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Abstract— We present a navigation system for autonomous
indoor flight of micro-scale Unmanned Aircraft Systems (UAS)
which is based on a method for accurate monocular vision
pose estimation. The method makes use of low cost artificial
landmarks placed in the environment and allows for fully
autonomous flight with all computation done on-board a UAS
on COTS hardware. We provide a detailed description of
all system components along with an accuracy evaluation
and a time profiling result for the pose estimation method.
Additionally, we show how the system is integrated with an
existing micro-scale UAS and provide results of experimental
autonomous flight tests. To our knowledge, this system is one
of the first to allow for complete closed-loop control and goal-
driven navigation of a micro-scale UAS in an indoor setting
without requiring connection to any external entities.

I. INTRODUCTION

Micro-scale Unmanned Aircraft Systems operating in-
doors have many interesting applications both in military and
civilian domains. For example, they can be used to perform
surveillance missions or to provide emergency responders
with an initial overview in catastrophe situations. To facilitate
such tasks the ability to operate such systems autonomously
is highly desired. Unfortunately, limited payload capabilities
of smaller airframes demand miniaturization of sensors and
computer systems. This results in degradation of sensor
accuracy and restricts computational power. In addition to
this, the lack of reliable positioning techniques (e.g. GPS) is
a fundamental hinder towards accurate autonomous indoor
flight.

Several solutions which enable autonomous indoor navi-
gation have been suggested. However, most of them delegate
computationally heavy tasks to external processors or employ
off-board system components to implement certain functions
(e.g. positioning). Such delegation relies on wireless com-
munication links which have several disadvantages. First
of all, a connection can be interfered with which would
render a system inoperable thus leading to a crash. Secondly,
wireless communication links add nondeterministic delays
which make sensor fusion and closed-loop control more
challenging problems.

The system proposed is capable of autonomous indoor
navigation and is self-contained when it comes to compu-
tation and sensing. No communication with external entities
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Fig. 1. The Hummingbird UAS platform with the LinkBoard flight control
system used for experimental validation of the presented system.

is required. The system uses easily reproducible and low cost
rectangular markers to obtain position and heading informa-
tion. The placement of markers is to a large extent arbitrary
(i.e. on floors, walls, furniture etc.). For certain relative poses
of a camera and a marker, accuracy can be lower and this
is analyzed in Section IV. The pose information delivered
by the vision system is fused with inertial measurements
by means of an Extended Kalman Filter (EKF) in a timely
and accurate manner on-board the UAS. The ability of our
system to map the environment and localize the UAS allows
for performing goal-directed flight.

The contributions of this research include a description
of a complete and integrated system which allows for au-
tonomous indoor flight. Analyses of the accuracy, robustness
and timing requirements of marker detection, vision-based
pose estimation and sensor fusion techniques are also pro-
vided. Additionally, the results of closed-loop control exper-
iments performed with a quadrotor UAS are also presented.

Our solution provides indoor localization functionality and
can jump-start many new research directions with UAS’s in
indoor settings. The system described can be considered as
a testbed for development and experimentation with indoor
flight control modes, path and motion planning algorithms,
cooperative UAS operation in addition to many other appli-
cations.

The remainder of the paper is structured as follows. We
begin with a description of related work in Section II and
continue with an overview of the proposed system in Sec-
tion III. Details of the vision-based pose estimation technique
are presented in Section IV and followed by a description
of the proposed sensor fusion method in Section V. Results
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of experimental flight tests are presented in Section VII. The
paper concludes with final remarks and a discussion of future
work in Section VIII.

II. RELATED WORK

In recent years, autonomous indoor flight capabilities
have been receiving increasing research interest. Solutions
taking advantage of different sensor modalities in various
configurations have been proposed.

A system based on the use of commercial motion capturing
hardware by delivering position and attitude information to
a UAS has been used to enable indoor navigation [1]. The
main shortcomings of such a solution are the requirement
for expensive infrastructure, off-board computation, and the
need for constant communication with a Micro Air Vehicle
(MAV) during flight.

A number of solutions take advantage of different types of
artificial features to enable pose estimation for MAVs. One
of them employs two cameras, one mounted on a pan-tilt
unit on the ground and one on-board a quadrotor MAV [2].
The two cameras track colored blobs attached both to the
UAS and to the ground camera. Besides the need for off-
board processing, the disadvantage of this solution is a rather
limited flight envelope accessible to a MAV. This method
allows for indoor flight, but preferably above the ground
camera. This considerably limits the operational range of
the MAV. A different method makes use of information
obtained from a target which takes advantage of a moiré
pattern [3]. The pose of a camera is calculated relative to
a novel pattern which requires backlighting. The flight test
results presented show the applicability of the method for
controlling a quadrotor platform by calculating the position
and the yaw angle of the UAS. The disadvantage of this
system is a limited operational range because it is not easy
to obtain multiple unique instances for this kind of marker.

