

Abstract—A method for computing the distance between two
mobile objects following linear or arc-like motions with cons-
tant accelerations is introduced in this paper. This distance is
obtained without stepping or discretizing any object’s motion.
Objects are modeled by bi-dimensional convex hulls. The dist-
ance-computation algorithm obtains the instant in time when
two mobile objects are at their minimum translational distance
of separation or penetration. The distance and the instant in
time are parallely computed. This method is so fast that can be
run as frequent as new information from the world is received.

I. INTRODUCTION
ETECTING a collision in motion planning is still an
open research line in Robotics. Nowadays, powerful

motion planners are developed, where collision tests are an
unavoidable step and represent, in general, a decisive time-
consuming part in the planning algorithms.

A recent example and with important social impact is
shown by [1], [2]. An estimated motion for an obstacle and a
desired one for the robotized car Boss are stepped at a
determined time instants. Then, collision tests between the
positions of both objects at each considered time instant are
run. Objects are modeled by boxes or circles. This collision-
detection technique has several limitations as shown by [3].
Nevertheless, this approach is frequent in the literature in
order to detect collisions between mobile objects [4].

Other group of collision-detection methods is called Cont-
inuous Collision Detection (CCD). In general, these meth-
ods also provide, if objects collide, the instant in time of the
first contact. Some representative examples are [3], [5−7].

In any case, with all these types of methodologies is really
a hard problem to find the exact instant in time when two
mobile objects are at their minimum distance.

This paper introduces a technique for obtaining the instant
in time when two objects are at their minimum translational
distance. If objects do not collide, then the Euclidean
distance is computed, otherwise, their minimum translation
distance of penetration, defined as [8], is returned.

Objects are modeled by convex hull geometries and
follow planar non-holonomic motions with constant accele-
rations. Specifically, only linear and arc-like motions are
considered in this paper.

Considering the previous author’s work in [9] as a colli-
sion detector, the main contributions of this paper are

Manuscript received September 15, 2009.
Enrique J. Bernabeu is with Instituto Universitario de Automática e

Informática Industrial, Universidad Politécnica de Valencia, Camino de
Vera s/n, Valencia, E-46022, Spain (e-mail: ebernabe@isa.upv.es).

twofold: arc-like motions are also considered, and obstacles
follow motions with non-null acceleration.

The method in this paper is fast enough to be run as fre-
quent as new information from the world is received. And, it
is intended to be used as a collision-detection module in
sampling-based algorithms for vehicle-like robots.

II. MINKOWSKI DIFFERENCE OF TWO MOTIONS
In this Section, two mobile objects with null accelerations

and linear motions are being considered. Objects are
modeled by either a polytope [10] or a spherical-extended
polytope (s-tope) [11]. Motions and objects are constrained
to be bi-dimensional.

Formally, an s-tope is the convex hull of a finite set of
spheres, circles if bi-dimensional, S={s0,s1,…,sn−1} with
si=(ci,ri), where ci is the center and ri is the radius. S-tope SS
contains an infinite set of swept spheres/circles expressed by

{
}∑

∑∑
−

=

−

=

−

=

≤∈∈=

−+=−+===
1

1i iiiii

1

1i 0ii0
1

1i 0ii0

1λ [0,1],λ ,),(
,)(λ ,)(λ:),(

n

nn
S

Srcs
rrrrccccrcsS

(1)

Note that, if all radii ri are zero, then (1) is the polytope

definition [10]. Consequently, a polytope is a particular case
of an s-tope. For this reason, from now, all the objects in this
paper are generally modeled by s-topes. The order of the s-
tope SS is the number of spheres/circles in S.

Let SA(ts) be the A‘s position at the instant in time ts. A is
modeled by an n-order s-tope with SA(ts)={s0

A(ts),s1
A(ts),…,

sn−1
A(ts)}, where ci

A(ts)∈ℜ2 are the centers and ri
A∈ℜ are the

radii of circles si
A(ts)=(ci

A(ts),ri
A), i=0,1,…,n−1. As A’s size

does not change, then radii ri
A do not depend on time. A’s

speed at ts is stated by the vector vA(ts)∈ℜ2. ||vA(ts)|| indicates
the magnitude and vA(ts) the direction.

Let SB(ts) be the position of a mobile object B at ts. B is
modeled by an m-order s-tope, with SB(ts)={s0

B(ts),s1
B(ts),…,

sm−1
B(ts)}. cj

B(ts)∈ℜ2 and rj
B∈ℜ are the centers and radii of

circles sj
B(ts), with j=0,1,…,m−1. B’s speed at ts is vB(ts)∈ℜ2.

||vB(ts)|| indicates the magnitude and vB(ts) the direction.
Each of the infinite intermediate positions of mobile

objects A and B from ts to a given time horizon Δt, i.e. SA(t)
and SB(t) for all t∈[ts,ts+Δt], are parameterized by λ∈[0,1] as

(2) [0,1]λ and],[;λ:

}10,..,j;)(λ)()(:)),(()({)(

}10,..,i;)(λ)()(:)),(()({)(

jjjjj

iiiii

∈Δ+∈Δ⋅+=∀

−=⋅Δ⋅+===

−=⋅Δ⋅+===

tttttttt

mtvttctcrtctstS

ntvttctcrtctstS

sss

sBs
BBBBBB

sAs
AAAAAA

Continuous Distance Computation for Planar Non-holonomic
Motions with Constant Accelerations

Enrique J. Bernabeu

D

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4028

Fig. 1. Two stepped motions. SA(ts)={s0

A(ts),s1
A(ts),s2

A(ts),s3
A(ts)} with ri

A=0,
∀i, and SB(ts)={s0

B(ts),s1
B(ts)} represent A and B positions at ts. Dashed lines

show the distance between A and B at the instants in time ts,t1,t2,t3,ts+Δt.

