
Concurrent visual multiple lane detection for autonomous vehicles

Rachana Ashok Gupta, Wesley Snyder, and W. Shepherd Pitts

Abstract— This paper proposes a monocular vision solution
to simultaneous detection of multiple lanes in navigable regions /
urban roads using accumulator voting. Unlike other approaches
in literature, this paper first examines the extent of lane
parameters required for continuous control of any vehicle
manually or autonomously. The accumulator-based algorithm is
designed using this fundamental control knowledge to vote for
the required lane parameters (position of lanes and steering
angle required) in the image plane. The novel accumulator
voting scheme is called “Parametric Transform for Multi-lane
Detection.” This paper not only adapts predictive control in
the image plane, but also detects multiple lanes in the scene
concurrently in the form of multiple peaks in the accumulator.
This method is robust to shadows and invariant to color, texture,
and width of the road. Finally, the method is designed for
dashed/continuous lines.

I. INTRODUCTION

“Autonomous vehicles” are not a new concept. They have
been proposed for the long-term goal of having vehicles
driving autonomously in an unknown environment for the
purpose of human safety, convenience, and ease of life.
Currently, most autonomous research vehicles depend on
relatively expensive LIDAR, Radar, and undependable GPS
[10][12][22]. Other approaches have been tried such as
autonomous driving using dead reckoning and road profile
recognition [13] using on-board sensors, automated high-
way systems (AHS) with lanes equipped with a magnetic
infrastructure, and a central communication system. These
approaches have obvious disadvantages such as the need to
thoroughly map the drivable terrain beforehand, and infeasi-
bility for large public road networks due to costs. Thus, it is
desirable to use computer vision systems to achieve low cost,
low maintenance autonomous vehicle navigation. Recent
results from vision research suggest that visual control may
now be feasible and will be a major step in conversion of the
entire autonomous guidance system to a vision-based one.

A. Background

There are four principle components to road detection in
literature: (1) With AI and machine learning-based ap-
proaches the vision system is extensively trained for road and
non-road regions using a neural network or other machine
learning technique using a combination of features such as
texture, color, luminance and coordinates of the image pixels,
etc [15][21]. (2) Color Processing is another technique used
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for urban scene understanding and lane detection [1][12][14].
Very common assumptions are painted lane markings, dis-
tinct paved and marked road boundaries [10][14]. The colors
and the presence of the road lane markings can vary be-
tween different geographical regions. Thus, these techniques
may fail in unstructured environments and un-marked roads.
(3) There have been research efforts to detect unmarked
and unpaved roads using vision area-based and stereo
processing techniques [6]. However, once the road region
or boundary is classified within the desired accuracy, the
boundary and road parameters must be determined to control
the vehicle. Researchers mostly rely on filtering techniques to
extract road edges and boundaries. There are other techniques
available such as maximum entropy thresholding [19] to
segment the marked road edges from road surface. (4) Curve
fitting techniques are used in many cases to approximate the
road boundaries [9][17] and surfaces[3][20]. Dickmanns and
Mysliwetz present 3-D modeling of the road in [3].

According to Kluge and Thorpe [4], three are three basic
criteria that are very important: (1) the accuracy of the model
to fit the road, (2) computational cost of the model fitting
and extraction of road parameters, and (3) the robustness
and stability of the model and the fitting process in presence
of noise. They discuss, in brief, different techniques used
for recovering road parameters. Back-projection techniques
assume constant road width [2], and thus the estimated road
shape can have arbitrary errors. Road shapes have been mod-
eled as straight lines [9][18][19], parabolae [6][17], circles
[4], cubic splines [16][20] and Taylor series approximation
of clothoids [3][11], etc.

Accumulator-based methods are popular as they are easy
to implement and are robust to noise. Because the compu-
tational complexity of the algorithm increases exponentially
with the number of parameters being estimated; these meth-
ods have been primarily used in past for straight lines [5]
and constant curvature (circle) detectors [4]. Statistical fitting
techniques are useful in case of fitting higher degree curves
to the road, as they are computationally more efficient [4].
However, unlike statistical fitting techniques, accumulators
allow detection of multiple instances of objects. This work
uses an accumulator-based technique to achieve robustness
and concurrency; but it modifies the accumulation technique
to deal with curved roads reducing the number of parameters
to be estimated to that of straight lines.