A system based on intuitions similar to those described
in this paper has been presented in [4]. With the exception
of describing the components of the system, this work does
not provide any accuracy evaluation of the complete method
nor does it describe the results of using such an estimate for
complete closed-loop control of a MAV.

Several attempts have been made to solve the indoor
navigation problem by means of SLAM. For example, a
monocular vision SLAM technique for UAS’s has been
proposed in [5]. It exploits the architectural features of
manmade indoor environments, namely corners detectable in
corridors. The contribution of this work is ”a new absolute
range and bearing measurement algorithm using monocular
camera”. Unfortunately the authors do not provide enough
detail to judge the applicability of the method for on-board
execution nor any results that use the technique in closed-
loop experiments.

A single camera solution is a basis for a navigation system
in [6]. The system is capable of 3D localization but it requires
an a priori map of the environment. The proposed algorithm
is computationally intensive and is executed off-board on a
wirelessly transmitted video stream.

A number of solutions suggest incorporating biologically
inspired methods in order to deal with limited computational
capabilities of micro-scale UAS’s. Utilization of optic flow
techniques has received the widest attention. It can be shown
that optic flow can constrain the error in velocity and
attitude [7]. Unfortunately, the technique does not completely
eliminate the positional drift and additional information (such
as geo-referenced images) is required for an accurate position
estimation as described in [8].

Recently, systems based on laser range finders have gained
a considerable amount of attention. One such system uses a
particle filter to globally localize a quadrotor platform in a
pre-computed map [9]. Unfortunately, the need for off-board
computation makes the system vulnerable to communication
interruptions. Additionally, commercially available small-
scale laser range finders are much heavier than miniature
video cameras. From the platform endurance perspective
imaging sensors are much more attractive for UAS naviga-
tion.

III. SYSTEM OVERVIEW

The main functional components of our system are shown
in Figure 2. The vision-based pose estimation module makes
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Fig. 2. Main functional components of the system.

use of a set of arbitrarily placed artificial markers which form
a map of the operational environment. This module delivers a
6 degrees of freedom (6-DOF) pose of a UAS i.e. 3D position
and 3 attitude angles. The pose information (excluding roll
and pitch angles) is fused using a Kalman filter with the
inertial data (i.e. three accelerations and three angular rates)
to produce the full state of the system. It consists of the pose
and 3 velocities (north, east, and up). It is used as input to the
control module which implements the flight control modes
(e.g. hovering, navigation to a given point). The details of
the system components are presented in the remainder of the
paper.

A. Experimental UAS platform
The experimental system hardware components and their

interconnections are schematically presented in Figure 3. The
Hummingbird quadrotor UAS from Ascending Technologies
GmbH has been used as the test platform [10]. It can carry
up to 200 grams of payload and has 20 minutes of endurance.
Its diameter is approximately 50 cm and the total weight is
around 500 grams. The platform’s own electronics (X-Base
and ResearchPilot boards) implements the inner control loop
(attitude stabilization) running at 1 kHz. The UAS can be
flown by a human pilot via an RC transmitter but it also
accepts control signals (i.e. roll, pitch, and yaw angles and
thrust commands) via an RS232 connection.
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B. Flight control hardware

The LinkBoard (revision I) flight control board from UAS
Technologies Sweden AB1 has been used as the host for
the state estimation algorithm and control. Thanks to the
board’s modular design it is capable of performing a wide
range of tasks. In this application, the 520 MHz XScale
processor, running a Windows CE 6.0 operating system,
hosts the vision-based pose estimation algorithm. A Logitech
QuickCam Pro 5000 provides the video stream via a USB
connection. The result of the pose estimation is delivered
via RS232 link to a second processor (60 MHz ARM7)
which implements the sensor fusion algorithm. A second
processor of the same type implements four proportional-
integral-derivative (PID) loops commanding all the control
channels of the UAS.

The flight control board interfaces with the ground con-
trol station software using a 2.4GHz wireless modem from
Aerocomm2. The ground station software is used to monitor
the on-board software execution by displaying the telemetry
data. The modem can also be used to send commands up
to the UAS. For example, the hovering position, altitude, or
heading can be changed during an autonomous flight.