An example for two objects following a linear motion

with constant speed is shown in fig. 1. Distances at each
different instant in time are also shown. These distances
have been obtained by applying the algorithm in [12], which
is an update from the GJK one in [10]. Then, they have been
obtained by computing the separation from the origin point
O to the Minkowski difference between s-topes A and B at
each considered instant in time. Formally, the Minkowski
difference between A and B at a given t, is an s-tope SA−B(t),
defined by the set of n×m circles {sij

A−B(t)}

}ji, ;

;)()()(:)),({(})({

iiij

jiijijijij

∀+=

−==
−

−−−−

BABA

BABABABABA

rrr

tctctcrtcts
 (3)

Fig. 2 shows all the Minkowski difference s-topes betw-

een A and B positions at all the time instants from fig. 1.
The Minkowski difference between A and B positions for

all t∈[ts,ts+Δt] is called SM(t) and is defined by the set of
n×m circles {sij

M(t)}. sij
M(t) are parameterized by λ∈[0,1] as

{

[] [] }
[0,1]λ and],[; λ:

ji, ;)(λ)()(λ)()(

 ; :)),(()}({

jiij

iiijijijij

∈Δ+∈Δ+=∀

∀⋅Δ⋅+−⋅Δ⋅+=

+==

tttttttt

tvttctvttctc

rrrrtcts

sss

sBs
B

sAs
AM

BAMMMM

 (4)

Note that, for instance, if λ=0, then SM(t) represents the

Minkowski difference between A and B at ts, i.e., SA−B(ts).
And if λ=1, then SM(t) states the Minkowski difference of A
and B at ts+Δt, i.e, SA−B(ts+Δt).

Each sij
M(t) for all t∈[ts,ts+Δt] sweeps an area consisting

of a rectangle whose ends are capped off with circles. This
geometrical figure is referred to as stadium by [13]. Then,
SM(t) is formed by n×m stadiums, and each one is defined by
three parameters: a start point cij

M(ts)=ci
A(ts)−cj

B(ts), a radius
rij

M=ri
A+rj

B and a linear axis pM(λ)∈ℜ2. pM(λ) is parametri-
cally defined by λ∈[0,1] as

())()(λ)λ(sBsA

M tvtvtp −⋅Δ⋅= (5)

The stadium’s axis is the locus swept by cij

M(t) from ts to
ts+Δt. All the axes of the stadiums are equal and their length
is ||pM(1)||. Fig. 3 shows SM(t) with its n×m stadiums. Note
that SM(t) contains all the Minkowski differences in fig. 2.
Proposition 1: The distance from O to SM(t), dO

M, is the

distance at the instant in time when A and B are at their min-
imum translational distance (MTD) of separation or pene-
tration. Fig. 3 also shows dO

M computation. Formally, dO
M is

{ }{ }0))(,)((||:||infmin

2],[
=+=

ℜ∈Δ+∈
tSτtSdistτd BA

tttt

M
O

ss τ
 (6)

If A and B do not collide during their respective motions,
then dO

M is the Euclidean distance. Nevertheless, if they
collide, then the sign of dO

M is negative and dO
M acquires the

meaning of the MTD of penetration given by [8].
Proof: It is trivial and is a direct consequence of the SM(t)
definition given by (4) and from conclusions by [10]

Let cab
M(ts)=ca

A(ts)−cb
B(ts), rab

M with axis pM(λ) be the
stadium in SM(t) that is the closest to O, then the distance
between O and SM(t) is from (4)

[] [] M
sBs

B
sAs

AM
O rtvttctvttcd abba)(λ)()(λ)(−⋅Δ⋅+−⋅Δ⋅+= (7)

dO

M is obtained by finding λm, with λm∈[0,1] that minimizes
(7). Given that the axes of the stadiums in SM(t) are linear,
λm is obtained by computing Oc, with Oc=cij

M(ts)+pM(λm), i.e.
by projecting O onto such an axis. Therefore,

() 2
ba ||)1(||)1())()((λ MM

s
A

s
A

m pptctc ⋅−−=

 (8)

Then dO

M=||Oc||−rab
M. As parameter λ is related with time,

the time instant tO
M, when MTD between A and B is dO

M, is

]1,0[λ and],[where; λ ∈Δ+∈Δ⋅+= mss
M
Oms

M
O ttttttt (9)

Substituting λm in (2), SA(tO

M) and SB(tO
M) are obtained.

They respectively represent the positions of mobile objects
A and B at time tO

M, i.e., when their MTD is dO
M.

