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Abstract— There exist configurations of parallel cable-driven
mechanisms (CDM) within their wrench closure workspace
(WCW) for which they may become unstable when their
cables are subjected to internal forces due to prestress or
external loads. With the goal of avoiding such configurations,
the prestress stable WCW (PSWCW) is defined as a subset of
the WCW where an increase in the prestress level leads to an
increase in the overall stiffness of the mechanism. A genetic
algorithm is used to optimize the geometry of planar parallel
CDMs with four cables with the objective of reaching a desired
PSWCW. Results are obtained that may guide the designer in
the preliminary selection of mechanism dimensions and cable
connectivities.

I. INTRODUCTION

A planar parallel cable-driven mechanism (CDM) consists
of a rigid end-effector (EE) that is constrained to move in a
plane and is linked to a fixed base by cables acting in parallel.
Each cable is attached to the EE at one end and wound
around an actuated winch at the other. By modifying the
lengths of the cables, the pose (i.e., position and orientation)
of the EE in the plane can be controlled. Cable-driven
mechanisms are attractive due to the low inertia of their
moving parts and the relative ease with which they can be
built, transported and reconfigured. However, the fact that
the cables can only pull and not push on the EE introduces
challenges in the design and use of these mechanisms. To
maintain rigidity, the cables must be kept taut at all times.
Completely restrained parallel manipulators (CRPM) [1], on
which this paper is focused, accomplish this by applying
antagonistic tension forces in the cables (i.e., forces whose
resultant wrench on the EE is zero). This was shown in [1]
to be possible only when m > n where m is the number of
cables in the mechanism and n is the number of degrees of
freedom of the space in which its EE is displaced (i.e., n = 3
in the plane and n = 6 in space). The results given in this
paper are limited to the case where m = 4 cables are used.

Because large lengths of cable can be stored on winches,
CDMs have potentially large ranges of motion. However,
the portion of this range that is usable, referred to as
the mechanism’s workspace, is significantly limited by the
unilaterality of the forces applied by the cables to the EE.
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Because of this, it is of primary interest to maximize the
size of the workspace of CDMs. Different characterizations
exist for the workspace of CDMs [2, 3]. One of these is
referred to as the wrench closure workspace (WCW) [4]
and is defined as the set of mechanism configurations for
which any arbitrary wrench can be generated at the EE with
non-negative cable tensions. If the mechanical properties
of a CDM’s cables, actuators and remaining structure are
assumed limitless, the WCW can be shown to depend only
on the mechanism’s geometry.

In addition to being capable of generating arbitrary
wrenches with its EE, the CDM should also be stable. A
given pose is considered stable if any arbitrary displacement
of the EE away from the pose due to an externally applied
disturbance wrench while keeping the cable rest lengths fixed
leads to an increase of the total elastic potential energy in
the cables. This will be verified if the stiffness matrix of
the CDM, evaluated at the stated pose, is positive definite. It
is known that the stiffness matrix of CDMs depends both
on the axial stiffness of the individual cables as well as
on the internal forces in the cables due to the application
of prestress and/or to external wrenches applied to the EE
[5–7]. Behzadipour and Khajepour [6] have shown, based
on a previous work by Svinin et al. [8], that whereas the
portion of the stiffness matrix corresponding to the axial
stiffness of the cables is always positive definite, this is
not necessarily true for the internal forces’ contribution to
the stiffness matrix. In the case of the internal forces due
to the prestress in the cables, such behaviour is generally
undesirable since prestress is used to keep the cables taut and,
ideally, to increase the overall stiffness of the mechanism.
With this in mind, this paper examines the effects of the
geometry of CDMs on their prestress stable wrench closure
workspace (PSWCW) which is the subset of the WCW where
an increase of the prestress in the cables tends to stabilize
the mechanism.

II. KINEMATIC AND STATIC ANALYSIS

A diagram of the CDM to be studied in this paper is
shown in Fig. 1. The EE, constrained to move in a plane,
is defined by nodes Bi (in this paper i = 1,2,3,4) while the
base is defined by nodes Ai. Each Ai node is connected to
its respective Bi node by a cable whose rest length can be
controlled with a motor-driven winch located at node Ai. The
ith cable is assumed to be taut such that it can be considered
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Fig. 1. Planar parallel 3-DoF cable-driven mechanism with four cables.

as a segment of length li of the straight line passing through
Ai and Bi. The contact points of the cables on the base and
EE are considered fixed relative to the respective bodies and
are represented as revolute joints with axes perpendicular to
the plane of the mechanism.