All the additional components, i.e. the LinkBoard flight
control board, the camera, the modem, and a 330mAh
battery, have a total weight of approximately 50 grams.

C. Software

The vision-based pose estimation algorithm is imple-
mented using the ARToolkitPlus open source library [11].
It is a popular solution used in many augmented reality
applications. The applicability of the ARToolkitPlus library
for UAS navigation is evaluated in the following subsections.
This includes an analysis of the usable range i.e. the attitudes
and distances for which the accuracy of the pose estimation
is sufficient for a controlled flight. It is important to note that

1Homepage: www.uastech.com
2Homepage: www.aerocomm.com

the system architecture is generic in nature and allows for
the use of other pose estimation algorithms.

IV. VISION-BASED POSE ESTIMATION

The process of calculating a pose is divided into two
major steps, marker detection and pose estimation. Marker
detection is accomplished in the following manner. First,
rectangular regions in a binarized image are found as hy-
potheses of legitimate markers (see Marker boundary in
Figure 4B). Second, the interior of each hypothesis is
analyzed in order to decode the identifying number (see
Figure 4B ID boundary). The goal of the marker detection
phase is to generate the ID and a sequence of the marker
corners’ coordinates measured in pixels. The pose estimation
algorithm calculates the relation (rotational and translational)
between the camera and the marker coordinate systems. The
calculation is based on the coordinates of detected marker
corners (i.e. projection of the marker model on the image
plane, cf. Figure 4A).

Both steps of the vision-based pose estimation process
perform differently depending on the relation of the marker
and the camera in terms of translations and rotations. For
example, for certain distances and camera attitudes the
estimation of the pose is not possible at all or the result
has a considerable error. The following subsections describe
the process and results of evaluating the algorithm from the
perspective of UAS navigation.

A. Marker detection

A marker ID can be coded in three different ways in the
ARToolkitPlus library. The first one uses a template matching
technique. This type is most computationally and memory
expensive since the interior of a detected rectangle is com-
pared with an image loaded at startup. For multiple markers
all images have to be stored in memory for comparison.
The second type called Simple ID supports 512 predefined
markers and relies on decoding the ID from an array of
bits (e.g. 6×6) located inside a rectangle boundary of a
marker. The third type called BCH ID (depicted in Figure 4B)
encodes marker IDs using a forward correcting code and
supports up to 4096 combinations.

Both Simple- and BCH ID coding methods were evaluated
to assess the optimal camera placement relative to a marker
which assures reliable detection. A set of images was pro-
duced by projecting a marker (with linear interpolation) of
100×100 mm size onto the image plane of a camera with
image size of 320×240 pixels, focal lengths fx = fy = 386
and the principal cx = cy = (160, 120).

The camera was placed as schematically depicted by black
dots in Figure 4C i.e. in 50 mm increments in XM and ZM
directions up to 2 m. Three representative rotations around
the ZM axis were used: 0, 22.5, and 45 degrees (respectively,
red, green, and blue marked regions). The rotation around
the XCAM axis was chosen so that the camera was always
pointing to the center of the marker which was located at
the origin of the coordinate system. Marker detection was
performed on the set of generated images.
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Fig. 4. A. Vision-based pose estimation coordinate systems B. Example marker C. Camera positions (black dots) for accuracy estimation.
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Fig. 5. BCH Marker detection confidence larger than 0.5 for three rotations around the ZM axis.

The confidence of detecting a marker for three rotations
around the ZM axis is shown in Figure 5. The confidence
for detecting BCH IDs is decreased from 1 by 0.25 for every
detected and corrected error bit. Results with a confidence
factor lower than 0.5 are not included in the plot. The result
of detecting Simple IDs was on average 13 percent worse
i.e. detection was successful for fewer camera poses. The
use of BCH markers adds almost no computational penalty
and is preferred for UAS navigation because it allows for the
coverage of large operational environments due to a larger
number of available IDs.

In order to maximize the marker detection rate, the dis-
tance of the camera to a marker should not be larger than 75
cm for the given marker size and camera. Additionally, the
image plane should not be tilted more than approximately 60
degrees from the marker. The area with high detection rate
is depicted by the dashed line in Figure 5.

