
Probabilistic Collision State Checker

for Crowded Environments

Daniel Althoff, Matthias Althoff, Dirk Wollherr and Martin Buss

Abstract— For path planning algorithms of robots it is impor-
tant that the robot does not reach a state of inevitable collision.
In crowded environments with many humans or robots, the set
of possible inevitable collision states (ICS) is often unacceptably
high, such that the robot has to stop and wait in too many
situations. For this reason, the concept of ICS is extended
to probabilistic collision states (PCS), which estimates the
collision probability for a given state. This allows to efficiently
run planning algorithms through crowded environments when
accepting a certain collision probability. A further novelty is
that the obstacles possibly react to the robot in order to mitigate
the risk of a collision. The results show a significant difference
in interaction behavior. Thus, this approach is especially suited
for active and non-deterministic moving obstacles in the robot
workspace.

I. INTRODUCTION

In a static environment, the safety of a planned path can

be verified by checking if the planned state trajectory does

not enter the set of inevitable collision states (ICS), which

depends on the geometry of the obstacles and the dynamics

of the robot. The concept of inevitable collision states can

be extended to scenarios in which the future behavior of

dynamic obstacles is exactly known, see e.g. [1]. However,

in a scenario where the future behavior of other obstacles is

unknown, one cannot decide if the current robot state is an

ICS since it depends on the future actions of the dynamic

obstacles. For this reason, the concept of ICS is extended

to probabilistic scenarios in this work. An example for such

a scenario is an outdoor robot finding its way through a

populated pedestrian zone, which has been investigated in

the Autonomous City Explorer project, short ACE [2] (The

ACE project is part of the CoTeSys Excellence Cluster [3]

in which this work has been partly carried out). Another

example of a robot designed for crowded and uncertain

scenarios is e.g. RoboX which guided visitors at the Expo

2002 [4].

A. Related Work

In [5], ICS has been compared to many other common

navigation schemes, such as nearness diagram [6], dynamic

window [7] and velocity obstacle [8]. These alternative con-

cepts have been evaluated with respect to the three criteria:

• A robotic system should consider its own dynamics;

• Consider the environment objects’ future behavior;

• Reason over an infinite time-horizon.

The authors are with the Institute of Automatic Control Engineering
(LSR) of the Technische Universität München, D-80290 München, Germany
{da, althoff, dw, mb}@tum.de

The result of this evaluation was that all common approaches

cannot cope with one or more of these criteria, except the ICS

concept from [9]. Sets of inevitable collisions states, which

are also called regions of inevitable collision (RIC) in other

works, have been investigated in, e.g. [1], [10]–[12]. Under-

and over-approximations of sets of ICS or RIC have been de-

veloped in [12]–[14]. Besides ICS related approaches, safety

of robots in uncertain environments has been assessed by

predicting the movement of dynamic obstacles with Markov

chains for robotic scenarios in [15] and for autonomous cars

in [16]. Other approaches use Monte Carlo simulation for

the thread detection of vehicles in traffic scene in [17], [18]

to verify the safety of all objects.

B. Organization of the Paper

In Sec. II, the concept of inevitable collision states is

recalled from literature. This concept is extended to the case

when the future behavior of other workspace objects can only

be modeled probabilistically. Instead of a yes/no answer for

an ICS, the extended definition of a probabilistic collision

state (PCS) returns a probability for a collision. Since the

definition of PCS is not directly implementable - which is

also the case for the ICS concept as explained later, the

implementation details are presented in Sec. III. This is done

by first showing how the prediction of other workspace ob-

jects is conducted. Then, a finite set of behavior alternatives

for the robot and the workspace objects is introduced in

order to compute the robot trajectory causing the smallest

collision probability. Finally, in Sec. IV, numerical results

are presented which compute the probabilities for ICS in

randomly generated scenarios. It is also investigated how big

the impact on the probability computations is when including

interaction between the workspace objects and the robot.