Reference frames OXY and PX ′Y ′ are defined as being
attached to the base and EE, respectively, and are referred
to as the base and mobile frames. The position of the EE is
given by a vector p = [x,y]T directed from point O to point
P while its orientation is given by the angle φ measured
from X to X ′ about Z. Vector ai is defined as being directed
from point O to point Ai and is constant in the base frame.
Similarly, vector b′i is directed from point P to point Bi and is
constant in the mobile frame. Unit vector ni is defined along
the ith cable directed from Bi to Ai and can be expressed as

ni =
1
li
(ai−p−bi). (1)

where bi = Qb′i and where

Q =

[
cosφ −sinφ

sinφ cosφ

]
(2)

is the rotation matrix bringing frame XY parallel to frame
X ′Y ′.

Given ti the tension in the ith cable, the wrench applied
by the latter on the EE is defined as the combination of a
force tini passing through P and a moment tibT

i ET ni about
an axis perpendicular to the plane of the mechanism and
passing through point P where

E =

[
0 −1
1 0

]
. (3)

It is noted that the expression used to compute the moment
applied to the EE by the ith cable is chosen due to its com-
pactness (the moment cannot be expressed as tibi×ni since
bi,ni ∈ℜ2). The ith cable’s wrench can also be expressed as
tiwi where

wi =

[
ni

bT
i ET ni

]
(4)

and where it is noted that ti ≥ 0 by definition. The total
wrench applied to the EE by the cables is then the sum of

the individual cable contributions given by w = Wt where
W =

[
w1,w2,w3,w4

]
is defined as the wrench matrix and

where t = [t1, t2, t3, t4]T . Meanwhile, the total wrench applied
to the EE by the environment (including the weight of the
EE if applicable) is the combination of a force f and a
moment M, both referenced to point P. The static equilibrium
equations of the EE can thus be expressed as

f+
4

∑
i=1

tini = 0 (5)

M+
4

∑
i=1

tibT
i ET ni = 0 (6)

and the total external wrench can also be written as we =
[f,M]T where we =−w.

III. COMPUTATION OF THE WRENCH CLOSURE
WORKSPACE

Generally speaking, the workspace of a CDM is con-
strained by the cables’ mechanical limits as well as the
mechanism’s ability to generate a specified set of required
wrenches at its EE. The WCW, as defined by Gouttefarde
and Gosselin [4], assumes both the mechanical limits of the
cables and the set of required wrenches as unbounded. As
a result of these assumptions, which are deemed reasonable
in a preliminary design setting where the optimal geometry
of the mechanism is sought, the WCW depends solely on
the geometry of the mechanism. In what follows, for any
vector q, the expressions q > 0, q ≥ 0 and q < 0 are to be
interpreted as all components of q being greater than zero,
greater than or equal to zero, or less than zero, respectively.

The WCW of planar CDMs can formally be defined as
the set of EE poses for which, given any wrench w ∈ℜ3,
there exists a vector t≥ 0 such that w = Wt is satisfied.
Recalling that m > n, the static equilibrium equation of a
CDM (i.e., w = Wt) is an underdetermined system whose
solution can be expressed as

t = tw + t0 = WIw+λz (7)

where WI is the generalized inverse of W, λ ∈ℜ and z is in
the nullspace of W. The cable tensions are thus viewed as
a combination of tw = WIw, corresponding to the tensions
required to equilibrate the wrench applied to the EE, and
t0 = λz, which are the prestress cable forces whose resultant
wrench on the EE is zero. With this solution in mind,
necessary and sufficient conditions for a given pose to belong
to the WCW are (taken from [4])

rank(W) = 3 (8)