The evaluation did not include the effects of lens dis-
tortion. However, with accurate camera calibration this is
a minimal error contributor. Additionally, the experimental
setup did not include effects of blurring when the camera
moves relative to a marker. Depending on the imaging sensor
used the effect of blooming or streaking can also influence
the detection performance. However, both effects can be
minimized by appropriately adjusting the camera parameters
as described in Section VII.

B. Pose Estimation

After detecting a marker and extracting its four corners
pi=1...4 =

[
pix , piy

]T
and given four coplanar model points

Pi=1...4 =
[
Pix , Piy , 0

]T
a pose estimation algorithm calcu-

lates the rotation expressed in Euler angles R = f (α, β, γ)
and translation t = [tx, ty, tz]

T of a camera such that:

pi ∝ RPi + t (1)

Since pi is expressed in camera coordinates, it is in practice
perturbed by noise and measured in an image as p̂i.

In general, calculating a pose i.e. finding R and t can
be achieved by minimizing one of the commonly used error
functions. For example, an image space error function in
case of bundle-adjustment algorithms or an object space
error function (Eos) used in the Robust Pose Estimation
Algorithm for Planar Targets (RPP) [12] can be used. In
the latter case, a special parameterization allows one to
deal with pose ambiguities with up to a 50 percent better
success rate over a standard definition. The algorithm uses
an initial pose estimate and finds a second minimum of the
Eos error function. If it exists, the correct pose should yield
the lower value of the error function. Due to this property,
the algorithm exhibits a considerably lower ”jerkiness” in the
calculated pose. While in augmented reality applications this
property gives a better visual result, for UAS navigation it
gives more stability and robustness.
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of 2 pixels.

The accuracy and the noise of the RPP were assessed in
a series of Monte Carlo simulations. Poses of the camera
were the same as for marker detection experiments and are
shown in Figure 4C. The model points Pi were projected
onto the image plane for the given R and t and the camera
model described earlier. The values of p̂i were calculated by
perturbing pi with a uniform noise of 2 pixels in 750 iter-
ations. The error in attitude angle estimation was measured
as a difference between the nominal values of (α, β, γ) and
the average results of the algorithm in the presence of noise.
Similarly, the error of position and altitude was measured
as the difference between the nominal value of t and the
average result in the presence of noise. Figure 6 shows the
standard deviation of the error in three axes (columns tx, ty ,
and tz) of the camera translation in the marker coordinate
system with 2 pixel noise. The three rows correspond to the
three rotations around the ZM axis as described earlier. The
range of altitude and distance to a marker were chosen to
emphasize the range of marker detection described in the
previous subsection.

The RPP algorithm exhibits mean position error and the
error of standard deviation in a range of several centimeters
for distances up to 50 cm for the given set of parameters (i.e.
10 x 10 cm pattern size, 320 x 240 pixels image size). The
attitude angles are estimated with an average error below 3

degrees with a standard deviation below 6 degrees. In order
to assess a usable range of the algorithm, the results can be
scaled. For example, doubling the size of the pattern cuts
the error in half or doubles the range. The same applies to
doubling the resolution of the camera. For an image of size
640 x 480 pixels and a pattern of size 50 x 50 cm, the error
measured in centimeters can be reached for up to 5 meters.

The usable range can additionally be extended by fusing
the vision result with inertial data. In such cases, increased
noise from the vision result can be handled by, for example,
a Kalman filter.

The minimum distance to a marker depends on the field
of view of the camera at hand. Without loss of generality, for
a given field of view of α degrees and a rectangular marker
width of w mm the minimum distance can be calculated as:

dmin =
w

2 · tan(α2 )
(2)

In practice the distance should be larger to avoid cases when
a marker occupies the full frame.

C. Mapping

Navigation relative to one marker allows only for hovering
above it. In order to enlarge the operational range a set of
markers is necessary. Thanks to a large number of available
IDs (each identified by a BCH code) it is possible to build
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a map and effectively enlarge the area of navigation. Such a
map is a set of marker poses relative to one marker chosen
as the origin of the coordinate system. During navigation,
when a marker is detected and the relative camera pose is
obtained it can be recalculated into the absolute pose in the
environment. A map can be built online during environment
exploration. A straightforward way to build a map is to
iteratively calculate relative poses of newly detected markers
in relation to the one chosen as the origin. This requires two
markers to be visible in the camera frame at once.

The result of the pose estimation of two markers is given
by rotation matrices c

mRi and translations c
mti, i = 0, 1.