Nevertheless, distance computation in (7) fails when O is
inside the area delimited by the axes of the stadiums. As
SM(t) is a Minkowski difference, then A and B will collide
during their motions. When this situation is presented, dO

M
has to be reformulated as finding λm∈[0,1] that maximizes

[] []()M
sBs

B
sAs

AM
O rtvttctvttcd abba)(λ)()(λ)(+⋅Δ⋅+−⋅Δ⋅+−= (10)

where ca
A(ts)−cb

B(ts), rab
M states the axis of the external

stadium in SM(t) that is the closest to O. In this situation,
note that radius rab

M is added. Sign of dO
M is negative, beca-

use it holds a translational distance of penetration. λm and
tO

M are respectively computed as indicated by (8), and (9).
An open problem is finding the closest stadium in SM(t) to

O. This problem is solved by using a GJK-based algorithm,
specifically by defining the appropriate support and solution
functions. This point will be explained in the next sections.

As a conclusion of this Section, the instant in time, tO
M,

when two mobile objects are at their MTD, while they are
following linear paths with constant speeds, is fast obtained
without stepping any of the objects motions.

A at t1

s0
A(ts)

s1
A(ts)

s2
A(ts) s3

A(ts)

A at ts

A at t2 A at t3 A at ts+Δt

s0
B(ts)

s1
B(ts)

B at ts
B at t1

B at t2

B at t3

B at ts+Δt

4029

Fig. 2. Minkowski differences s-topes between A and B positions at the instants ts, t1, t2, t3, ts+Δt (from fig. 1) and their distances to origin point O

Fig. 3. Stadiums in SM(t) (black) from motions in fig. 1. For clarity, only the axes (dashed lines) and the extreme circles of the stadiums are depicted. c10

M(ts),
c31

M(ts) are the start point of the external stadiums. Their external edges are also shown. Dotted lines show the Minkowski difference s-topes from fig. 2.

III. DISTANCE BETWEEN TWO OBJECTS FOLLOWING LINEAR
MOTIONS WITH CONSTANT ACCELERATION

A technique for determining, without stepping, the instant
in time when two mobile objects are at their MTD, while
they are following linear motions with constant accelera-
tions, is introduced in this Section.

Let A be a mobile object, modeled by an n-order s-tope,
whose position at ts is SA(ts)={s0

A(ts),s1
A(ts),…,sn−1

A(ts)},
where ci

A(ts)∈ℜ2 and ri
A∈ℜ are respectively the centers and

radii of circles si
A(ts)=(ci

A(ts),ri
A), ∀i. A’s speed at ts is

vA(ts)∈ℜ2. Its constant acceleration is aA∈ℜ.
Let B be a mobile object, modeled by an m-order s-tope,

whose position at ts is SB(ts)={s0
B(ts),s1

B(ts),…,sm−1
B(ts)}.

cj
B(ts)∈ℜ2 and rj

B∈ℜ are respectively the centers and radii
of circles sj

B(ts), ∀j. B’s speed at ts is vB(ts)∈ℜ2 and its
constant acceleration is aB∈ℜ.

Assuming a time horizon Δt, positions SA(t)={(ci
A(t),ri

A),
∀i}, SB(t)={cj

B(t),rj
B), ∀j} for all t∈[ts,ts+Δt] are paramete-

rized by λ∈[0,1], as follows

10,..,j);(ˆλ5.0)(λ)()(

10,..,i);(ˆλ5.0)(λ)()(
22

jj

22
ii

−=⋅⋅Δ⋅⋅+⋅Δ⋅+=

−=⋅⋅Δ⋅⋅+⋅Δ⋅+=

mtvattvttctc

ntvattvttctc

sBBsBs
BB

sAAsAs
AA

 (11)

where ||)(||)()(ˆ sAsAsA tvtvtv = and ||)(||)()(ˆ sBsBsB tvtvtv = . A
constraint is introduced in the motions defined by (11).
When acceleration is negative, and the time horizon Δt is
long enough, the sign of a motion might change, e.g. from
moving forward to backwards. Then, if this situation hap-
pens, A and B motions in (11) will be conveniently divided.
Only motions without changes in their signs are considered.

As mentioned in the previous section, the Minkowski dif-

ference between A and B positions for all t∈[ts,ts+Δt] is SM(t)
and is defined by n×m stadiums. These stadiums are peculiar
because their axes are parabolic. Despite this fact, these
geometrical figures are also termed stadiums. Each stadium
is defined by a start point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B, and a

parabolic axis pM(λ)∈ℜ2. Axis pM(λ) is common for all the
stadiums and is parametrically defined by λ∈[0,1] as

() ())12()(ˆ)(ˆλ5.0)()(λ)λ(22

sBBsAAsBsA
M tvatvattvtvtp ⋅−⋅Δ⋅⋅+−Δ⋅=

The instant in time tO

M, when mobile object A and B are at
their MTD, is tO

M=ts+λm·Δt, where λm is obtained by finding
the parameter that minimizes the distance between O and the
external stadium in SM(t) that is the closest to O.

A double problem is now presented: a) computing the
distance between O and a stadium with a parabolic axis, b)
finding the closest external stadium to O. Both problems are
solved by applying a GJK-based algorithm, termed LL-GJK.