∃ z ∈ null(W) such that z > 0 (9)

where rank(W) and null(W) correspond to the rank and
nullspace of W, respectively. When these conditions are
satisfied, the cable tensions can be made positive by ad-
justing the value of λ without having any effect on the
wrench generated at the EE. In order to verify (9), a unit
vector z0 in the nullspace of W is obtained as the fourth
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column of V in the singular value decomposition of W
which takes the form W = UΣVT where U and V are
both square orthogonal matrices of dimensions n× n and
m×m, respectively, while Σ is a n×m diagonal matrix
containing the singular values. Equation (9) will be satisfied
if z0 > 0 or z0 < 0. This condition is used in this paper
to compute the approximate WCW of planar parallel CDMs
with four cables. The three-dimensional WCW is represented
by a set of two-dimensional slices corresponding to different
orientations φ. For a given orientation of the EE, the constant
orientation wrench closure workspace (COWCW), when it
exists, is a bounded area of the XY plane. An area of
the XY plane known to encompass the COWCW is thus
discretized into a point cloud. Each point is then verified
against the conditions expressed in (8) and (9). The set
of points satisfying the conditions represent the COWCW.
Moreover, the approximate boundary of the COWCW can
be plotted by drawing lines through those points which are
located on the boundaries of the set of points found to be in
the COWCW. The procedure is then repeated for different
values of φ to obtain an approximation of the WCW. It
is recognized that this approach is not as optimal as, for
instance, the use of interval analysis techniques (e.g. [9]) but
it is deemed adequate for the purpose of this paper.

IV. COMPUTATION OF THE PRESTRESS STABLE
WRENCH CLOSURE WORKSPACE

A relationship between infinitesimal changes in the total
wrench applied to the mechanism’s EE by the environment
and the corresponding displacement of the EE can be for-
mulated as follows

δwe =

[
δf

δM

]
= K

[
δp
δφ

]
= Kδx (10)

where K is the mechanism’s 3×3 stiffness matrix. Given a
state of the mechanism where static equilibrium is achieved
(i.e., (5) and (6) are satisfied), stability of the mechanism
implies that positive work must be done on the mechanism
to displace it away from its equilibrium. This condition may
be expressed as

δwT
e δx = (Kδx)T

δx = δxT Kδx > 0, (11)

which makes it clear that for stability to exist K must be
positive definite.

The stiffness of general planar parallel CDMs with four
cables is to be modeled here by considering the mechanism’s
flexibility to stem only from the compliance of its cables (in
fact the stiffness model that will be derived is applicable to
planar parallel CDMs with any number of cables). The latter
are modelled as linear springs such that

ti = ki(li− l0i) (12)

where ki and l0i are the axial stiffness and rest length of the
ith cable, respectively. Different methods may be employed
to compute the stiffness matrix of a CDM including the ap-
plication of a conservative congruence transformation (CCT)
[10], the use of virtual springs [6], the computation of the

Hessian of the potential energy function of the mechanism,
etc. In what follows, K is obtained using an approach
inspired from Svinin et al. [8] based on the linearization
of the static equilibrium equations. This approach is general,
simple to apply and yields a compact expression for K. The
linearization of (5) leads to

δf =−
4

∑
i=1

(δtini + tiδni). (13)

It can be noticed from (12) that δti = kiδli. In addition, any
change in ni must be due only to its rotation such that
δni = δθiEni where θi is the angle measured from the X
axis to the line defined by the ith cable as shown in Fig. 1.
Substituting these results into (13) offers the following

δf =−
4

∑
i=1

(kiδlini + tiδθiEni). (14)

Expressions are now required for δli and δθi in terms of δp
and δφ. Referring to Fig. 1, the kinematic constraint related
to the ith cable is written as

p+bi = ai− lini. (15)

Observing that δbi = δφEbi, the linearization of this expres-
sion leads to

δp+δφEbi =−δlini− liδθiEni. (16)

Multiplying both sides of this equation by nT
i leads to

δli =−nT
i (δp+δφEbi). (17)

Moreover, multiplying both sides of the same equation by
(Eni)

T yields

δθi =−
1
li
(nT

i ET
δp+nT

i biδφ). (18)

Substituting the results of (17) and (18) into (14) and simpli-
fying, an expression for δf in terms of a small displacement
of the EE is finally obtained as

δf =

[
4

∑
i=1

kininT
i

]
δp+

[
4

∑
i=1

kininT
i Ebi

]
δφ

+

[
4

∑
i=1

ti
li

EninT
i ET

]
δp+

[
4

∑
i=1

ti
li

EninT
i bi

]
δφ (19)

Meanwhile, the linearization of (6) results in

δM =−
4

∑
i=1

(δtibT
i ET ni + tiδbT

i ET ni + tibT
i ET

δni). (20)