The results capture marker pose relative to the camera
coordinate system. The camera pose relative to a marker can
be calculated as m

c R = c
mR

T and m
c t = m

c R c
mt. The relative

pose can be calculated as follows:

RR = m
c R0

c
mR1 (3)

tR = m
c R0 (mc t1 −mc t0) (4)

These two values are saved. During navigation, when the i-th
marker is observed the absolute pose (relative to the marker
designated as the origin M ) can be calculated as follows:

c
MR = RR

c
mRi (5)

c
M t = RR m

c ti + tR (6)

This method has a very small computational footprint but has
a drawback. The error of the pose estimation accumulates
in relative poses and grows with distance from the marker
chosen as the origin. In other words, the farther away from
the origin, the larger the error of the absolute pose. The error
can be minimized by measuring the relative displacement of
two markers several times and using an average. This will
make the error smaller but will not eliminate it.

One solution to this problem could be to employ a method
for explicit loop closure which in this case would be a
relatively easy task due to the fact that loop detection is
solved thanks to using unique IDs.

Another way to solve the problem could be to calculate a
globally consistent map given all measurements as in [13].
This algorithm operates on a graph where markers are
represented as vertices and relative poses of two markers as
edges. It is more computationally expensive than the simple
solution and is more suitable for offline calculation.

D. Timing Analysis

In order to assess the feasibility of using the proposed
vision-based pose estimation on-board a micro-scale UAS, a
timing analysis of the algorithm was performed. It was made
by measuring execution times of marker detection and pose
calculation implemented in the ARToolkitPlus library on the
LinkBoard flight control board. The marker detection phase
of the vision-based pose estimation takes approximately 10
percent of the total time of processing of a single frame.
Large numbers of markers visible at once in a frame do
not add much computational time. Additionally, the detection
time is independent of the camera pose.
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Fig. 7. Normalized average number of iterations for vision-based pose
estimation algorithm depending on the relative camera and marker pose.

The pose calculation phase takes the majority of a frame
processing time. The amount of time depends on the pose
of the camera relative to the marker. Figure 7 presents nor-
malized average number of iterations performed by the RPP
algorithm. It is approximately the same for all experiments
described in Section IV-A. The number of iterations grows
when the image plane and the marker plane become parallel.
From a computational efficiency perspective, and to achieve
the highest frame processing rate, such a relation between the
camera and the marker should be avoided during navigation.
When the angle between the marker and the image plane
is more than approximately 30 degrees the pose calculation
takes between 100-200 ms for a single marker (note that the
PXA270 microprocessor does not have a floating-point unit).
Calculating poses of multiple markers in one frame should
be avoided in order to maintain a high processing rate. In
fact, it is only required during mapping of the environment.
If a map is available and several markers are detected only
one of them can be selected to calculate the absolute pose.
Selecting the largest (measured in pixels) detected marker is
a very good strategy. This allows for calculating the pose
only for this marker, maintaining a high processing rate.

V. SENSOR FUSION

In order to provide a robust navigation solution, the
position and heading information delivered by the vision-
based pose estimation is fused with the inertial data (from
3-axis accelerometers and 3 rate gyroscopes) by means of a
9 state Extended Kalman Filter (EKF). The use of pitch and
roll angles from vision could improve the accuracy of the
state estimation but would increase the computational load
and was empirically proved not to be necessary to achieve
good performance. The state of the system is represented
by position, horizontal and vertical velocities, and attitude
angles. The schematics of the sensor fusion technique is
presented in Figure 8. The EKF uses a linear model for
the measurement and process equations. The filter is im-
plemented in the error dynamics formulation and the state
represents the errors of the inertial navigation system (INS).
The INS mechanization process is responsible for the time
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integration of the inertial sensor data (i.e. dead reckoning).
It provides the full navigation solution but it suffers from
a position drift which grows in time. In order to bound
this error the output of the EKF (i.e. errors of the position,
velocities, and attitude) which is aided by the position update
is fed to the INS mechanization process. Details of such
a formulation of the sensor fusion technique can be found
in [14].

It is important to note that the position update bounds the
drift of the INS ”locally” . The global position can suffer
from an error which in turn can be bounded depending on
the method used to create a map as described in Section IV-
C.

Due to the sensor fusion technique, the UAS is able to
navigate for a limited amount of time even without the
position information delivered by the vision system. The
inertial sensors provide the complete state estimate with a
drift, which is corrected as soon as a vision-based position
update is available. Experimental results of the presented
sensor fusion technique are presented in Section VII-B.