In a perspective transform, where the camera is on the
vehicle looking at the road at a particular angle, the road
boundaries in the image are not parallel to each other and
represent two different curves and therefore two sets of
parameters. Techniques like RALPH [7][12] take the inverse
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perspective transform to build the top view of the road in the
image to determine the curvature of the road, which is now
the same for both road boundaries. The advantage of this
technique is the detection of both road boundaries with one
parameter set. However, the inverse perspective transform
can be tricky when other vehicles/objects are in the scene and
when the terrain is not flat. RALPH determines the empty
region of the road using laser sensors and therefore processes
only the empty road region for discovering the curvature.

B. Motivation

All vision approaches mentioned above deal with detect-
ing road/non-road regions or the boundaries as correctly
as possible. Very few of them deal with vehicle control.
However, for an autonomous vehicle application the most
important information needed is immediate control action
(for example, speed, steering angle, rate of steering change
etc). Therefore, all road information detected in any form
(curve equations/segmented regions/boundary locations) has
to be converted into vehicle control parameters. Hence,
this work adopts a control-motivated philosophy. Therefore,
the problem is broken down into following sub-parts and
executed in that order:

1) Determine the type of lane parameters needed to calcu-
late the correct immediate vehicle controls to keep the
vehicle in its lane.

2) Detect the lanes and the lane parameters from the scene
image.

3) Use the lane parameters to calculate the local controls
for the vehicle.

Other than approaching the road following problem from
control perspective, the novelties of the proposed algorithm
are: it is designed to intrinsically provide the lane param-
eters for multiple lanes (if they exist) concurrently in the
image scene and is therefore called “Parametric Transform
for multi-lanes,” and the algorithm achieves vehicle control
in pixel co-ordinates - “predictive control in image co-
ordinates.” The proposed algorithm also relaxes some of the
assumptions required by other algorithms such as presence
of painted lane markings, prior knowledge of road textures,
prior learning by the vehicle controller, etc.

This paper is organized as follows: Section 2 explains the
motion control strategy. Section 3 introduces the paramet-
ric transform for multi-lane detection and its mathematical
theory. Navigation and predictive control in image plane is
explained here. Section 4 presents the results, analysis and
discussions of the failed cases. This section also compares
this technique with other state-of-the-art techniques and
discusses the advantages of the novel technique proposed
here. Finally, Section 5 concludes the paper.

II. MOTION CONTROL STRATEGY

Fully functional autonomous navigation has many aspects:
road detection, other vehicle detection, sign detection, inter-
section, exit, obstacle detection, etc. All of these aspects are
equally important to achieve a fully functional autonomously
navigable vehicle in a real urban setting. Therefore, the

whole autonomous system needs to be aware of the entire
scene. In this paper, the primary focus is designing a lane de-
tection algorithm, which simplifies/reduces the calculations
of required car control parameters (such as steering angle,
speed and rate of change of steering) in order to maintain the
vehicle’s position within the lane boundaries. This suggests
that instead of processing the complete lane boundaries in
the scene, it is necessary to take a bottom-to-top approach;
i.e., to know the lane parameters closest to the vehicle first.

Fig. 1. Urban road scene explaining predictive motion strategy

In a lot of scenarios in an urban scene containing other
vehicles and objects, the far away road region (near the
horizon) is not sufficiently visible to make any significant
control navigations decision. Therefore, the scene is divided
into different regions as shown in Fig. 1. The “near region”
consists of most of the road region starting from the bottom
of the image to 3/4 of the region below horizon. The ratio
can be changed as per requirements. The region above that is
considered as “far region” which consists of mostly the sky
and the road near the horizon. Thus the road region within
the “far region” has very little information about the road
parameters and therefore it is ignored.

