
  

  

Abstract—A method for computing the distance between two 
mobile objects following linear or arc-like motions with cons-
tant accelerations is introduced in this paper. This distance is 
obtained without stepping or discretizing any object’s motion. 
Objects are modeled by bi-dimensional convex hulls. The dist-
ance-computation algorithm obtains the instant in time when 
two mobile objects are at their minimum translational distance 
of separation or penetration. The distance and the instant in 
time are parallely computed. This method is so fast that can be 
run as frequent as new information from the world is received. 

I. INTRODUCTION 
ETECTING a collision in motion planning is still an 
open research line in Robotics. Nowadays, powerful 

motion planners are developed, where collision tests are an 
unavoidable step and represent, in general, a decisive time-
consuming part in the planning algorithms.  

A recent example and with important social impact is 
shown by [1], [2]. An estimated motion for an obstacle and a 
desired one for the robotized car Boss are stepped at a 
determined time instants. Then, collision tests between the 
positions of both objects at each considered time instant are 
run. Objects are modeled by boxes or circles. This collision-
detection technique has several limitations as shown by [3]. 
Nevertheless, this approach is frequent in the literature in 
order to detect collisions between mobile objects [4]. 

Other group of collision-detection methods is called Cont-
inuous Collision Detection (CCD). In general, these meth-
ods also provide, if objects collide, the instant in time of the 
first contact. Some representative examples are [3], [5−7]. 

In any case, with all these types of methodologies is really 
a hard problem to find the exact instant in time when two 
mobile objects are at their minimum distance. 

This paper introduces a technique for obtaining the instant 
in time when two objects are at their minimum translational 
distance. If objects do not collide, then the Euclidean 
distance is computed, otherwise, their minimum translation 
distance of penetration, defined as [8], is returned. 

Objects are modeled by convex hull geometries and 
follow planar non-holonomic motions with constant accele-
rations. Specifically, only linear and arc-like motions are 
considered in this paper. 

Considering the previous author’s work in [9] as a colli-
sion detector, the main contributions of this paper are 
 

Manuscript received September 15, 2009.  
Enrique J. Bernabeu is with Instituto Universitario de Automática e 

Informática Industrial, Universidad Politécnica de Valencia, Camino de 
Vera s/n, Valencia, E-46022, Spain (e-mail: ebernabe@isa.upv.es).  

twofold: arc-like motions are also considered, and obstacles 
follow motions with non-null acceleration. 

The method in this paper is fast enough to be run as fre-
quent as new information from the world is received. And, it 
is intended to be used as a collision-detection module in 
sampling-based algorithms for vehicle-like robots. 

II. MINKOWSKI DIFFERENCE OF TWO MOTIONS 
In this Section, two mobile objects with null accelerations 

and linear motions are being considered. Objects are 
modeled by either a polytope [10] or a spherical-extended 
polytope (s-tope) [11]. Motions and objects are constrained 
to be bi-dimensional. 

Formally, an s-tope is the convex hull of a finite set of 
spheres, circles if bi-dimensional, S={s0,s1,…,sn−1} with 
si=(ci,ri), where ci is the center and ri is the radius. S-tope SS 
contains an infinite set of swept spheres/circles expressed by 

 

{
}∑

∑∑
−

=

−

=

−

=

≤∈∈=

−+=−+===
1

1i iiiii

1

1i 0ii0
1

1i 0ii0

1λ [0,1],λ ,),(                                        
,)(λ  ,)(λ:),(

n

nn
S

Srcs
rrrrccccrcsS

(1) 

 
Note that, if all radii ri are zero, then (1) is the polytope 

definition [10]. Consequently, a polytope is a particular case 
of an s-tope. For this reason, from now, all the objects in this 
paper are generally modeled by s-topes. The order of the s-
tope SS is the number of spheres/circles in S. 

Let SA(ts) be the A‘s position at the instant in time ts. A is 
modeled by an n-order s-tope with SA(ts)={s0

A(ts),s1
A(ts),…, 

sn−1
A(ts)}, where ci

A(ts)∈ℜ2 are the centers and ri
A∈ℜ are the 

radii of circles si
A(ts)=(ci

A(ts),ri
A), i=0,1,…,n−1. As A’s size 

does not change, then radii ri
A do not depend on time. A’s 

speed at ts is stated by the vector vA(ts)∈ℜ2. ||vA(ts)|| indicates 
the magnitude and vA(ts) the direction. 