Set Vk in the LL-GJK algorithm always contains one or
two stadiums from SM(t). Vk only stores the start point and
radius. The subdistance_algorithm computes the distance
between O and the stadiums in Vk. Let ca

A(ts)−cb
B(ts), ra

A+rb
B

with (ca
A(ts),ra

A)∈SA(ts) and (cb
B(ts),rb

B)∈SB(ts) be a stadium
in Vk. The distance between O and such a stadium is
determined by finding the solution λc that verifies

0λ||)λ()()(|| =+− dptctcd M

s
B
bs

A
a (13)

||ca
A(ts)−cb

B(ts)+pM(λ)|| only contains one minimum for all
λ∈[0,1]. λc is found by applying the root-finding technique,
termed Secant method [14], to (13). Experimentally, λ0=0.45
and λ1=0.55 have been confirmed as good choices. Accuracy
for the Secant method has been set to 10-6.

O

SA−B(ts) SA−B(t1)
SA−B(t2)

SA−B(t3)

SA−B(ts+Δt) s00
A−B(ts) s10

A−B(ts)
s11

A−B(ts)

s21
A−B(ts)

s31
A−B(ts)

s01
A−B(ts)

s20
A−B(ts)

O

c11
M(ts)

c10
M(ts)

c00
M(ts)

SA−B(ts)
SA−B(t1)

SA−B(t2)

SA−B(t3)
SA−B(ts+Δt)

c30
M(ts) c31

M(ts) c21
M(ts)

c01
M(ts) c20

M(ts)
External edges dO

M

s30
A−B(ts)

4030

LL-GJK algorithm

Input: SA(ts), SB(ts), ts, Δt, pM(λ)
Output: (λm, tO

M, dO
M) or (failure, Vk)

1: k=0, Vk={c0
A(ts)−c0

B(ts),r0
A+r0

B} with (c0
A(ts),r0

A)∈SA(ts)
 and (c0

B(ts),r0
B)∈SB(ts)

2: do
3: (λc,dO,Oc,V'k,O_in) ← subdistance_algorithm(Vk)
4: if O_in then return(failure,Vk)
5: compute hM(−Oc), sM(−Oc), h'M(−Oc,λc), s'M(−Oc,λc)
6: if gM(−Oc,λc)=0 then exit_loop endif
7: if s'M(−Oc,λc)=sM(−Oc) or hM(−Oc)>h'M(−Oc,λc) then
 Vk+1=V'k∪{sM(−Oc)}
 else Vk+1=V'k∪{s'M(−Oc,λc)} endif
8: k=k+1
9: while true

10: λm=λc; tO
M=ts+λm·Δt; dO

M=dO−(rp
A+rq

B)
 where V'k={cp

A(ts)−cq
B(ts),rp

A+rq
B};

 with (cp
A(ts),rp

A)∈SA(ts), (cq
B(ts),rq

B)∈SB(ts)
11: return(λm, tO

M, dO
M)

After finding λc, Oc and dO are obtained as

|||| ; ;)λ()()(2
c cOc

M
s

B
bs

A
ac OdOptctcO =ℜ∈+−= ; (14)

If Vk contains one stadium, then λc, dO, Oc∈ℜ2, V'k=Vk

and O_in=false are returned by the subdistance_algorithm.
If Vk contains two stadiums, first step consists of checking

if O is inside the area delimited by the axes of the stadiums
in Vk. If so, O_in=true is returned by the subdistance_algo-
rithm, and then LL-GJK algorithm finishes returning failure
(see step 4). On the contrary, if O is not inside, the distance
from O to each stadium in Vk is computed. Parameters λc,
dO, Oc from the closest stadium to O are returned. V'k only
contains the closest stadium. The furthest stadium is rejected
and is not considered anymore in the LL-GJK algorithm.

In order to find the external stadiums in SM(t), two pairs of
support and solution functions are introduced. The first pair
of support hM(η) and solution sM(η) functions with η∈ℜ2 is

{ }
)()),(();()),((with

||η||)(η))()((max)η(

jjii

jijiji,

s
BB

s
B

s
AA

s
A

BA
s

B
s

A
M

tSrtctSrtc

rrtctch

∈∈

⋅++⋅−=
∀ (15)

sM(η) is the circle sM(η)=(ca

A(ts)−cb
B(ts),ra

A+rb
B) that gives

value to hM(η), i.e. it represents the stadium in SM(t) whose
start point is the furthest from O in the direction η [12], [10].

Given that axes are parabolic, a second pair of support
h'M(η,λc) and mapping s'M(η,λc) functions is defined. These
functions find the furthest stadium from O in the direction η
at the points where the axes of the stadiums are close to O.