Fig. 1 shows a simple urban road scene. Other than the
fact that there are speed limits in the urban environment,
vehicle speed is intuitively controlled by either the speed
of another vehicle in front and/or the bending of the road.
For the vehicle to follow the near region, the vehicle should
always point towards the current look-ahead point B. Thus,
the steering angle (θ ) is corrected by looking at the B(x, y).
The near region in the image plane has a point or a series of
points predicting the next position(s) of the vehicle. The rate
of change of steering angle (ω) can be estimated by looking
at these multiple look-ahead points next to B if available.
Thus, to find controls to reach the look-ahead point B, Fig.
1 shows tangents (solid black lines) approximating the road
boundaries in the near region as straight lines. Therefore, the
distance d to the nearest look-ahead point has to be chosen
such that the lane boundaries within distance d can be safely
approximated to straight lines. To fulfill this, d is defined
as some percentage p of the near region, where p can be
changed dynamically from frame-to-frame as a function of
curvature of the road (κ) (κ is defined in a later subsection).
This corresponds to the philosophy that look-ahead distance
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will decrease with sharper turns Eq (1), [8].

d = p ·h′,wherep ∝
1

1+κ
and lim

κ→0
p→ 1 (1)

In the perspective transform, road boundaries meet at the
horizon line. The meeting point is called vanishing point
(vp). The point of intersection of two tangents shown in Fig.
1 can thus be called as the “current vanishing point (cvp)”;
i.e., the point where the current closest road boundaries will
meet assuming the closest road extends to infinity with zero
curvature where the tangents are drawn (Eq (2)).

lim
κ→0

cvp→ vp (2)

The vehicle might not track the center of the lane and
therefore the current steering angle (θ ) depends on (1) the
current location of the vehicle, P′(xc,y′c) (P′ is the projection
of the center of the scene P, assuming that the camera is
installed at the center of the vehicle) and (2) the lane angle,
α , which the lane center (x′,y′) makes looking at the current
vanishing point. θ can be calculated as per Eq. (3) and (4)
if the vehicle is tracking the center of the lane correctly then
θ = α .

θ = tan−1
(

y
x′− xc

)
(3)

θ = tan−1
(

d tanα

d +(x′− xc) tanα

)
(4)

Thus, the lane parameters representing every lane uniquely
are (1) lane center x′, (2) lane angle α , and (3) lane width
W . The scene could have multiple lanes. Therefore, to
distinguish different lanes, this paper considers storing the
location (x′) and the angle (α) in an accumulator.

This is the main principle used to design the accumulator
based parametric transform to detect (x′,α,W ) for the lanes
in the scene and predictive control in image co-ordinates.

III. PARAMETRIC TRANSFORM FOR MULTI-LANE
DETECTION

The multi-lane detection algorithm explained here is de-
signed to obtain the following three lane parameters: lane
center at the bottom of the scene (x′), the angle that the
lane forms with the x-axis (α) and lane width W . The
region beyond horizon is ignored, as it does not have any
lane/road information. In this discussion, it is assumed that
the “bottom” row or row 0, is at the bottom of the image,
unlike many image analysis configurations which put row
0 at the top. Given the camera’s pose and its projective
transformation, it is straightforward to determine the location
of the horizon (h′).

Let I ⊂ℜ2 denote the set of image coordinates visible in
the camera’s view, and let IL denote those coordinates below
the horizon. Furthermore, let x′ denote a column number on
the bottom row of the image. We seek a particular value of
x′ which will be the center of a lane. There may be more
than one such x′. Let ∂ denote the set of all points in IL
which could possibly be a lane edge. Several criteria may be
used to find these points. Typically, they are points of high
gradient magnitude, and with some additional restrictions on
the brightness or color of the regions they are dividing.

Fig. 2. Coordinate system used, showing the possibility that two lanes are
visible in the image

Finally, let h′(x′,θ), h′ : ℜ2→ℜ denote the point on the
horizon intersected by the vector through x′ in the direction
θ . These definitions are illustrated in Fig. 2. To determine
the existence and parameters of the lane, choose a value for
x′ and θ , which determines h′(x′,θ). Then, for each point
δ ∈ ∂ , compute the intersection of the line through h′(·) and
δ with row 0 (note that this point may not lie in the image),
and call that point l. Then, if x′ is indeed the center of the
lane, and δ is actually a point on the lane edge, W = 2|x′− l|.