VI. CONTROL

All computations in the system are executed on-board the
UAS. The inner control loop (i.e. attitude stabilization) is per-
formed by the Hummingbird quadrotor platform electronics.
It accepts input through a serial connection in the form of
angles in case of roll and pitch, angular velocity in case of
yaw, and the thrust value of the altitude channel.

These signals are produced by the outer control loop (i.e.
position stabilization) computed on the LinkBoard autopilot.
Four PID control loops are responsible for calculating the
control signals. During initialization of the outer loop four
initial control values are taken from the UAS avionics. They
correspond to the values of the sticks of the RC transmitter
when the UAS is operated manually. The initialization step
is performed when the autonomous flight is engaged and
results in a smooth transition from the manual flight.

VII. EXPERIMENTAL EVALUATION

The system has been evaluated in real flight tests with all
the described components operational. No tethers or other
aids were used to validate the performance of the system in
fully autonomous flight.

A. Experimental Setup

The flights were performed in an office environment. A set
of 10 randomly placed artificial markers of size 17×17 cm
printed on white paper (see Figure 10) were used to compute
a map of the environment. The map was constructed on-line
during an exploration flight using the procedure described in
Section IV-C and then saved for successive flights.

In order to minimize the influence of the ”rolling shutter”
of the CMOS sensor the camera parameters were adjusted to
use the shortest possible exposure time. To compensate for
darker image the contrast and brightness parameters were
appropriately adjusted. Due to this, the typical skew and
wobble effects were to a large extent removed from the
images.

The camera was pointed 45 degrees down to achieve
minimal pose estimation error and a high processing rate (cf.
Section IV). The relation between the camera and the UAS
coordinate systems was measured with centimeter accuracy.
This proved to be sufficient but for the best precision the
relation could be fully calibrated using, for example, the
method described in [15].

The camera was calibrated to find intrinsic and lens
distortion parameters using the Camera Calibration Toolbox
for Matlab [16].

B. Experimental results

Several hours of autonomous flights were performed dur-
ing development and evaluation of the system. The marker
size used allowed for stable hovering up to approximately
1.5 m altitude at different positions and headings in a 4×4
meters region. The results achieved confirm the simulation
results presented in Section IV. Since only 10 out of 4096
markers were used, the operational range can be substantially
extended in the future. The vision-based pose estimation
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Fig. 9. Pose estimation results. Kalman filter output compared to raw
vision data.

algorithm achieves a rate of 5-10 Hz. The Kalman filter based
state estimation delivers results at a rate of 50 Hz. Figure 9
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shows example Kalman filter estimated position and altitude
plots in comparison with raw vision results. The system is
capable of maintaining stable flight without position update
for up to approximately 5 seconds. This time can be extended
by additionally estimating biases of the inertial sensors. This
will decrease the drift rate of the INS mechanization process.

In order to achieve stable hovering, it was necessary to
include the estimated velocities especially for the horizontal
control and to a lesser degree for altitude. The yaw channel
did not require velocity in the outer control loop to achieve
good performance. Due to battery power depletion over time,
it was necessary to include the integral term of the PID
controller, especially for the altitude channel. Autonomous
flights within the 20 minutes of the platform’s endurance
were repeatedly achieved.

Fig. 10. Autonomous hovering of the presented system.

VIII. CONCLUSION AND FUTURE WORK

An implemented and empirically validated system for au-
tonomous indoor navigation has been presented. The system
employs a monocular vision-based pose estimation which
uses uniquely coded low-cost rectangular markers. The use
of multiple markers allows for mapping large areas where
a UAS can operate. The range and accuracy of the pose
estimation algorithm has been evaluated and a sensor fusion
technique based on a Kalman filter has been presented. Com-
pared to other solutions the system is computationally self
contained. No data nor video transmission to other entities
is required to achieve autonomous flight. All computations
are performed on-board the UAS. This removes the need
for continuous wireless communication and increases the
robustness of the system.

The system has been tested during several hours of flight
integrated with a commercially available quadrotor UAS plat-
form. The successful experiments with the existing system
show that it is a very promising step towards true autonomous
indoor navigation. In fact, further development of the system
will focus on moving away from the use of artificial land-
marks. One possible approach could take advantage of the
results presented in [17] and making appropriate adjustments
for applicability of that work to indoor environments.

Additionally, future work will include an evaluation of
the absolute accuracy of the solution presented, using a
high accuracy reference system as well as integrating path
planning and execution techniques and additional control
modes.
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for rough terrain. In Proc. of the International Symposium on Research
in Robotics (ISRR), November 2007.

1920