(){ }

)16(
)()),(();()),((th wi

||η||)(η)λ()()(max)λη,(

jjii

jijiji,

s
BB

s
B

s
AA

s
A

BA
c

M
s

B
s

A
cM

tSrtctSrtc

rrptctch

∈∈

⋅++⋅+−=′
∀

LLin-GJK algorithm

Input: SA(ts), SB(ts), ts, Δt, pM(λ), a one-element set Vin

Output: (λm, dO
M’)

1: k=0, Vk=Vin
2: do
3: (λc,dO,Oc,V'k,Vk) ← subdistance_in_algorithm(Vk)
4: compute hM(Oc), sM(Oc), h'M(Oc,λc), s'M(Oc,λc)
5: if ĝM(Oc,λc)=0 then exit_loop endif
6: if s'M(Oc,λc)=sM(Oc) or hM(Oc)>h'M(Oc,λc) then
 Vk+1=V'k∪{sM(Oc)}
 else Vk+1=V'k∪{s'M(Oc,λc)} endif
7: k=k+1
8: while true
9: λm=λc; dO

M’=−(dO+(rp
A+rq

B))
 where V'k={cp

A(ts)−cq
B(ts),rp

A+rq
B};

 with (cp
A(ts),rp

A)∈SA(ts), (cq
B(ts),rq

B)∈SB(ts)
10: return(λm, dO

M’)

where λc comes from the last execution of the subdistance_
algoritm. The circle s'M(η,λc) represents the stadium in SM(t)
that gives value to h'M(η,λc). If sM(η) and s'M(η,λc) represent
different stadiums, the one with the greater support function
is selected. See step 7 in the LL-GJK algorithm.

LL-GJK algorithm finishes when gM(−Oc,λc)=0 is verified
with gM(−Oc,λc)=||Oc||2−radius(s'M(−Oc,λc))||Oc||+h'M(−Oc,λc)
[12]. In other words, no other stadium is closer to O that the
one in Vk, and finally, distance between O and SM(t) is
obtained. The distance dO

M and time tO
M are then returned.

Function radius returns the radius of circle s'M(−Oc,λc).
If LL-GJK algorithm finishes with a failure, then O is

inside the area delimited by the axes of the stadiums and the
returned set Vk contains two stadiums. In this case, distances
from the inner O to the two external stadiums in SM(t) have
to be computed. The LLin-GJK algorithm computes the
distance from O to one external stadium. For this reason,
LLin-GJK is called twice. Each call receives as input, set Vin,
one stadium from the returned Vk.

The procedure subdistance_in_algorithm is only different
from the subdistance_algorithm in the LL-GJK algorithm
when Vk contains two stadiums. In this case, the furthest
stadium from O is selected and assigned to V'k, while the
other one is rejected and is not used anymore in the current
execution of the LLin-GJK algorithm.

The external stadium is found in the LLin-GJK algorithm
by searching the furthest stadium in the direction Oc. For
this reason, h'M(Oc,λc), s'M(Oc,λc), hM(Oc), sM(Oc) are now
computed. This makes that the final condition also changes.
For this reason, the LLin-GJK algorithm finishes when
ĝM(Oc,λc)=−||Oc||2−radius(s'M(Oc,λc))||Oc||+h'M(Oc,λc) is 0.

Each execution of the LLin-GJK algorithm returns a para-
meter λm and a negative distance dO

M’. The maximum of the
two returned distances holds dO

M, i.e. the MTD of penetra-
tion between both mobile objects. And, from its associated
parameter λm, tO

M is then obtained by applying (9).

4031

Two objects, A and B, following linear motions with
constant accelerations and the corresponding Minkowski
difference SM(t) are shown in fig. 4. The positions, where A
and B are at their MTD, are depicted in red. A is modeled by
a 4-order s-tope (potytope) and B is a 2-order s-tope. dO

M
and tO

M have been obtained in 6.4 μs in an Intel® CoreTM 2
Duo E8200 processor at 2.66 GHz.

IV. DISTANCE BETWEEN OBJECTS FOLLOWING LINEAR AND
ARC-LIKE MOTIONS WITH CONSTANT ACCELERATIONS

The computation of the distance between two mobile
objects following respectively linear and arc-like motions
with constant accelerations is shown in this Section.

Let A be an object with an arc-like motion and modeled
by an n-order s-tope. A’s position at ts is SA(ts)={s0

A(ts),
s1

A(ts),…,sn−1
A(ts)}, where ci

A(ts)∈ℜ2 and ri
A∈ℜ are the

centers and the radii of circles si
A(ts)=(ci

A(ts),ri
A), ∀i. A’s arc-

like motion is centered at cA. With respect to cA, each center
ci

A(ts) is expressed by a radius ρi
A and angle θi

A(ts) such that
ci

A(ts)=cA+ρi
A(cos(θi

A(ts),sin(θi
A(ts)). A’s angular speed at ts is

ωA(ts)∈ℜ. A’s constant angular acceleration is αA∈ℜ.
Assuming a time horizon Δt, positions SA(t)={(ci

A(t),ri
A),

∀i} for all t∈[ts,ts+Δt] are parameterized by λ∈[0,1] as

()

[0,1]λ and],[;λ:
αλ5.0)(λ)(θ)(θ where

10,..,i ;))(θsin()),(θcos()(
22

ii

iiii

∈Δ+∈Δ⋅+=∀
⋅Δ⋅⋅+⋅Δ⋅+=

−=+=

tttttttt
ttwttt

nttctc

sss

AsAs
AA

AAA
A

A ρ
 (17)

Let B be an object with a linear motion and modeled by

an m-order s-tope. B’s position at ts is SB(ts)={s0
B(ts),s1

B(ts),
…,sm−1

B(ts)}. cj
B(ts)∈ℜ2 and rj

B∈ℜ are respectively the
centers and radii of circles sj

B(ts), ∀j. B’s speed at ts is
vB(ts)∈ℜ2 and its constant acceleration is aB∈ℜ. B’s
positions SB(t) for all t∈[ts,ts+Δt] are indicated in (11).