Let SB(ts) be the position of a mobile object B at ts. B is 
modeled by an m-order s-tope, with SB(ts)={s0

B(ts),s1
B(ts),…, 

sm−1
B(ts)}. cj

B(ts)∈ℜ2 and rj
B∈ℜ are the centers and radii of 

circles sj
B(ts), with j=0,1,…,m−1. B’s speed at ts is vB(ts)∈ℜ2. 

||vB(ts)|| indicates the magnitude and vB(ts) the direction. 
Each of the infinite intermediate positions of mobile 

objects A and B from ts to a given time horizon Δt, i.e. SA(t) 
and SB(t) for all t∈[ts,ts+Δt], are parameterized by λ∈[0,1] as  
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Fig. 1. Two stepped motions. SA(ts)={s0

A(ts),s1
A(ts),s2

A(ts),s3
A(ts)} with ri

A=0, 
∀i, and SB(ts)={s0

B(ts),s1
B(ts)} represent A and B positions at ts. Dashed lines 

show the distance between A and B at the instants in time ts,t1,t2,t3,ts+Δt. 
 
An example for two objects following a linear motion 

with constant speed is shown in fig. 1. Distances at each 
different instant in time are also shown. These distances 
have been obtained by applying the algorithm in [12], which 
is an update from the GJK one in [10]. Then, they have been 
obtained by computing the separation from the origin point 
O to the Minkowski difference between s-topes A and B at 
each considered instant in time. Formally, the Minkowski 
difference between A and B at a given t, is an s-tope SA−B(t), 
defined by the set of n×m circles {sij

A−B(t)}  
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Fig. 2 shows all the Minkowski difference s-topes betw-

een A and B positions at all the time instants from fig. 1. 
The Minkowski difference between A and B positions for 

all t∈[ts,ts+Δt] is called SM(t) and is defined by the set of 
n×m circles {sij

M(t)}. sij
M(t) are parameterized by λ∈[0,1] as 
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Note that, for instance, if λ=0, then SM(t) represents the 

Minkowski difference between A and B at ts, i.e., SA−B(ts). 
And if λ=1, then SM(t) states the Minkowski difference of A 
and B at ts+Δt, i.e, SA−B(ts+Δt). 

Each sij
M(t) for all t∈[ts,ts+Δt] sweeps an area consisting 

of a rectangle whose ends are capped off with circles. This 
geometrical figure is referred to as stadium by [13]. Then, 
SM(t) is formed by n×m stadiums, and each one is defined by 
three parameters: a start point cij

M(ts)=ci
A(ts)−cj

B(ts), a radius 
rij

M=ri
A+rj

B and a linear axis pM(λ)∈ℜ2. pM(λ) is parametri-
cally defined by λ∈[0,1] as  

 
( ))()(λ)λ( sBsA
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The stadium’s axis is the locus swept by cij

M(t) from ts to 
ts+Δt. All the axes of the stadiums are equal and their length 
is ||pM(1)||. Fig. 3 shows SM(t) with its n×m stadiums. Note 
that SM(t) contains all the Minkowski differences in fig. 2. 
Proposition 1: The distance from O to SM(t), dO

M, is the 

distance at the instant in time when A and B are at their min-
imum translational distance (MTD) of separation or pene-
tration. Fig. 3 also shows dO

M computation. Formally, dO
M is 
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If A and B do not collide during their respective motions, 
then dO

M is the Euclidean distance. Nevertheless, if they 
collide, then the sign of dO

M is negative and dO
M acquires the 

meaning of the MTD of penetration given by [8].  
Proof: It is trivial and is a direct consequence of the SM(t) 
definition given by (4) and from conclusions by [10]  

Let cab
M(ts)=ca

A(ts)−cb
B(ts), rab

M with axis pM(λ) be the 
stadium in SM(t) that is the closest to O, then the distance 
between O and SM(t) is from (4) 
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dO

M is obtained by finding λm, with λm∈[0,1] that minimizes 
(7). Given that the axes of the stadiums in SM(t) are linear, 
λm is obtained by computing Oc, with Oc=cij

M(ts)+pM(λm), i.e. 
by projecting O onto such an axis. Therefore, 
 

( ) 2
ba ||)1(||)1())()((λ MM

s
A

s
A

m pptctc ⋅−−=

 

 (8) 
 
Then dO

M=||Oc||−rab
M. As parameter λ is related with time, 

the time instant tO
M, when MTD between A and B is dO

M, is 
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Substituting λm in (2), SA(tO

M) and SB(tO
M) are obtained. 

They respectively represent the positions of mobile objects 
A and B at time tO

M, i.e., when their MTD is dO
M. 