II. INEVITABLE AND PROBABILISTIC COLLISION STATES

In this section, the notion and definition of inevitable

collision states is recapitulated first. This definition is then

extended to a probabilistic setting which is believed to be

more appropriate in highly populated and uncertain envi-

ronments. Finally, it is shown that the newly introduced

probabilistic collision states are a generalization of inevitable

collision states.

A. Inevitable Collision States

The definition of inevitable collision states used in this

work is recalled from [11]. In order to precisely define in-

evitable collision states some notations have to be introduced.

The state s(t) and input u(t) of the considered robot system

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1492

(for a point in time t) can take values from the state space S
and the control space U . For a given initial state s(0) and an

input trajectory u(t), the dynamics of the robot is determined

by the nonlinear differential equation ṡ = f(s, u). The

workspace of the robot is denoted by W and the subset of

the workspace occupied by the robot is expressed as A ⊂ W .

The occupancy of other objects in the workspace is denoted

by Bi and by Bi(t) if they are moving. The unified occupancy

of all objects is written in short notation as B =
⋃

i=1,...,nb
Bi

where nb is the number of workspace objects. In order to

distinguish complete input trajectories from values of inputs

u(t), an input trajectory is denoted by ũ which maps the

time t to the input space: [0,∞[→ U . The set of input

trajectories is denoted by Ũ and the workspace occupancy

generated from the input trajectory is denoted by A(ũ(t)).
These notations finally allow to define an inevitable collision

state.

Definition 1: Inevitable Collision State

The state s is an ICS iff

∀ũ ∈ Ũ ,∃t,∃Bi,A(ũ(t)) ∩ Bi(t) 6= ∅.

Loosely speaking, the robot is in an inevitable collision

state if there exists no input trajectory ũ which can avoid

a crash with another workspace object. Next, this definition

is extended to a probabilistic setting.

B. Probabilistic Collision States

In crowded environments, motion planning with ICS is not

reasonable. Consider the earlier mentioned scenario where a

robot finds its way through many people in a pedestrian zone.

Since in this scenario the workspace objects are humans,

their future occupancy Bi(t) is unknown and can only be

predicted. For this reason, their motion and their future

occupancy is specified by probability density functions in

this work.

The probability density function of the occupancy in the

workspace caused by the object Bi is denoted by fi. Since

one can only formulate a probability distribution for a

random vector and not an occupancy set, fi represents the

probability distribution of a point c of Bi and the size of the

object is considered by enlarging the occupancy A of the

robot system. The enlargement is performed by Minkowski

addition of the area (−Bi + ci) to A, so that the new

occupancy of the robot is Ab = A ⊕ (−Bi + ci), which is

explained in more detail in [19]. The Minkowski addition

of the occupancy sets is visualized in Fig. 1 for a two-

dimensional workspace with position coordinates xx and xy.

In this work, two different kinds of objects are considered:

• Passive objects: they ignore the robot’s trajectory. The

associated probability density function of the occupancy

is denoted by fi(x, t), where x is the position in the

workspace and t is the time.

• Active objects: they react to the robot’s trajectory ũ

in order to reduce the collision risk. The associated

probability density function of the occupancy is denoted

by fi(x, t, ũ).

xxxx

xy xyA Bi

cici

Bi − ci

−Bi + ci

Ab = A⊕ (−Bi + ci)

Fig. 1. Minkowski addition of the workspace occupancy of the robot and
another object.

In the following, the collision probability for active objects is

described, leading to the definition of Probabilistic Collision

States for active and later also for passive objects.

The probability that a certain region R of the workspace is

occupied by an object Bi is obtained by integration:

P (R ∩ Bi 6= ∅) =

∫

R⊕(−Bi+ci)

fi(x, t, ũ) dx.

Thus, the probability that the robot system A, applying the

input trajectory ũ, has a collision with another probabilistic

object Bi is computed as

pC
i (t, ũ) := P (A(ũ(t)) ∩ Bi 6= ∅) =

∫

Ab(ũ(t))

fi(x, t, ũ) dx,

(1)

where the index i of the crash probability pC refers to the ith

workspace object. Additionally, the probability that a crash

occurs within a time interval [tk, tk+1[is considered, where

tk = k T , k ∈ N
+ is a time step and T ∈ R

+ is the time step

size. The set occupied in the workspace for a time interval

is denoted by A(ũ([tk, tk+1[)) such that the collision for a

time interval is obtained by

pC
i ([tk, tk+1[, ũ) =

∫

Ab(ũ([tk,tk+1[))

fi(x, [tk, tk+1[, ũ) dx.