Depending on the acceleration and the time horizon, the
sign of a motion might change, for instance, from forward to
backwards. If this situation happens, A and B motions will
be conveniently divided. Only motions without changes in
their signs are considered.

Each of the n×m stadiums in SM(t) is defined by a start
point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B and an axis. From the de-

finition of the A and B motions in (17) and (11) is concluded
that there are n different axes and they are cycloid-like. Each
of the n axes pi

M(λ)∈ℜ2 ∀i is described by λ∈[0,1] as

()
10,..,i);(ˆλ5.0

)(λ))(θsin()),(θcos()λ(
22

iiii

−=⋅⋅Δ⋅⋅−

−⋅Δ⋅−=

ntvat

tvtttp

sBB

sB
AAAM ρ

 (18)

The angle θi

A(t) has been defined in (17).
The instant in time when A and B are at their MTD is

obtained by applying the algorithms AL-GJK and ALin-GJK.
The AL-GJK and ALin-GJK algorithms are respectively

analogous to the LL-GJK and LLin-GJK ones. Only the sub

Fig. 4. Distance between two mobile objects following linear motions, with
||vA(ts)||=2.2 m/s, aA=1 m/s2, ||vB(ts)||=3 m/s, aB=−0.5 m/s2, ts=0s, and Δt=5s.
(a) A and B positions are only depicted at ts, 0.5s, 1.25s, 2s, 2.75s and 3.5s.
The positions where A and B are at their MTD are in red. The MTD of
penetration dO

M is given at tO
M=2.75s. (b) Axes of the eight stadiums in SM(t)

and the distance dO
M. For clarity, only extreme circles, axis, and edge of the

closest external stadium to O are depicted.

tle differences between them are pointed out in this Section.

The subdistance_algorithm and subdistance_in_algorithm
now compute the distance between O and a cycloid-like
axis. Let ca

A(ts)−cb
B(ts), ra

A+rb
B with (ca

A(ts),ra
A)∈SA(ts) and

(cb
B(ts),rb

B)∈SB(ts) be a stadium with axis pa
M(λ). The dist-

ance between O and such a stadium is determined by finding
the λc that minimizes ||cA−cb

B(ts)+pa
M(λ)||, i.e., by solving

0λ||)λ()(|| =+− dptccd M

as
B
bA

 (19)

λc is then found by applying the Secant method to (19),

but this method works properly if there is one minimum in
||cA−cb

B(ts)+pa
M(λ)||. Given that the axes of the stadiums are

cycloid-like, if A’s angular displacement is lower than π,
then ||cA−cb

B(ts)+pa
M(λ)|| with λ∈[0,1], contains, in the worst

case, one maximum and one minimum (apart from the
extremes of the search interval). Consequently, if such a
condition is false, then A and B motions are properly divided
before running the distance-computation algorithms.

Note that while Secant method iterates, it is trivial to de-
tect if the root being searched is a maximum or a minimum.

As a consequence of dealing with cycloid-like axes,
support function h'M(η) has to be updated in the AL-GJK and
ALin-GJK algorithms as follows

(){ }||η||)(η)λ()(max)λη,(jiijji,
⋅++⋅+−=′

∀

BA
c

M
s

B
AcM rrptcch (20)

B at ts

B at 0.5s
B at 2s

A at 2.75s

A at ts

A at 0.5s

A at 1.25s

B at 1.25s

A at 2s

B at 2.75s

(a)

(b)

A at 3.5s

B at 3.5s

O

External edge
Stadium’s axis

dO
M

External
Stadium

4032

Fig. 5. Distance between two mobile objects. A’s motion is arc-like. B’s
motion is linear. The motions are defined by ωA(ts)=−18º/s, αA=−0.5º/s2,
||vB(ts)||=3 m/s, aB=1 m/s2, ts=0 s and Δt=5 s. (a) A and B positions are only
depicted at ts, 0.6s, 1.1s, 2s, 1.6s and 2.1s. The positions where A and B are
at their MTD are in red. The MTD of penetration dO

M is given at tO
M=1.1s.

(b) Cycloid-like axes of the corresponding eight stadiums in SM(t) and the
distance dO

M. For clarity, only extremes circles, axis, and edge of the closest
external stadium to O are depicted.

Two objects, A and B, following respectively arc-like and

linear motions with constant accelerations, s-tope SM(t), and
the positions where A and B are at their MTD are shown in
fig. 5. A is modeled by a 4-order s-tope (potytope), while B
is a 2-order s-tope. dO

M and tO
M have been obtained in 17.6

μs in an Intel® CoreTM 2 Duo E8200 processor at 2.66 GHz.

V. DISTANCE BETWEEN TWO OBJECTS FOLLOWING ARC-
LIKE MOTIONS WITH CONSTANT ANGULAR ACCELERATION
The computation of the distance between two objects

following arc-like motions with constant angular accelera-
tions is tackled in this Section.

Let A be an object modeled by an n-order s-tope whose
arc-like motions is the same that the given in the previous
Section.