Nevertheless, distance computation in (7) fails when O is 
inside the area delimited by the axes of the stadiums. As 
SM(t) is a Minkowski difference, then A and B will collide 
during their motions. When this situation is presented, dO

M 
has to be reformulated as finding λm∈[0,1] that maximizes 
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where ca
A(ts)−cb

B(ts), rab
M states the axis of the external 

stadium in SM(t) that is the closest to O. In this situation, 
note that radius rab

M is added. Sign of dO
M is negative, beca-

use it holds a translational distance of penetration. λm and 
tO

M are respectively computed as indicated by (8), and (9). 
An open problem is finding the closest stadium in SM(t) to 

O. This problem is solved by using a GJK-based algorithm, 
specifically by defining the appropriate support and solution 
functions. This point will be explained in the next sections. 

As a conclusion of this Section, the instant in time, tO
M, 

when two mobile objects are at their MTD, while they are 
following linear paths with constant speeds, is fast obtained 
without stepping any of the objects motions. 
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Fig. 2.  Minkowski differences s-topes between A and B positions at the instants ts, t1, t2, t3, ts+Δt (from fig. 1) and their distances to origin point O 

 

 
Fig. 3.  Stadiums in SM(t) (black) from motions in fig. 1. For clarity, only the axes (dashed lines) and the extreme circles of the stadiums are depicted. c10

M(ts), 
c31

M(ts) are the start point of the external stadiums. Their external edges are also shown. Dotted lines show the Minkowski difference s-topes from fig. 2. 
 

III. DISTANCE BETWEEN TWO OBJECTS FOLLOWING LINEAR 
MOTIONS WITH CONSTANT ACCELERATION 

A technique for determining, without stepping, the instant 
in time when two mobile objects are at their MTD, while 
they are following linear motions with constant accelera-
tions, is introduced in this Section. 

Let A be a mobile object, modeled by an n-order s-tope, 
whose position at ts is SA(ts)={s0

A(ts),s1
A(ts),…,sn−1

A(ts)}, 
where ci

A(ts)∈ℜ2 and ri
A∈ℜ are respectively the centers and 

radii of circles si
A(ts)=(ci

A(ts),ri
A), ∀i. A’s speed at ts is 

vA(ts)∈ℜ2. Its constant acceleration is aA∈ℜ. 
Let B be a mobile object, modeled by an m-order s-tope, 

whose position at ts is SB(ts)={s0
B(ts),s1

B(ts),…,sm−1
B(ts)}. 

cj
B(ts)∈ℜ2 and rj

B∈ℜ are respectively the centers and radii 
of circles sj

B(ts), ∀j. B’s speed at ts is vB(ts)∈ℜ2 and its 
constant acceleration is aB∈ℜ. 

Assuming a time horizon Δt, positions SA(t)={(ci
A(t),ri

A), 
∀i}, SB(t)={cj

B(t),rj
B), ∀j} for all t∈[ts,ts+Δt] are paramete-

rized by λ∈[0,1], as follows 
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where ||)(||)()(ˆ sAsAsA tvtvtv =  and ||)(||)()(ˆ sBsBsB tvtvtv = . A 
constraint is introduced in the motions defined by (11). 
When acceleration is negative, and the time horizon Δt is 
long enough, the sign of a motion might change, e.g. from 
moving forward to backwards. Then, if this situation hap-
pens, A and B motions in (11) will be conveniently divided. 
Only motions without changes in their signs are considered.  

As mentioned in the previous section, the Minkowski dif-

ference between A and B positions for all t∈[ts,ts+Δt] is SM(t) 
and is defined by n×m stadiums. These stadiums are peculiar 
because their axes are parabolic. Despite this fact, these 
geometrical figures are also termed stadiums. Each stadium 
is defined by a start point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B, and a 

parabolic axis pM(λ)∈ℜ2. Axis pM(λ) is common for all the 
stadiums and is parametrically defined by λ∈[0,1] as 
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The instant in time tO

M, when mobile object A and B are at 
their MTD, is tO

M=ts+λm·Δt, where λm is obtained by finding 
the parameter that minimizes the distance between O and the 
external stadium in SM(t) that is the closest to O. 

A double problem is now presented: a) computing the 
distance between O and a stadium with a parabolic axis, b) 
finding the closest external stadium to O. Both problems are 
solved by applying a GJK-based algorithm, termed LL-GJK. 