The probability of surviving is defined as the probability that

no crash occurs such that the surviving probability for a cer-

tain time interval is pS
i ([tk, tk+1[, ũ) = 1−pC

i ([tk, tk+1[, ũ).
An upper bound for surviving a time interval when consid-

ering all objects Bi is computed by

pS([tk, tk+1[, ũ) = min
i=1,...,nb

pS
i ([tk, tk+1[, ũ).

Initially, it is confusing that the upper bound is computed

by the min operator. The reason is that only the object

with the highest collision risk (lowest survival probability)

is considered and the remaining objects are neglected.

Clearly, the upper bound for the probability of survival for

the infinite time horizon is computed by

pS([0,∞[, ũ) =

∞∏

k=0

pS([tk, tk+1[, ũ).

Since the robot system can choose any input trajectory from

the set of possible input trajectories Ũ , the input trajectory

causing the maximum survival probability is chosen:

pS
max([0,∞[) = max

ũ∈Ũ

pS([0,∞[, ũ). (2)

1493

The upper bound of the maximum survival probability allows

to define the probability of an inevitable collision state for

active objects.

Definition 2: Probabilistic Collision State for active

objects

The probability of a state leading to a collision concerning

active objects is defined as the lower bound of crashing with

an active obstacle under the best possible input trajectory

ũ(t):
PCSa(s) = 1 − pS

max([0,∞[)

where pS
max([0,∞[) is the upper bound for the probability

of survival for active objects.

The definition of PCSa(s) includes the special case for

passive objects, which is denoted by PCSp(s). For passive

objects it is sufficient to consider the probability density

function fi(x, t) instead of fi(x, t, ũ) since they move in-

dependently of the robot. When no index is given (PCS) it

is always referred to active objects (PCSa).

In this work, active objects do not act hostile, they always

try to reduce the collision risk, so the condition

PCSp(s) ≥ PCSa(s) (3)

is always true for active objects. This means that if active

objects are treated as passive ones, PCSp(s) is the upper

bound of PCSa(s). The definition of PCSa also allows

general active objects, but as a consequence, condition (3)

would not hold anymore.

In the appendix, it is shown that PCS(s) = 1 ↔ s = ICS

which means that the presented Def. 2 is a generalization of

Def. 1. If instead of a lower bound, an upper bound of the

probability of a crash would be computed, the equivalence

PCS(s) = 1 ↔ s = ICS would not hold anymore. The

implementation issues of the given definition are discussed

next.

C. Implementation Issues

The definition of ICS (see Def. 1) and the one for PCS

(see Def. 2) is not implementable. The reason for this is

twofold:

1) Infinite number of input trajectories: One problem is

that an infinite number of input trajectories ũ ∈ Ũ has to be

checked. This is solved in literature, e.g. [11], by computing

with a finite subset of input trajectories ũ. This leads to a

conservative computation of an ICS, i.e. a state may not be

an ICS although the computation concluded that the state is

one. However, it can always be guaranteed that a state is not

an ICS with a finite number of input trajectories.

2) Limited time horizon: The problem of computing with

an infinite time horizon can be solved by applying only

maneuvers that come to a standstill after a finite time horizon.

When all workspace objects including the robot are not

moving anymore, the computation can be stopped. The same

holds when the robot imitates the movement of workspace

objects which has also been discussed in [11]. Before the

imitation can be applied, the robot is in a catch-up phase. It

can be shown that it is sufficient to compute the ICS for the

catch-up phase. However, the imitation approach can only

be applied if the workspace objects behave deterministically

which is not the case in this work. Thus, only the approach

of computing maneuvers that come to a standstill can be

applied. Since the uncertainty in the prediction of other

workspace objects increases with time, the main focus lies on

braking maneuvers which come to a standstill in a reasonable

time horizon. Additionally, only a finite number of braking

maneuvers are considered as for the ICS implementations in

literature.