And, let B be an object following an arc-like motion and
modeled by an m-order s-tope. B’s position at ts is given by
SB(ts)={s0

B(ts),s1
B(ts),…,sm−1

B(ts)}. cj
B(ts)∈ℜ2 and rj

B∈ℜ are
respectively the centers and radii of circles sj

B(ts), ∀j. B’s
arc-like motion is centered at cB. With respect to cB, each
center ci

B(ts) is expressed by a radius ρj
B and angle θj

B(ts).
B’s angular speed at ts is ωB(ts)∈ℜ. B’s constant angular
acceleration is αB∈ℜ.

Assuming a time horizon Δt, positions SB(t)={(cj
B(t),rj

B),
∀j} for all t∈[ts,ts+Δt] are parameterized by λ∈[0,1]

()

[0,1]λ and],[;λ:
αλ5.0)(λ)(θ)(θ where

10,..,j ;))(θsin()),(θcos()(
22

jj

jjjj

∈Δ+∈Δ⋅+=∀

⋅Δ⋅⋅+⋅Δ⋅+=

−=+=

tttttttt
ttwttt

nttctc

sss

BsBs
BB

BBB
B

B ρ

 (21)

If signs of the angular speed and acceleration are diffe

Fig. 6. Distance between two objects with arc-like motions. The motions
are described by ωA(ts)=50º/s,αA=5º/s2, ωB(ts)=−30º/s, aB=−2.5º/s2, ts=0s, and
Δt=3s. (a) A and B positions are only depicted at ts, 1s, 1.5s, 2s, and 2.5s.
The positions, where A and B are at their MTD, are in red. The MTD, dO

M,
is given at tO

M=2s. (b) Rose-like axes of the eight stadiums in SM(t) and the
distance dO

M (at a different scale). For clarity, only extremes circles, axis,
and partially the edge of the closest external stadium to O are depicted.

rent, and depending on Δt, an arc-like motion might change,
for instance, from going clockwise to counterclockwise. If
this situation happens, then A and B motions have to be
divided. Only motions without these changes are considered.

The axes of the stadiums in SM(t) are now rose-like
(rhodonea curve) [15]. SM(t) has n×m different axes
pij

M(λ)∈ℜ2 ∀i,j. These axes are parameterized by λ∈[0,1] as

)))(θsin()),(θ(cos()))(θsin()),(θ(cos()λ(jjjiiiij ttttp BBBAAAM ρρ −= (22)

where t=ts+λ·Δt. The angles θi
A(t) and θj

B(t) are respectively
given by (17) and (21). Each stadium is defined by a start
point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B, and an axis pij

M(λ).
The instant in time when A and B are at their MTD is

obtained by applying the AA-GJK and AAin-GJK algorithms.
These algorithms are analogous to LL-GJK and LLin-GJK.

The subdistance_algorithm and subdistance_in_algorithm
now compute the distance between O and a stadium whose
axis is rose-like. Let ca

A(ts)−cb
B(ts) with (ca

A(ts),ra
A)∈SA(ts)

and (cb
B(ts),rb

B)∈SB(ts), radius ra
A+rb

B, and axis pab
M(λ) be a

stadium. This distance is obtained by finding λc that minimi-
zes ||cA−cB+pab

M(λ)||, i.e. by applying the Secant method to

0λ||)λ(|| =+− dpccd M
abBA

 (23)

As axes of the stadiums are rose-like, if A and B angular

displacements are lower than π, then ||cA−cb
B(ts)+pa

M(λ)||
with λ∈[0,1] contains, in the worst case, one maximum and
minimum (apart from the extremes of the interval of search).
If this condition is not true, then A and B motions have to be
divided before running the distance-computation algorithms.

Given that rose-like axes are being dealt, support function
h'M(η,λc) in the AA-GJK and AAin-GJK algorithms is updated

(){ }||η||)(η)λ(max)λη,(jiijji,

⋅++⋅+−=′
∀

BA
c

M
BAcM rrpcch (24)

Two objects, A and B, following arc-like motions with

A at ts A at 1s

A at 2.5s

B at 2.5s
B at 2s

B at 1s

A at 1.5s

B at 1.5s

A at 2s

(a)

Extreme
edge

B at ts

(b)

O dO
M cA cB

dO
M

Axis

A at ts

A at 0.6s

A at 1.6s

B at 2.1s
B at 0.6s

B at 1.1s A at 1.1s

B at 1.6s

A at 2.1s

(a)
Stadium axis

B at ts

(b)

O
dO

M

cA

4033

10 50 100 250 500
0

0.1

0.2

0.3

0.4
Ru

n
tim

e
(m

ill
is

ec
on

ds
)

AL-GJK, AL
in

GJK AA-GJK, AA
in

GJK LL-GJK, LL
in

GJK

Fig. 7. Computational cost of the algorithms.

10 50 100 250 500

2

2.2

2.4

A
lg

or
ith

m
 It

er
at

io
ns

(A

ve
ra

ge
)

AL-GJK, AL
in

-GJK AA-GJK, AA
in

-GJK LL-GJK, LL
in

-GJK

Fig. 8. Average number of iterations in the algorithms per distance

10 50 100 250 500
6.5

7

7.5

8

Se
ca

nt
M

et
ho

d
Ite

ra
tio

ns
(A

ve
ra

ge
)

AL-GJK, AL
in

-GJK AA-GJK, AA
in

-GJK LL-GJK, LL
in

-GJK

Fig. 9. Average number of iterations in the Secant method per distance.

constant accelerations, s-tope SM(t), and the positions where
A and B are at their MTD are shown in fig. 6. A is modeled
by a 4-order s-tope (polytope), while B is a 2-order s-tope.
dO

M and tO
M have been obtained in 16.5 μs in an Intel®

CoreTM 2 Duo E8200 processor at 2.66 GHz.