Set Vk in the LL-GJK algorithm always contains one or 
two stadiums from SM(t). Vk only stores the start point and 
radius. The subdistance_algorithm computes the distance 
between O and the stadiums in Vk. Let ca

A(ts)−cb
B(ts), ra

A+rb
B 

with (ca
A(ts),ra

A)∈SA(ts) and (cb
B(ts),rb

B)∈SB(ts) be a stadium 
in Vk. The distance between O and such a stadium is 
determined by finding the solution λc that verifies  
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B
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A
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||ca
A(ts)−cb

B(ts)+pM(λ)|| only contains one minimum for all 
λ∈[0,1]. λc is found by applying the root-finding technique, 
termed Secant method [14], to (13). Experimentally, λ0=0.45 
and λ1=0.55 have been confirmed as good choices. Accuracy 
for the Secant method has been set to 10-6. 
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LL-GJK algorithm 

Input: SA(ts), SB(ts), ts, Δt, pM(λ) 
Output: (λm, tO

M, dO
M) or (failure, Vk) 

1: k=0, Vk={c0
A(ts)−c0

B(ts),r0
A+r0

B} with (c0
A(ts),r0

A)∈SA(ts) 
 and (c0

B(ts),r0
B)∈SB(ts) 

2: do 
3:  (λc,dO,Oc,V'k,O_in) ← subdistance_algorithm(Vk) 
4:  if O_in then return(failure,Vk)  
5:  compute hM(−Oc), sM(−Oc), h'M(−Oc,λc), s'M(−Oc,λc) 
6:  if gM(−Oc,λc)=0 then exit_loop endif 
7:  if s'M(−Oc,λc)=sM(−Oc) or hM(−Oc)>h'M(−Oc,λc) then 
   Vk+1=V'k∪{sM(−Oc)} 
  else Vk+1=V'k∪{s'M(−Oc,λc)} endif 
8:  k=k+1 
9: while true 

10:  λm=λc;     tO
M=ts+λm·Δt;     dO

M=dO−(rp
A+rq

B)  
    where V'k={cp

A(ts)−cq
B(ts),rp

A+rq
B};  

    with (cp
A(ts),rp

A)∈SA(ts),  (cq
B(ts),rq

B)∈SB(ts) 
11: return(λm, tO

M, dO
M) 

 
After finding λc, Oc and dO are obtained as 
 

||||     ;   ;)λ()()( 2
c cOc

M
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A
ac OdOptctcO =ℜ∈+−= ;    (14) 

 
If Vk contains one stadium, then λc, dO, Oc∈ℜ2, V'k=Vk 

and O_in=false are returned by the subdistance_algorithm. 
If Vk contains two stadiums, first step consists of checking 

if O is inside the area delimited by the axes of the stadiums 
in Vk. If so, O_in=true is returned by the subdistance_algo-
rithm, and then LL-GJK algorithm finishes returning failure 
(see step 4). On the contrary, if O is not inside, the distance 
from O to each stadium in Vk is computed. Parameters λc, 
dO, Oc from the closest stadium to O are returned. V'k only 
contains the closest stadium. The furthest stadium is rejected 
and is not considered anymore in the LL-GJK algorithm. 

In order to find the external stadiums in SM(t), two pairs of 
support and solution functions are introduced. The first pair 
of support hM(η) and solution sM(η) functions with η∈ℜ2 is  
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sM(η) is the circle sM(η)=(ca

A(ts)−cb
B(ts),ra

A+rb
B) that gives 

value to hM(η), i.e. it represents the stadium in SM(t) whose 
start point is the furthest from O in the direction η [12], [10].  

Given that axes are parabolic, a second pair of support 
h'M(η,λc) and mapping s'M(η,λc) functions is defined. These 
functions find the furthest stadium from O in the direction η 
at the points where the axes of the stadiums are close to O.  
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LLin-GJK algorithm 

Input: SA(ts), SB(ts), ts, Δt, pM(λ), a one-element set Vin 

Output: (λm, dO
M’) 

1:  k=0, Vk=Vin 
2:  do 
3:  (λc,dO,Oc,V'k,Vk) ← subdistance_in_algorithm(Vk) 
4:   compute hM(Oc), sM(Oc), h'M(Oc,λc), s'M(Oc,λc) 
5:   if ĝM(Oc,λc)=0 then exit_loop endif 
6:  if s'M(Oc,λc)=sM(Oc) or hM(Oc)>h'M(Oc,λc) then 
   Vk+1=V'k∪{sM(Oc)} 
  else Vk+1=V'k∪{s'M(Oc,λc)} endif 
7:  k=k+1 
8: while true 
9: λm=λc;     dO