III. PROBABILISTIC COLLISION STATE CHECKER

Although the definition of PCS allows arbitrary

workspaces and has no restriction to the object’s shape,

kinematics or dynamics, a PCS checker is presented for

disk-shaped objects in a two-dimensional workspace with

position coordinates xx and xy . First, the model for the

motion prediction of passive and active objects is described.

Second, the probability density function for passive objects

is computed. Third, the optimal input trajectory of the robot

is obtained which is then used to determine the probability

density function for active objects. Finally, the collision

probabilities are computed for passive and active objects.

A. Method for Motion Prediction

The distributions of passive objects can be computed with

motion prediction techniques as described in e.g. [20]–[23].

In order to obtain a more efficient implementation of fi(x, t)
and fi(x, t, ũ) than in the referred literature, a constant ac-

celeration model is used for the prediction of the workspace

objects. The position, velocity and acceleration are denoted

by x, v and a, respectively. The indices x and y refer to the

x- and y-coordinate of the two-dimensional workspace W .

The dynamic system of the constant acceleration model is






ẋx

ẋy

v̇x

v̇y







=







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0













xx

xy

vx

vy







+







0
0
ax

ay







,

where the absolute value of the acceleration
√

a2
x + a2

y ≤

amax is limited. The velocity is indirectly limited by the

initial velocity since only braking trajectories are considered

as discussed in Sec. II-C. After a time discretization with

tk = k T , where k ∈ N
+ has been introduced as the time

step and T ∈ R
+ is the time step size, the dynamic model

can be exactly transformed to the discrete time form:






xx

xy

vx

vy







(tk+1)

︸ ︷︷ ︸

s(tk+1)

=







1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1







︸ ︷︷ ︸

A







xx

xy

vx

vy







(tk)

︸ ︷︷ ︸

s(tk)

+







ax
T 2

2

ay
T 2

2
axT

ayT







︸ ︷︷ ︸

u

.

(4)

It is further assumed that the initial state of the objects

has a multivariate Gaussian distribution s(0) ∽ N (µ,Σ)
with mean value µ and covariance matrix Σ. From the

1494

multiplication rule and the addition rule of independent

random variables with Gaussian distributions, it follows that

the mean value and the covariance of the state s in (4) are

updated as

µ(tk+1) = Aµ(tk) + u

Σ(tk+1) = AΣ(tk)AT ,
(5)

where AT is the transpose of the system matrix A. Note

that the input u has no influence on the covariance matrix

because this input is deterministic.

B. Probabilistic Density Function of Passive Objects

The Gaussian distribution of the ith workspace object Bi

can finally be formulated as

fi(x, tk) =

1

(2π)2|Σ(tk)|
1
2

exp

(

−
1

2
(x − µ(tk))T Σ(tk)−1(x − µ(tk))

)

.

For passive objects, the acceleration inputs are set to zero

(ax = 0, ay = 0). This is changed when active objects are

considered later.

C. Input Trajectory of the Robot

Under the assumption that the workspace objects move

independently of the robot, i.e. ∀i : fi(x, t, ũ) = fi(x, t), the

input trajectory ũ∗ that minimizes PCSp(s) is computed.

The finite set of possible input trajectories are braking

trajectories, i.e. trajectories for which the velocity is con-

stantly decreasing. The state trajectories are computed from

the input trajectories with the constant acceleration model

of (4). The finite set of braking trajectories is chosen as

follows: Use the maximum possible absolute acceleration

such that
√

a2
x + a2

y = amax, where the maximum absolute

acceleration is limited through the contact friction of the

robot. The parameter that is varied is the direction φR of

the acceleration, where the raised R emphasizes that the

direction is given in the relative coordinate system of the

robot and not in the global workspace coordinates. The scalar

product of the velocity vector and the direction vector φR

(both in relative coordinates) is always negative to ensure

braking trajectories, see Fig. 2. Next, the computed input

trajectory ũ∗ minimizing PCSp(s) is used to adapt the

probability distribution fi(x, t) such that it depends on ũ∗:

fi(x, t) → fi(x, t, ũ∗).