VI. ALGORITHM ANALYSIS
All the support functions in this paper verify

)λη,()λη,()λη,(

)η()η()η(

)()(

)()(

ctSctScM

tStSM

BA

s
B

s
A

hhh

hhh

−′+′=′

−+=
 (25)

where SA(t), SB(t) represent A and B positions at t=ts+λc·Δt.
Proof of (25) is trivial. As a consequence of conditions in
(25), s-tope SM(t) does not need to be compute before
running any of the LL-GJK, LLin-GJK, AL-GJK, ALin-GJK,
AA-GJK, and AAin-GJK algorithms. And then, complexity of
all these algorithm is O(n+m) instead of O(n×m).

These algorithms are implemented in C and run in an Intel
Core 2 Duo E8200 processor at 2.66 GHz. The objects and
motions have been generated randomly. More than 1,500
different experiments have been run.

The runtime of the algorithms per each computed distance
is shown in fig. 7. The complexity of the algorithms is linear
with respect to the total number of circles modeling both
objects.

The total number of iterations in all the algorithms is
stable. Fig. 8 shows the average number of iterations per

each computed distance. The iterations in the Secant method
are also stable. See fig. 9.

VII. CONCLUSION
This paper has shown a method for detecting a collision

between two mobile objects without stepping their motions.
Specifically, this method obtains the instant in time two obj-
ects in motion are at their minimum translational distance of
separation or penetration. The mentioned distance and time
instant are parallely computed. The distance’s sign encodes
if objects collide or not.

Objects are modeled by bi-dimensional convex hulls.
Their motions are non-holonomic (linear or arc-like) with
constant accelerations. The positions of the objects are
assumed to be measurable and their motions are estimable.

Some experiments have been run to conclude that the
method is stable in the number of iterations. And, it is fast
enough to be run as frequent as new information from the
sensors system is receive.

This method is also able to compute the instant in time of
the first contact by forcing the distance to be zero. A future
extension of this work consists of updating it to deal with
non-convex objects.

REFERENCES
[1] D. Ferguson, T. M. Howard and M. Likhachev, “Motion planning in

urban environment: Part I,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2008, pp. 1063-1069.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, et al., “Autonomous
driving in urban environments: Boss and the urban challenge”.
Journal of Field Rob., vol. 25, nº 8, pp. 425-466, 2008.

[3] F. Schwarzer, M. Saha, J-C. Latombe, “Adaptive dynamic collision
checking for single and multiple articulated robots in complex enviro-
nments,” IEEE Trans. on Robotics, vol. 21, nº 3, pp. 338-353, 2005.

[4] P. Jimenez, F. Thomas, C. Torras, “3D collision detection: a survey,”
Comput. Graph., vol. 25, pp 269-285, 2001.

[5] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision
detection between rigid bodies,” Computer Graphic Forum, vol. 21,
no. 3, pp. 279-288, 2002.

[6] J. Canny, “Collision detection for moving polyhedra,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 8, nº 2, pp. 200–209, 1986.

[7] Y-K. Choi, W. Wang, Y. Liu and M-S. Kim, “Continuous collision
detection for two moving elliptic disks,” IEEE Trans. Robotics, vol.
22, nº 2, pp. 213-224, 2006.

[8] S. Cameron and R. K. Culley, “Determining the minimum transla-
tional distance between two convex polyhedral,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 1986, pp. 591-596.

[9] E. J. Bernabeu, “Fast generation of multiple collision-free and linear
trajectories in dynamic environments,” IEEE Trans. Robotics, vol. 25,
nº 4, pp. 967-975, 2009.

[10] E. G. Gilbert, D. W. Johnson, S. S. Keerthi, "A fast procedure for
computing the distance between complex objects in three-dimensional
space," IEEE Journal Robot. & Autom., vol. 4, nº 2, pp 193-203, 1988.

[11] G. J. Hamlin, R. B. Kelley, and J. Tornero, "Efficient distance calcu-
lation using spherically-extended polytope (s-tope) model," in Proc.
IEEE Int. Conf. on Robotics and Automation, 1992, pp. 2502-2507.

[12] E. J. Bernabeu and J. Tornero, “Hough transform for distance compu-
tation and collision avoidance,” IEEE Trans. Robotics & Automation,
vol. 18, nº. 3, pp. 393-398, 2002.

[13] http://www.mathworld.wolfram.com/Stadium.html
[14] J. H. Mathews, Numerical Methods for Computer Science, Engine-

ering and Mathematics Prentice Hall, 1987, pp. 59-74.
[15] http://www.mathworld.wolfram.com/Rose.html.

Total number of circles (n+m) modeling the involved objects

Total number of circles (n+m) modeling the involved objects

Total number of circles (n+m) modeling the involved objects

4034