Define a 3-D accumulator A. Loop over all values of x′,
θ , computing W , and incrementing the point A(x′,θ ,W );

A(x′,θ ,W ) = ∑
δ∈∂

p(δ ) , (5)

where p(δ ) is a weight, 0 ≤ p(·) ≤ 1, representing the
confidence that δ is a road edge. Each distinct peak in the
accumulator will represent a lane in the image.

This version of the algorithm is computationally heavy,
and in the next section, we trade computation in the image
domain for computation in the accumulator domain, in order
to obtain the speed necessary for real-time control of a
vehicle.

Instead of voting at every edge point in the image as a
potential road edge point in the accumulator A for x,θ ,W ,
voting by pairs of lines as potential set of lane boundary
segments in the accumulator A for x′,α is proposed. This
is achieved by first using the simplest and classic Hough
transform to find straight-line components in the near region.
Criteria and constraints defined such that the lines having
highest potential to form objects which look like lanes are
used in the voting scheme. Thus avoiding the edges created
by shadows and other noise.

Fig. 3. Sliding window approach from bottom to top

The near region of the image is split into overlapping
windows, as shown in Fig. 3; where 50% of each window
wi+1 overlaps with window wi and wi+2 (See Fig. 3). In each
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window, the potential road boundaries are detected using the
Hough transform on the Canny edge-detected image. The
number of windows is chosen such that window height is d
which is function of κ (Eq. (1)). Thus, the small segments of
the road boundaries in each window can be safely approxi-
mated (by Hough transform) as straight lines. However the
minimum number of windows is K = 3. The Hough output in
window wk is a set of lines Lk =

{
L1

k ,L
2
k ,L

3
k ...,L

n
k

}
. The goal

is to locate a pair of lines {Li
k,L

j
k} in window wk such that

Li
k,L

j
k ∈ Lk and Li

k,L
j
k ∈ ∂S, where S is a possible navigable

road region with boundary ∂S. Therefore, a set of pairs of
lines, L, is formed as per Eq (6).

L = {{Li
k,L

j
k}
∣∣∣Li

k ∈ Lk and L j
k ∈ Lk and i 6= j} (6)

The following criteria must be satisfied by {Li
k,L

j
k} for them

to match with possible ∂S.
Criterion 1: cvp on the horizon satisfies

yi j
k > 0 (7)

ε
i j
k =

∣∣∣yi j
k −h′

∣∣∣≈ 0 (8)

Eq (8) requires that the intersection point {xi j
k ,yi j

k } of a pair
of lines {Li

k,L
j
k} should be as close to cvp (cvpx,cvpy), i.e.

horizon line (h′) as possible considering the region is flat
(see Fig. 3). h′ cannot be negative i.e. h′ cannot be below
the bottom of the image (Eq (7)).

Criterion 2: Sufficient width.
This criterion requires that the width of the lane should

be greater than a pre-determined limit, W0 (in pixels), which
can be determined from camera resolution (pixels/meter) and
the car width. This ensures that two lines very close to each
other will not be considered as navigable lane boundaries.
This criterion helps filter noisy edges, lines formed due to
shadows, lines due to other anomalies on the road such as
arrows, etc. W i j

k is the width between lines {Li
k,L

j
k} measured

in pixels at the bottom of the image plane (Eq (9) and Fig
3).

W i j
k > W0 (9)

Criterion 3: Smoothness factor.

si j
k =

∫
Si j′

k

∇G

Where,Si j′
k ∈ wk,Li

k,L
j
k ∈ ∂Si j′

k
∇G = ∇Gx+∇Gy
∇Gx = |SE(x,y)−SE(x+1,y)|
∇Gy = |SE(x,y)−SE(x,y+1)|

(10)

This criterion requires that the gradient (change in the
intensity) integrated over the region Si j′

k in the gray scale
image SE be very small. Si j′

k is the region confined by lines
Li

k, L j
k, the lower and the upper row of the window wk (see

Fig. 3). Thus, si j
k is called the “smoothness factor” for region

Si j′
k . The lower the value of si j

k , the smoother, and thus the
more navigable is the region.