D. Probabilistic density function for active objects

One of the difficulties in the implementation is that the

probability distribution fi(x, t, ũ) of active workspace ob-

jects depends on the input trajectory ũ, while the choice of

the input trajectory in (2) depends on pS([0,∞[, ũ) and thus

on the probability distribution fi(x, t, ũ). This mutual de-

pendence is broken up by first assuming that the probability

distribution of the workspace objects is independent of the

input trajectory ũ of the robot. So the ũ ∈ Ũ is determined

by minimizing the crash probability PCSp(s) as described

above.

In order to distinguish the input trajectories of the workspace

xx

xy

xR
x

xR
x

xR
y

xR
y

φR

φR

t = tk

t = tk+n

amax

amax

robot A

vR ‖ xR
x

braking
trajectory

Fig. 2. Braking trajectory of the robot. The direction of the acceleration
is constant in the relative coordinate system of the robot and the magnitude
is constant over time.

objects Bi from the ones of the robot, they are denoted by

ũB
i , which are element of ŨB

i . The finite number of input

trajectories ũB
i,k ∈ ŨB

i is generated as previously presented

in Sec. III-C for which the direction of the acceleration φ

is varied while the maximum absolute acceleration amax is

applied. The additional index k in ũB
i,k indicates the kth

input trajectory. The input trajectory causing the smallest

probability PCSa(s) is denoted by ũBi∗.

The optimal input trajectories ũBi∗ model the case when

workspace objects try to avoid a collision with maximum

effort or willingness. However, workspace objects may not

react to the trajectory of the robot at all. For this reason,

a probability distribution f(e) is introduced, where e is the

effort varying in the interval [0, 1]1. The applied absolute

acceleration for the optimal acceleration direction of ũBi∗ is

obtained as
√

a2
x + a2

y = e amax. If e = 0, the acceleration

of the object is ax = ay = 0 and if e = 1, the full

acceleration for avoiding the robot is applied as for ũBi∗.

Since only a finite number of values of e is used, the kth

values is denoted by ek. The probability distribution of e

and the acceleration direction are depicted in Fig. 3. The

final probability distribution is computed as

fi(x, t, ũ∗) =

ne∑

k=1

ekfi,k(x, t, ũ∗),

where ne is the number of considered values of e.

E. Numerical Computation of the Crash Probability

Another important implementation detail is the efficient

computation of the integral of the probability distribution of

workspace objects according to (1). This is done by comput-

ing with an occupancy grid with equidistant segmentation as

shown in Fig. 4. The occupancy of the robot Ab(ũ(t)) can

be computed offline for all relevant initial conditions and

input trajectories, and then stored in a database. In terms

1The interval [−1, 1] would also consider hostile objects, which are not
part of the work.

1495

xx

xy

robot A object B

amax

P (e = ek)

vA(tk)

vB(tk)

vB(tk+1)∆vB(tk) =
ek amax T

Fig. 3. Acceleration applied to an object in order to avoid the robot.

of braking trajectories ũ, one has to compute only with the

finite number of relative braking directions φR because the

absolute value is always amax, see Sec. III-C. In terms of

the system state, one has to compute with different initial

velocities. Initial positions and directions do not have to be

varied since the workspace objects are stored within the robot

coordinate frame. Note that the occupancy of the robot is

deterministic, i.e. a cell is either occupied or not.

The occupancy of the other objects is probabilistic and com-

puted online. The Gaussian distributions are approximately

mapped into the occupancy grid by assuming a uniform

distribution within the cells Cj . The probability density value

at the center γj of cell j is fi(γj , t, ũ). From the uniform

distribution follows that the probability of the occupancy is:

P (x(t) ∈ Cj |u = ũ(t)) = Afi(γj , t, ũ), A ∈ R
+

where A is the area of a cell. The above formula is anal-

ogously computed for passive objects. The probability of a

crash is finally obtained by summing up the probabilistic

occupancies P (x ∈ Cj) for cells j which are occupied by

the robot. An example of the deterministic occupancy of the

robot and the probabilistic occupancy of another workspace

object is visualized in Fig. 4.