Substituting previously stated expressions for δti, δbi and δni
as well as (17) and (18), the following result is obtained

δM =

[
4

∑
i=1

kibT
i ET ninT

i

]
δp+

[
4

∑
i=1

kibT
i ET ninT

i Ebi

]
δφ

+

[
4

∑
i=1

ti
li

bT
i ninT

i ET

]
δp+

[
4

∑
i=1

ti
li

bT
i ninT

i bi

]
δφ

+

[
4

∑
i=1

tibT
i ni

]
δφ (21)
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Finally, referring to (10), an expression for the mechanism’s
stiffness matrix is obtained as K = Kk +Kt where

Kk =
4

∑
i=1

ki

[
ninT

i ninT
i Ebi

bT
i ET ninT

i bT
i ET ninT

i Ebi

]
(22)

Kt =
4

∑
i=1

ti
li

[
EninT

i ET EninT
i bi

bT
i ninT

i ET bT
i ninT

i bi

]
+

4

∑
i=1

ti

[
02×2 02×1
01×2 bT

i ni

]
(23)

and where 0r×s is the r× s zero matrix. It is mentioned
that this result has been validated with stiffness matrices
computed using both the CCT [10] and the potential energy
formulations.

The contribution of the individual axial stiffness of the
mechanism’s cables to its overall stiffness is represented by
matrix KK . In fact, (22) can be shown to correspond to
Kk = JT KcJ where J = −WT is the mechanism’s Jacobian
matrix and Kc = diag([k1,k2, . . . ,km]) is a diagonal matrix
containing the cables’ axial stiffness coefficients. As long
as the individual cable stiffness coefficients are positive and
the mechanism is in its WCW, Kk is seen to be positive
definite. Meanwhile, matrix Kt corresponds to the portion
of the mechanism’s overall stiffness that is generated by its
prestress. It is seen to be linearly proportional to the cable
tensions and can be rewritten as Kt = Ktw +Kt0 where Ktw
is the portion of Kt due to tw while Kt0 depends on t0.
It is useful here to recall from section III that tw is the
vector of cable tensions required to equilibrate the wrench
applied to the EE while t0 is the vector of cable tensions
due to the mechanism’s prestress. Both Ktw and Kt0 can be
negative definite depending on the mechanism’s geometry
and configuration as well as the external wrench applied
to the EE. With this in mind, the PSWCW is defined as
the subset of the WCW where, in each configuration, the
mechanism’s stiffness matrix can be made positive definite
(and thus the mechanism stabilized) under any arbitrary (but
finite in magnitude) external load simply by increasing the
level of prestress (by increasing λ in (7)). Such configurations
were termed “stabilizable” in [6]. This condition can only
be satisfied if Kt0 is itself positive definite, i.e., the stiffness
must increase when the level of prestress is increased. Based
on the fact that one has complete control over the prestress
level, the overall stiffness matrix K can thus be made positive
definite regardless of the positive definiteness of Ktw by
ensuring that the prestress tension forces are high enough.

In this work, the PSWCW is approximated using an
approach equivalent to the one described in section III for
the WCW (i.e., by combining slices of constant orientation).
A configuration is deemed to be in the PSWCW if Kt0 ,
evaluated at the configuration, is positive definite. This is
determined by computing the eigenvalues of Kt0 and ver-
ifying that they are all strictly positive. While the specific
value of t0 that is used to compute Kt0 is not important,
it is important that t0 be in the nullspace of W. For this
reason, t0 = |z0| is used where |z0| is to be interpreted as z0
if z0 > 0 and −z0 otherwise (it is already known from the
WCW condition that z0 > 0 or z0 < 0).
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Fig. 2. Example of a planar parallel CDM with unstable configurations
within its WCW (prestrain of 2.5%).

V. RESULTS

Since Kk is positive definite, a planar parallel CDM
does not become unstable simply because Ktw and Kt0

may be negative definite. In fact, Kk very often dominates
numerically over Ktw and Kt0 such that it is worthwhile
to question whether K may ever become negative definite
under normal circumstances. This question is addressed by
way of an example of a mechanism, shown in Fig. 2 along
with a sketch of its WCW, that becomes unstable due to the
application of prestress in its cables. For the computation of
this result, the cable stiffness was set to ki = 1/l0i which,
looking at (12), leads one to observe that τi = εi where
εi = (li − l0i)/l0i is the strain in the ith cable. The cable
forces were due to prestress only (i.e., no external wrench
was applied) and the maximum tension was set to 0.025
which corresponds to a 2.5% strain. Under these conditions,
the mechanism becomes unstable in a triangular region at
the bottom of its WCW (despite the fact that Kk remains
positive definite).