After using criteria (1), (2), and (3) to filter to obtain the
potential lane boundaries; the following objective function

Ji j
k is calculated for each potential pair {Li

k,L
j
k} of road

boundaries (Eq (11)).
Ji j

k = Ke−
(

ε
i j
k +si j

k

)
(11)

Ji j
k is called the voting strength for the pair {Li

k,L
j
k}. Given

h′, lane center resulting from each potential pair of lines
{Li

k,L
j
k}, potential boundaries of the lane, can be uniquely

represented by two parameters α
i j
k , the lane angle and x

′i j
k , x-

coordinate of the center of two lines (See Fig. 3). Therefore, a
2-D accumulator is constructed and a voting system is used to
vote for each pair of lines with a voting strength of Ji j

k in A,
with {x′,α}. The accumulator is updated for all K windows
in each frame. Therefore, if a navigable road/region exists in
the image, all the overlapping windows should have a pair
of boundaries with almost the same α

i j
k and x

′i j
k forming a

peak in the accumulator A at {x
′i j
k ,α i j

k }.

A(x′,α) =
K
∑

k=0

n
∑
i

n
∑

j(i6= j)
Ji j

k · f (x
′i j
k − x′,α i j

k −α)

Where,

f (a,b) =

{
e
−(a2+b2)

2σ2 , ∀− xL ≤ a≤ xL and −αL ≤ b≤ αL
0, otherwise

α
i j
k = tan−1

(
yi j

k

x
′i j
k −xi j

k

)
,x
′i j
k =

(
xi

k+x j
k

2

)
Ji j

k = Voting strength,
K= Number of Windows in the images

(12)
A small neighborhood of {±xL,±αL} around each {x

′i j
k ,α i j

k }
is increased using a Gaussian blur kernel with standard
deviation σ , for noise removal and smoothed peaks. See Eq
(12), Fig. 4(a).

A. Negative voting scheme

As the voting scheme considers all the possible potential
pairs of lines to vote in the accumulator, there is a possibility
of falsely detecting a lane at the location of the edge shared
by two lanes. This is illustrated in Fig. 5(a). The accumulator
will have multiple peaks representing: (1) lane 1 due to line
pair AB, AC, (2) lane 2 due to line pair AC, AD, and (3)
a false lane 3 due to line pair AB, AD as this pair too
satisfies all the criteria for a lane. To avoid this, we use the

(a) Original f (a,b) (b) New f (a,b)

Fig. 4. Negative Voting Scheme: change in f (a,b)

negative voting scheme as follows: If a potential lane center
with {x

′i j
k ,α i j

k } is formed with voting strength Ji j
k due to line

pair {Li
k,L

j
k}, then none of the lines (lane edges) {Li

k,L
j
k}
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can be lane centers and each should be voted with equal in
magnitude but with negative voting strength −Ji j

k in the same
accumulator A. Thus, f (a,b) in Eq. (12) is changed to new
f (a,b) shown in Fig. 4(b); where negative peaks represent
{x′,α} of lane edges {Li

k,L
j
k}. The positive peak represents

{x
′i j
k ,α i j

k }. The variance of the Gaussian blur depends on
the width of the lane W i j

k . Later, the negative values in the
accumulator are pulled to zero to get only positive peaks
representing the true lane centers, see Fig. 5(a), Fig. 5(b)).

(a) False lane detection. Original road figure is from [16]

(b) False lane is avoided by negative votes in A

Fig. 5.

B. Predictive control in image co-ordinates

It is demonstrated below that the vehicle control parame-
ters can be calculated from the image plane co-ordinates;
thus the transformation to the ground plane co-ordinates
is not necessary. Let {x′,α}t be the lane parameters in

Fig. 6. Camera Configuration

current frame/window Ft and {x′,α}t+1 be the corresponding
lane parameters in the next frame/window Ft+1. “Predictive
control” is analogous to a human driver’s behavior where
he/she approximately predicts the next point Bt for the
vehicle to reach, while at point Pt in Ft , and adjusts the
speed and the steering in order to reach that point. A human
driver will change the steering angle to match the new angle
θt at the rate of ω as per accumulator peak from Ft , Eq (4).