IV. SIMULATION RESULTS

In this section, simulations of the presented approach for

computing PCS are performed. No comparison to ICS is

done since it cannot be directly applied to scenarios with

non-deterministic objects.

The following simulations show the influence of the proba-

bilistic effort f(e) (for avoiding the robot) on the result of

PCS(s) for passive and active objects. It is assumed that the

workspace objects are active objects as previous described,

which means they do not behave hostile and (3) holds.

In order to show the usefulness of computing with a distri-

bution of the effort for avoiding the robot, random scenarios

are generated and evaluated. Despite the workspace objects,

the initial state of the robot is fixed and has the initial

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

xx

x
y

robot A

workspace
object Bi

braking
trajectory

cell Cjcenter γj

deterministic
occupancy
for t ∈ [0,∞[

probabilistic
occupancy
for t ∈ [0,∞[

Fig. 4. Numerical integration of the crash probability.

TABLE I

SIMULATION PARAMETERS FOR THE OBSTACLES

Eight regions for xx[m] [0.1, 0.3] · · · [1.5, 1.7]

One region for xy [m] [−0.5, 0.5]

Initial velocity direction ∢~v[rad] [3
4
π, 5

4
π]

Initial absolute velocity ‖~v‖ [m
s
] [0.0, 0.5]

Acceleration direction ∢~a[rad] [3
4
π, 5

4
π]

Absolute acceleration [m

s2
]: {0.1, 0.3, 0.5, 0.7, 0.9}

Initial covariance Σ(0) (see (5))

2

6

4

0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01

3

7

5

state s =
[
0m 0m 0.5m

s 0m
s

]T
. The obstacles are

placed randomly in front of the robot facing towards it.

Each scenario consists of one robot and three workspace

objects. The workspace objects are placed randomly in one of

eight predefined adjacent regions which are partitioned in x-

direction. The regions and other parameters for the obstacles

are listed in Tab. I.

An exemplary scenario using the listed parameters is shown

in Fig. 5. In this scenario, the collision probability is reduced

by 45% for considering active objects. For each of the

eight regions for the initial object positions, 100 randomly

generated situations are computed based on two different

workspace object models:

• Passive objects, i.e. objects that are not trying to avoid

the robot. Thus, the probability distribution for the effort

is f(e) =

{

0, if e ∈]0, 1]

δ, if e = 0
, where δ is the Dirac

impulse.

• Active objects, i.e. objects that are trying to avoid the

1496

xx[m]

x
y
[m

]

region 1 → 8

robot objects

braking

trajectories

(a) Motion prediction assuming passive objects, the associated collision
probability is PCSp(s) = 40%

xx[m]

x
y
[m

]

best
braking

trajectory ũ∗

(b) Motion prediction assuming active objects, the associated collision
probability is PCSa(s) = 18%

Fig. 5. Random scenario for xx[m] region 4: Gaussian distribution is
illustrated by 2σ-ellipsoids.

robot. For the simulations, a Gaussian distribution for

f(e) is used with mean value µ = 0.5 and standard

deviation σ = 0.2. In order to obtain a finite number of

effort values ek, the Gaussian distribution is discretized.

In order to obtain significant results, randomly generated

situations with a collision probability of less than 0.01 are

discarded. To verify the usefulness of modeling the avoidance

capabilities of the objects, the mean relative difference

D =
1

n

n∑

1 −
PCSa(s)

PCSp(s)

obtained from all scenarios is shown in Fig. 6.

It can be seen that there is a significant difference between

the active and passive workspace objects. The maximum

achieved difference is 48%. It can also be seen that the

improvement depends on the distance to the obstacle when

assuming the velocity range and direction as listed in Tab. I

for the robot and the obstacles.