Prior to presenting optimization results, it is also interest-
ing to look at an example of a mechanism where the differ-
ence between the WCW and the PSWCW is significant. One
such mechanism whose base and EE cable attachment points
are both positioned on the vertex of squares is represented in
Fig. 3. From the perspective of the WCW, this mechanism
is very attractive. However, only approximately 23% of the
WCW also belongs to the PSWCW. The results provided in
Figs. 2 and 3 make it clear that if the ability to increase the
stiffness of a planar parallel CDM by modifying the level of
prestress in order to avoid instabilities is deemed desirable,
then designing mechanisms with the PSWCW in mind is
necessary.

A genetic algorithm (GA) [11] was used to optimize the
planar parallel CDM’s geometry with the objective of having
a desired PSWCW for a fixed orientation φ = 0. A GA
is an intelligent random search algorithm that is based on
the principles of evolution and natural selection inspired by
Charles Darwin’s survival of the fittest theory. Compared
with gradient-based search algorithms, the GA does not
require the derivative of the function being optimized and it is
less susceptible to converge to local optima. Moreover, it has
been used successfully in the past to perform the optimization
of parallel CDMs [9, 12]. The desired workspace was chosen
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Fig. 3. Comparison of the WCW and PSWCW for a typical planar parallel
CDM with four cables.
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Desired workspace

a1 = [0, 0]T

a2 = [0.9963, 0]T

a3 = [0.9978, 0.9987]T

a4 = [0.0021, 0.9995]T

b′
1 = [0, 0]T

b′
2 = [0.0066, 0.0003]T

b′
3 = [0.0072, 0.0611]T

b′
4 = [0.0016, 0.0611]T

Fig. 4. General planar parallel CDM optimized with the GA for φ = 0.

as a square defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. In order
to minimize the dimension of the search space without
sacrificing the generality of mechanism’s geometry, node A1
was assumed to be coincident with the origin of the XY frame
while A2 was constrained to the X axis. Node B1 was also
assumed to be coincident with the origin of frame X ′Y ′. How-
ever, the position of point P used to compute the PSWCW
was chosen at the geometrical centre of the Bi nodes. A total
of 11 parameters were thus used to represent the system,
i.e., x = [a2x ,a3x ,a3y ,a4x ,a4y ,b2x ,b2y ,b3x ,b3y ,b4x ,b4y ]

T . The
bounded range for all Ai nodal coordinates was [0,1] while
that for the Bi nodes was [−0.5,0.5]. The fitness function
used was η =−N/Ng where Ng = 900 is the number of
points in the grid that was used to represent the desired
workspace and N is the number of points from that grid
which satisfy the PSWCW conditions. One can observe that
0≤ |η| ≤ 1 represents the fraction of the desired workspace
that belongs to the PSWCW. A representative result gener-
ated by the GA is shown in Fig. 4. In this case, the PSWCW
covers approximately 87% of the desired workspace and
it can be seen that the EE’s geometry is approaching that
of a line. In fact, this is not quite the optimal geometry.
Theoretically, the fraction of the PSWCW that covers the
desired workspace will go to 100% as the EE geometry
degenerates toward a point. The GA did not find this result
due to the dimension of the search space as well as the
numerical nature of the PSWCW computation.

Although optimal, the mechanism generated by the GA
shown in Fig. 4 is not practical for most applications due
to the geometry of its EE. Moreover, since the synthesis
is being performed with no particular application in mind,
symmetry is a desirable property which can be imposed. An

∆ = 1 ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5 ∆ = 6

∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10 ∆ = 11 ∆ = 12

Fig. 5. Possible cable connectivities.