Let the distance l (pixels) travelled between 2 frames in
image plane correspond to the distance lu in the ground plane
(Fig. 1 and 6). From the perspective transform, we have Eq

(13); where H is the camera height from the ground plane,
Θ is the camera angle with respect to the horizon, and f is
the focal length of the camera, [11] (See Fig. 6).

lu =
H(cosΘ− l sinΘ)
f (l cosΘ+ sinΘ)

(13)

Let υ and υu be the vehicle speed in image plane and in the
ground plane respectively, defined in Eq (14).

υ =
l

∆t
, υu =

lu
∆t

, where ∆t = (frames per second)−1 (14)

Thus, assuming either l or lu is known, the curvature of the
road in image plane, κ , is defined in terms of α and l. The
vehicle speed υ can be calculated as a function of κ and
a constant maximum speed for the vehicle υmax in pixels.
Constants υmax and β are to be determined experimentally
to suit the vehicle dynamics, see Eq (15). The philosophy is
that the vehicle speed is inversely proportional to the κ , [8].

κt =
αt+1−αt

l
and υ =

βυmax

(1+κ)
(15)

Let ω be the rate of change of steering angle, which will
depend on θ , Eq (16).

ω =
θt+1−θt

∆t
, (16)

If the vehicle tracks the center of the lane correctly, it will
match with the center of the image plane and thus, α = θ .
However, the vehicle might not always follow the center of
the lane and therefore, steering control will be dependent on
the calculation of θ . Differentiating Eq (13) gives,

dlu
dt

= d
(

H(cosΘ+ l sinΘ)
f (sinΘ− l cosΘ)

)
/dt

lu ·ω
(θt+1−θt)

=
Hυ

f (sinΘ− l cosΘ)2

(17)

At point Pt , the final steering angle required is θt+1, Eq
(4). Once a safe speed υu for the vehicle is calculated from
lu for a given curvature using Eq (13), (14) and (15); the
corresponding steering rate ω can be calculated recursively
from current frame Ft to Ft+1 using Eq (17). Thus, the
relationship between image plane and ground plane velocity
is derived in terms of image plane parameters, the vehicle
control parameters υu, ω , θ can be computed directly from
the image plane, and a transformation to the ground plane
is not necessary. Moreover, as θ and υ are functions of
{x′,α}; the lane parameters {x′,α} can be used for the
vehicle control.

IV. RESULT AND ANALYSIS

The algorithm in this work is designed to detect multiple
lanes simultaneously in the form of multiple peaks in an
accumulator. This is similar to any parametric transform
where multiple instances of the object and their parameters
can be detected simultaneously using accumulator voting.
Straight line Hough is a classic example.

The algorithm is tested on road images in this paper
in addition to some of the road images from the previous
lane detection literature, see Fig. 5 and 7. The red dots
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(a) (b)

(c) (d) (e)

(f) (g)

Fig. 7. Concurrent multi-lane detection results. Original road image in
7(d) are taken from [16]

predict the direction of vehicle motion as well as the future
position of the vehicle. Red solid lines are the approximately
predicted locations of the road boundaries in the “near
region” extended up to the horizon.

It is observed that irrespective of the lighting conditions,
horizon location on the scene image, width of the road, shad-
ows, and road markings; the algorithm detects the multiple
lanes. It does not depend on whether the camera is pointing
downwards towards the road - getting almost all the image
with road in it (Fig. 7(d)) - or it is pointing towards horizon
with the road in less than half of the scene image, Fig. 7(a),
7(b), 7(g). As the algorithm does not consider the color of
the line yet, even the lane with opposite traffic is marked as
additional navigable lane. Currently, the algorithm takes on
an average 1.5 to 2 frames/second to detect the lanes on a
laptop (dual core 2.8 GHz) with room for improvement.

(a) (b)

Fig. 8. Multiple lanes suggesting the change in the steering angle within
the same lane in the near region

The algorithm splits the near region into multiple win-
dows. Therefore, in case of higher curvature roads, the
multi-lane detector highlights 2 pairs of lane boundaries in
the same lane vertically apart (See Fig. 8). This is useful
in predictive control of steering angles in the next frames
as explained in section III. More research has to be done
regarding this.