There is no difference for greater distances than 1.3m

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Region of xx (see Tab. I)

D

Fig. 6. Relative difference between ICS probability between active and
passive obstacles.

since the crash probabilities are zero for active and passive

workspace objects. During the evaluation, PCS was calcu-

lated 600 times for three workspace obstacles. The algorithm

is implemented in Matlab and was executed on a AMD

Phenom with 2.5 Ghz. The mean computational time of

PCS(s) for one robot state is 0.1s.

V. CONCLUSIONS AND FUTURE WORKS

This paper consists of two major contributions, a novel

definition for the probabilistic computation of inevitable

collision states and an exemplary implementation of this

definition. The proposed definition allows to reason about the

safety of planned paths in uncertain dynamic environments.

Further, it is shown that this definition is a generalization

of the inevitable collision state approach. The presented

method is especially useful in crowded environments where

the future behavior of other objects in the workspace has

high uncertainty.

The exemplary implementation has shown that the willing-

ness of objects to avoid the robot has a big impact on

the collision risk. It is no noteworthy that the presented

computation of PCS preserves the three criteria from [5]

mentioned in the introduction: A robotic system should

consider its own dynamics, consider the environment objects’

future behavior and reason over an infinite time-horizon.

The simulations of the PCS checker showed that it is efficient

and thus applicable to real world scenarios. It is planned to

implement the PCS checker on a robot to verify the results

in a crowded scenario.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge partial financial sup-

port of this work by the Deutsche Forschungsgemein-

schaft (German Research Foundation) within the excel-

lence initiative research cluster Cognition for Technical Sys-

tems – CoTeSys (www.cotesys.org), the Transregional

Collaborative Research Centre 28 Cognitive Automobiles

1497

(www.kognimobil.org) and the EU-STREP project In-

teractive Urban Robot (IURO, www.iuro-project.eu).

APPENDIX

The purpose of the appendix is to show that PCS(s) = 1
↔ s = ICS when computing PCS(s) according to Def. 2.

In a deterministic scenario, the position of other objects is

known such that the probability distribution of all objects is

a Dirac impulse δ:

fi(x, t) =

{

δ, if x(t) = ci(t)

0, otherwise

where ci(t) is a point of object Bi as introduced in Sec. II-B.

From this follows directly that

A(ũ(t)) ∩ Bi(t) 6= ∅ ↔ pC
i (t, ũ) = 1.

Thus, using Def. 1, the statement s = ICS can be reformu-

lated to

∀ũ ∈ Ũ ,∃t,∃i, pC
i (t, ũ) = 1.

Using the computations introduced in Sec. II-B, it is shown

that this statement is equivalent to PCS(s) = 1:

↔∀ũ ∈ Ũ ,∃t,∃i : pC
i (t, ũ) = 1

↔∀ũ ∈ Ũ ,∃k,∃i : pC
i ([tk, tk+1[, ũ) = 1

↔∀ũ ∈ Ũ ,∃k,∃i : pS
i ([tk, tk+1[, ũ) = 0

↔∀ũ ∈ Ũ ,∃k : pS([tk, tk+1[, ũ) =

min
i=1,...,nb

pS
i ([tk, tk+1[, ũ) = 0

↔∀ũ ∈ Ũ : pS([0,∞[, ũ) =

∞∏

k=0

pS([tk, tk+1[, ũ) = 0

↔pS
max([0,∞[) = max

ũ∈Ũ

pS([0,∞[, ũ) = 0

↔PCS(s) = 1 − pS
max([0,∞[) = 1.

REFERENCES

[1] R. Parthasarathi and T. Fraichard, “An inevitable collision state-
checker for a car-like vehicle,” in Proc. of the IEEE International

Conference on Robotics and Automation, 2007, pp. 3068–3073.
[2] A. Bauer, K. Klasing, G. Lidoris, Q. Mühlbauer, F. Rohrmüller,

S. Sosnowski, T. Xu, K. Kühnlenz, D. Wollherr, and M. Buss, “The
autonomous city explorer: Towards natural human-robot interaction in
urban environments,” International Journal of Social Robotics, vol. 1,
no. 2, pp. 127–140, 2009.