analysis of the PSWCW was thus performed for symmetric
mechanism geometries where the EE is constrained to a
rectangular shape and the cable attachment points on the
base are positioned at coordinates (0,0), (1,0), (1,1) and
(0,1) (i.e., the corner’s of the desired workspace). The
mechanism’s geometry in this case is represented by the
width (w) and the height to width ratio (α) of its EE in
addition to an index ∆ used to represent the connectivity
of the cables to the EE. There are 24 ways by which the
four cables can be connected to the EE. Of these, only
12 are unique in terms of their PSWCW due to symmetry
considerations. These are illustrated in Fig. 5. In Fig. 6,
the fraction of the desired workspace that belongs to the
PSWCW is plotted for different cable connectivities with
α ∈ [0,1] and w = [0.1,0.4,0.7]. To maintain the clarity
of the plots, only the connectivities represented by ∆ = 1,
2, 3 and 12 are shown as they are the most promising.
The plots indicate that the size of the PSWCW is inversely
proportional to w, a result which is in concordance with the
geometry previously found by the GA in Fig. 4. Moreover,
it is observed that the connectivities that are most promising
with respect to the PSWCW are those represented by ∆ = 1,
2, 3 and 12. Of these, the case with no cables crossing
(∆ = 1) is consistently the one with the largest PSWCW.
However, when α = 1, the PSWCW of mechanisms with
∆ = 1 connectivity (as well as the WCW for that matter)
does not exist. Moreover, it is reiterated that these results
consider a constant orientation φ = 0 and that mechanisms
with no cables crossing (e.g. ∆= 1) tend to have very limited
reachable EE orientation ranges.

The GA was also used to investigate the optimal mecha-
nism geometry when the EE is to operate in a range of ori-
entations. For this purpose, the symmetry of the mechanism
was once again imposed with its geometry being represented
by w ∈ [0.1,0.5], α ∈ [0.25,1] and ∆ = 1,2, . . . ,12 where
the allowable parameter ranges or values are indicated. The
desired workspace was set to a parallelepiped defined by
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and −π/6 ≤ φ ≤ π/6. For a given
orientation φ j, a grid containing Ng = 2500 points is created
to span the area of the desired constant orientation workspace
in the XY plane. The number of points from the grid that
satisfy the PSWCW conditions, Nφ j , is then computed. Based
on this, the fitness function is set to η =−min(η j) with
η j = Nφ j/Ng and where orientations φ = −π/6, −π/12, 0,
π/12 and π/6 radians were considered. In other words, the
GA seeks to optimize the mechanism’s geometry such that
the fraction of the desired constant orientation workspace
belonging to the constant orientation PSWCW of the mech-
anism for the orientation having the poorest performance is
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Fig. 6. Plot of the fraction of the desired workspace contained in the
PSWCW as a function of α: a) w = 0.1, b) w = 0.4 and c) w = 0.7.
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Fig. 7. PSWCW of an optimized symmetric mechanism with w = 0.1011,
α = 0.3413 and ∆ = 12 a) φ = 0, b) φ = π/12 and c) φ = π/6 radians.

maximized. The optimized mechanism is shown along with
its constant orientation PSWCW for different orientations in
Fig. 7 (results for φ < 0 are qualitatively equivalent to those
for φ > 0 due to the mechanism’s symmetry). As expected,
the ∆ = 1 connectivity, although the best when φ = 0 is
considered, is not optimal when the mechanism is to operate
in a range of orientations.

VI. CONCLUSION

It is known that parallel CDMs may become unstable
in some configurations of their WCW due to the internal
forces in their cables that are generated by prestress or by
external loads applied to the EE. With this in mind, the
PSWCW is defined as the subset of the WCW for which
the mechanism stiffness may be increased by increasing the
level of prestress. The stability of the mechanism can be
guaranteed in such configurations regardless of the external
load by maintaining a sufficient prestress level. In this paper,
the synthesis of planar parallel CDMs with four cables is
performed using a GA with the objective of obtaining a
prescribed PSWCW. From the results that are obtained, a few
general guidelines can be extracted and used in a preliminary
design context. For instance, not unexpectedly, mechanisms
whose EE is small with respect to the polygon formed by
the attachment points of the cables to the base tend to have

a larger PSWCW. Meanwhile, mechanisms with no cables
crossing prove to be best when only a fixed orientation is
considered while mechanisms with double cable crossing
are better when mechanisms must operate in a range of
orientations (note that the latter result is contingent on the
size of the EE and may change if the latter is increased).
The generalization of the synthesis approach for cases where
m > 4 as well as the inclusion of other mechanism perfor-
mance criteria (e.g. stiffness) is left to future work.
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