A. Discussion on failed cases

The proposed algorithm depends on detecting strong edges
that potentially represent lines (painted, unpainted, physi-
cal, etc); which match the shape of the road boundaries.
Additionally, the algorithm filters the detected lines based
on the previously mentioned criteria such as enough width,
smoothness of the region, etc (See section III). Therefore
the algorithm fails in cases where the correct road edges
are not strong enough to be detected, are absent or other
non-road strong lines are present in the scene satisfying the
same criterion such as painted arrows, pedestrian cross-walk
segments, (Fig. 9(c)), cars (Fig. 9(a)), etc. In some cases,
the algorithm detects a wide pedestrian side-walk as another
lane because it does not distinguish the difference between
a curb and a line, Fig. 9(d).

Some of these problems can be solved by introducing
lane edge tracking, current lane tracking or temporal filtering
such that the algorithm will filter anomalies and also work
with disappearance of road-edge for a few frames. Temporal
filtering and tracking will also increase the processed frames
per second as the algorithm will be processing small parts
of the scene (corresponding to the road edges present in the
previous frame) as opposed to the whole frame. This will be
addressed in future work.

(a) (b)

(c) (d)
Fig. 9. Some failed results

B. Comparison with other techniques

So far, lane detection algorithms in the literature do not
detect multiple lanes in the scene simultaneously [7][16][19].
Wang et al. [16] used accumulator voting prior to B-spline
fitting; however, they vote for the vanishing point. As the
vanishing point is same for all the lanes in the scene, their
accumulator does not represent multiple lanes, Fig. 5(b).
This algorithm intrinsically develops multiple peaks in the
accumulator without additional processing for multiple lanes.
Yu et al. [19] used a splitting window approach. However,
they split the image into fixed ratios and do not consider
the possible look-ahead distance d to decide the near region
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boundary. Additionally, the algorithms in the literature which
use the Hough transform to detect road edges do not deal
with curved roads [19]. The proposed method uses the path
tracking control knowledge to detect the required road angle
and therefore can deal with curved roads without knowing
the complete road boundaries. The results presented in this
paper are achieved in the image coordinate space; therefore,
there is no need for an inverse perspective transform inorder
to navigate properly.

V. CONCLUSION

This work proposed a monocular vision solution to de-
tection of multiple lanes in navigable regions / urban roads.
The paper first formulated an opinion on the lane parameters
needed to control any vehicle autonomously/manually in
real-time. This control knowledge was then used to design an
accumulator voting scheme that determines the location and
the angle of multiple lanes (if they exist) in the image scene;
in the form of multiple distinct peaks in an accumulator
- “Parametric transform for multi-lanes.” The parametric
transform design is modified with some practical road edge
constraints to reduce the accumulator dimensions and thus
making it useful in real-time operation. This paper adapts
control in the image plane from ground plane control -
“Predictive control in the image coordinates.” Further, the
method is robust to shadows and invariant to color, texture,
and width of the road. Finally, the method is applicable to
both straight and curved roads.

ACKNOWLEDGEMENT

The authors acknowledge Lotus Engineering Inc. USA for
supporting this research. The opinions expressed are those of
the authors and do not necessarily reflect the views of Lotus
Engineering Inc. USA. Authors also acknowledge following
sponsors for their contribution, help and/or research support:
Analog Devices, Automation Direct, BWI Eagle, Classic
Auto Air, Comtrol, Four Brothers Auto Air, Kinetik Audio,
North Carolina Center for Automotive Research, NCSU,
Powertrain Control Systems, Prosilica, 1stVision, Revware,
Tamron, TRW, and Vicor.

REFERENCES

[1] Crisman, J. D. and Thorpe, C. E. Color Vision for Road Following. In
Vision and Navigation: The CMU Navlab, C. Thorpe (Ed, pp. 9–24.
1988.

[2] Turk, M. A., Morgenthaler, D. G., Gremban, K. D., and Marra, M.
VITS-a vision system for autonomous land vehicle navigation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(3):342–
361, May 1988.

[3] Dickmanns, E. D. and Mysliwetz, B. D. Recursive 3-D Road and
Relative Ego-State Recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):199–213, 1992.

[4] Kluge, K. and Thorpe, C. Representation and recovery of road geom-
etry in YARF. In Proceedings of the Intelligent Vehicles Symposium,
pp. 114–119. Jun 1992.

