments we had only two

Aibos, so it was fairly easy to know where information

came from. If we have more than two robots wearing the

same team color, it would be harder to disambiguate which

one is which one. Usually, since they share information not

only about what they see, but also about previous estimated

positions, this issue is not a problem. E.g. a lost robot

Fig. 5. Event processing flow diagram.

not seeing landmarks can use information from localized

member of its team to estimate where it is if any of them

is watching it. In absence of such information, though, all

robots should share what they see at the same time. Resulting

equations would conform an equation system where where

only a single solution is feasible.

A. Experiment 1

In the first experiment we have two AIBOs, and a ball

in front of them. We placed them close to each other on

purpose, so that they could collide when moving towards

the ball. Their only goal here is to catch the ball in a safe

way. To estimate the position of the AIBOs, we rely on the

proposed stereo technique. We are assuming that there is

only one ball in the environment.

Fig. 6.a shows the initial position of the AIBOs and the

progress of the test when no position estimation is used. It

can be observed that the two AIBOs crash in the middle of

the experiment, and they go on crashing till they catch the

ball. The objective of this test is to show that they cannot

avoid each other without position estimation.

Fig. 6.b shows the same test but using position estimation.

It can be observed that they correctly estimate their position.

Thus they avoid crashing and finally they catch the ball from

opposite sides. The information that they are sharing is the

position of the ball respect to each AIBO, and the angle of the

neck. With this information, they can estimate the position

of the other AIBO and avoid themselves.
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Fig. 6. (a) Implicit coordination between AIBOs without communication.
(b) Explicit coordination between AIBOs with communication of position
estimation.

B. Experiment 2

This experiment is similar to the first one, but in addition

to the ball, there is an obstacle. Both AIBOs can see

the obstacle and the ball. So the experiment consists on

estimating the position of the other robot and catching the

obstacle or the ball. The nearest AIBO to the orange obstacle

have to catch it. The other AIBO has to catch the ball.

Fig. 7 shows the initial position of the AIBOs and the

objects they can see (both the obstacle and the ball). It can

be seen that they correctly estimate where they are to avoid

crash and that they catch the correct objective. The black

AIBO (Fig. 7.a) catches the orange obstacle (black AIBO is

the nearest) and the white one have to catch the ball. Fig.

7.b shows the same scenario but the goals are changed (ball

for black AIBO and obstacle for the white one).

C. Experiment 3

This experiment is similar to the last one, but in this case,

the obstacle prevents white AIBO from seeing the ball. Thus

only black AIBO can see the ball at first. The experiment

consists, first of all, in estimating the position of the other

robot. Then, the AIBO that can see the ball, has to send this

information to the other AIBO, and after that, they establish

their goals depending on their distance to the obstacle and

to the ball.

Fig. 8 shows the initial position of the AIBOs and the

progress of the test. It can be seen that they correctly estimate

where they are to avoid crash. It can be seen too that they

establish their goals correctly. In Fig. 8.a black AIBO is

nearer to the obstacle (so this is its goal) and white one has to

catch the ball. In Fig. 8.b obstacle is nearer to white AIBO,

Fig. 7. Explicit coordination of two AIBOs seen two objects in common
and using position estimation. (a) Black AIBO nearer to obstacle. (b) White
AIBO nearer to obstacle.

so goals are changed. This shows that they have correctly

shared information about the estimated position of the ball.

Otherwise, they cannot establish and catch their goals.

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented an approach to visually estimate

the localization of multiple objects and robots by sharing

data extracted from the images they capture with a sin-

gle camera. Artificial landmarks are used to this purpose.

Relative distances between them are estimated by building

an equation set from different estimations: i) monocular

size based distance estimation; ii) stereo based distance

estimation for robots sharing perception of an object; iii)

triangulation to reduce degrees of freedom in the test. As a

result, robots may estimate where they are with respect to

each other or where objects occluded or out of their fields

of view are located at each time instant and without need of

keeping an absolute coordinate system. Since the method is

reactive in nature, speed compensates for lack of precision

and/or punctual errors.

The system has been tested using Aibo ERS7 robots in a

Robosoccer like environment, where objects have pure colors

and their size is known a priori. No lines or field beacons

have been used in the present experiments. These tests

have proven that the proposed method is valid to deal with

situations where robots can not see each other or their target

by sharing visual data via a telepathy mechanism supported

by the Tekkotsu architecture. Localization information has

been used to set targets and repulsors in a very simple PFA

in order to coordinate the robots reactively. Even though
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Fig. 8. Explicit coordination of two AIBOs using position estimation.
White AIBO does not see the ball. (a) Black AIBO nearer to obstacle. (b)
White AIBO nearer to obstacle.

results have been successful in all cases, these tests are

still preliminary and it would be necessary to include a

larger number of robots so that uncertainty is larger. If

any problem arises in those cases, localization beacons in

Robocup environment should be useful to reduce it. Future

work will focus on testing the system with a larger team and

more opponents.
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