[3] M. Buss, M. Beetz, and D. Wollherr, “Cotesys – cognition for
technical systems,” International Journal of Assistive Robotics and

Mechatronics, vol. 8, no. 4, pp. 25–36, 2007.

[4] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoid-
ance for a tour guide robot,” in Proc. of the IEEE International

Conference on Robotics and Automation, 2003, pp. 446– 451.
[5] T. Fraichard, “A short paper about motion safety,” in Proc. of the

IEEE International Conference on Robotics and Automation, 2007,
pp. 1140–1145.

[6] J. Minguez and L. Montano, “Nearness diagram (nd) navigation:
Collision avoidance in troublesome scenarios,” IEEE Transactions on

Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004.
[7] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[8] P. Fiorini and Z. Shillert, “Motion planning in dynamic environments
using velocity obstacles,” International Journal of Robotics Research,
vol. 17, pp. 760–772, 1998.

[9] T. Fraichard and H. Asama, “Inevitable collision states. A step towards
safer robots?” Advanced Robotics, vol. 18, pp. 1001–1024, 2004.

[10] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[11] L.Martinez-Gomez and T. Fraichard, “An efficient and generic 2d
inevitable collision state-checker,” in Proc. of the IEEE International

Conference on Intelligent Robots and Systems, 2008, pp. 234–241.
[12] L. Martinez-Gomez and T. Fraichard, “Collision avoidance in dynamic

environments: an ics-based solution and its comparative evaluation,”
in Proc. of the IEEE International Conference on Robotics and

Automation, 2009, pp. 100–105.
[13] M. Zucker, “Approximating state-space obstacles for non-holonomic

motion planning,” Carnegie Mellon University, Robotics Institute,
Tech. Rep., 2006.

[14] N. Chan, J. Kuffner, and M. Zucker, “Improved motion planning
speed and safety using regions of inevitable collision,” in 17th CISM-

IFToMM Symposium on Robot Design, Dynamics, and Control, 2008,
pp. 103–114.

[15] F. Rohrmüller, M. Althoff, D. Wollherr, and M. Buss, “Probabilistic
mapping of dynamic obstacles using markov chains for replanning
in dynamic environments,” in Proc. of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2008, pp. 2504–2510.
[16] M. Althoff, O. Stursberg, and M. Buss, “Model-based probabilistic

collision detection in autonomous driving,” IEEE Transactions on

Intelligent Transportation Systems, vol. 10, pp. 299 – 310, 2009.
[17] S. B. A. Broadhurst and T. Kanade, “Monte carlo road safety reason-

ing,” in IEEE Intelligent Vehicle Symposium (IV2005),, June 2005, pp.
319–324.

[18] A. Eidehall and L. Petersson, “Threat assessment for general road
scenes using monte carlo sampling,” in 2006 IEEE Intelligent Trans-

portation Systems Conference, September 2006, pp. 1173–1178.
[19] J.-M. Lien, “Hybrid motion planning using minkowski sums,” in

Proceedings of Robotics: Science and Systems IV, 2008.
[20] H. C. Yen, H. P. Huang, and S. Y. Chung, “Goal-directed pedestrian

model for long-term motion prediction with application to robot mo-
tion planning,” in Proc. of the International Conference on Advanced

Robotics and its Social Impacts, 2008, pp. 1–6.
[21] D. Vasquez, T. Fraichard, and C. Laugier, “Incremental learning of

statistical motion patterns with growing hidden markov models,” IEEE

Transactions on Intelligent Transportation Systems, vol. 10, no. 3, pp.
403–416, 2009.

[22] S. Thompson, T. Horiuchi, and S. Kagami, “An environment driven
model of human navigation intention for mobile robots,” in Proc. of

The 13th IASTED International Conference on Robotics and Applica-

tions, 2007, pp. 119–125.
[23] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-

ics,” Physical Review E, vol. 51, pp. 4282–4286, 1995.

1498