[5] Suzuki, A., Yasui, N., Nakano, N., and Kaneko, M. Lane recognition
system for guiding of autonomous vehicle. In Proceedings of the
Intelligent Vehicles Symposium, pp. 196–201. Jun-1 Jul 1992.

[6] Kluge, K. Extracting road curvature and orientation from image edge
points without perceptual grouping into features. In Proceedings of
the Intelligent Vehicles Symposium, pp. 109–114. Oct 1994.

[7] Pomerleau, D. RALPH: rapidly adapting lateral position handler. In
Proceedings of the Intelligent Vehicles Symposium, pp. 506–511. Sep
1995.

[8] Yoshizawa, K., Hashimoto, H., Wada, M., and Mori, S. Path tracking
control of mobile robots using a quadratic curve. In Proceedings of
the IEEE Intelligent Vehicles Symposium, pp. 58–63. Sep 1996.

[9] Taylor, C. J., Koseck, J., Blasi, R., and Malik, J. A Comparative Study
of Vision-Based Lateral Control Strategies for Autonomous Highway
Driving. International Journal of Robotics Research, 18:442–453,
1999.

[10] Hofmann, U., Rieder, A., and Dickmanns, E. D. Radar and Vision
Data Fusion for Hybrid Adaptive Cruise Control on Highways. In
Proceedings of the Second International Workshop on Computer Vision
Systems, pp. 125–138. London, UK, 2001. ISBN 3-540-42285-4.

[11] Southall, B. and Taylor, C. J. Stochastic road shape estimation. In
Proceedings. of Eighth IEEE International Conference on Computer
Vision, vol. 1, pp. 205–212. 2001.

[12] Rasmussen, C. Combining Laser Range, Color, and Texture Cues for
Autonomous Road Following. In In IEEE International Conference on
Robotics and Automation, pp. 4320–4325. 2002.

[13] Holzapfel, W., Sofsky, M., and Neuschaefer-Rube, U. Road profile
recognition for autonomous car navigation and Navstar GPS support.
IEEE Transactions on Aerospace and Electronic Systems, 39(1):2–12,
Jan 2003.

[14] He, Y., Wang, H., and Zhang, B. Color-based road detection in
urban traffic scenes. IEEE Transactions on Intelligent Transportation
Systems, 5(4):309–318, Dec 2004.

[15] Hu, M., Yang, W., Ren, M., and Yang, J. A vision based road
detection algorithm. In IEEE Conference on Robotics, Automation
and Mechatronics, vol. 2, pp. 846–850. Dec 2004.

[16] Wang, Y., Teoh, E. K., and Shen, D. Lane Detection and Tracking
Using B-Snake. International Conference on Information, Intelligence,
and Systems, 0:438, 2004.

[17] Jung, C. R. and Kelber, C. R. An Improved Linear-Parabolic Model
for Lane Following and Curve Detection. In Proceedings of the XVIII
Brazilian Symposium on Computer Graphics and Image Processing,
p. 131. Washington, DC, USA, 2005. ISBN 0-7695-2389-7.

[18] Schreiber, D., Alefs, B., and Clabian, M. Single camera lane detection
and tracking. In Proceedings of IEEE Intelligent Transportation
Systems, pp. 302–307. Sept 2005.

[19] Yu, T., Wang, R., Jin, L., Chu, J., and Guo, L. Lane mark segmentation
method based on maximum entropy. In Proceedings. IEEE Intelligent
Transportation Systems, pp. 177–181. Sept 2005.

[20] Wang, H. and Kearney, J. K. A parametric model for oriented,
navigable surfaces in virtual environments. In Proceedings of the
ACM international conference on Virtual reality continuum and its
applications, pp. 51–57. New York, NY, USA, 2006. ISBN 1-59593-
324-7.

[21] Sha, Y., Zhang, G.-Y., and Yang, Y. A Road Detection Algorithm by
Boosting Using Feature Combination. In IEEE Intelligent Vehicles
Symposium, pp. 364–368. June 2007.

[22] Peterson, K., Ziglar, J., and Rybski, P. E. Fast feature detection
and stochastic parameter estimation of road shape using multiple
LIDAR. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 612–619. Sept 2008.

2422