M’=−(dO+(rp
A+rq

B))  
    where V'k={cp

A(ts)−cq
B(ts),rp

A+rq
B};  

    with (cp
A(ts),rp

A)∈SA(ts), (cq
B(ts),rq

B)∈SB(ts) 
10: return(λm, dO

M’) 
 

where λc comes from the last execution of the subdistance_ 
algoritm. The circle s'M(η,λc) represents the stadium in SM(t) 
that gives value to h'M(η,λc). If sM(η) and s'M(η,λc) represent 
different stadiums, the one with the greater support function 
is selected. See step 7 in the LL-GJK algorithm. 

LL-GJK algorithm finishes when gM(−Oc,λc)=0 is verified 
with gM(−Oc,λc)=||Oc||2−radius(s'M(−Oc,λc))||Oc||+h'M(−Oc,λc) 
[12]. In other words, no other stadium is closer to O that the 
one in Vk, and finally, distance between O and SM(t) is 
obtained. The distance dO

M and time tO
M are then returned. 

Function radius returns the radius of circle s'M(−Oc,λc). 
If LL-GJK algorithm finishes with a failure, then O is 

inside the area delimited by the axes of the stadiums and the 
returned set Vk contains two stadiums. In this case, distances 
from the inner O to the two external stadiums in SM(t) have 
to be computed. The LLin-GJK algorithm computes the 
distance from O to one external stadium. For this reason, 
LLin-GJK is called twice. Each call receives as input, set Vin, 
one stadium from the returned Vk. 

The procedure subdistance_in_algorithm is only different 
from the subdistance_algorithm in the LL-GJK algorithm 
when Vk contains two stadiums. In this case, the furthest 
stadium from O is selected and assigned to V'k, while the 
other one is rejected and is not used anymore in the current 
execution of the LLin-GJK algorithm. 

The external stadium is found in the LLin-GJK algorithm 
by searching the furthest stadium in the direction Oc. For 
this reason, h'M(Oc,λc), s'M(Oc,λc), hM(Oc), sM(Oc) are now 
computed. This makes that the final condition also changes. 
For this reason, the LLin-GJK algorithm finishes when 
ĝM(Oc,λc)=−||Oc||2−radius(s'M(Oc,λc))||Oc||+h'M(Oc,λc) is 0. 

Each execution of the LLin-GJK algorithm returns a para-
meter λm and a negative distance dO

M’. The maximum of the 
two returned distances holds dO

M, i.e. the MTD of penetra-
tion between both mobile objects. And, from its associated 
parameter λm, tO

M is then obtained by applying (9). 
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Two objects, A and B, following linear motions with 
constant accelerations and the corresponding Minkowski 
difference SM(t) are shown in fig. 4. The positions, where A 
and B are at their MTD, are depicted in red. A is modeled by 
a 4-order s-tope (potytope) and B is a 2-order s-tope. dO

M 
and tO

M have been obtained in 6.4 μs in an Intel® CoreTM 2 
Duo E8200 processor at 2.66 GHz. 

IV. DISTANCE BETWEEN OBJECTS FOLLOWING LINEAR AND 
ARC-LIKE MOTIONS WITH CONSTANT ACCELERATIONS  

The computation of the distance between two mobile 
objects following respectively linear and arc-like motions 
with constant accelerations is shown in this Section. 

Let A be an object with an arc-like motion and modeled 
by an n-order s-tope. A’s position at ts is SA(ts)={s0

A(ts), 
s1

A(ts),…,sn−1
A(ts)}, where ci

A(ts)∈ℜ2 and ri
A∈ℜ are the 

centers and the radii of circles si
A(ts)=(ci

A(ts),ri
A), ∀i. A’s arc-

like motion is centered at cA. With respect to cA, each center 
ci

A(ts) is expressed by a radius ρi
A and angle θi

A(ts) such that 
ci

A(ts)=cA+ρi
A(cos(θi

A(ts),sin(θi
A(ts)). A’s angular speed at ts is 

ωA(ts)∈ℜ. A’s constant angular acceleration is αA∈ℜ. 
Assuming a time horizon Δt, positions SA(t)={(ci

A(t),ri
A), 

∀i} for all t∈[ts,ts+Δt] are parameterized by λ∈[0,1] as  
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Let B be an object with a linear motion and modeled by 

an m-order s-tope. B’s position at ts is SB(ts)={s0
B(ts),s1

B(ts), 
…,sm−1

B(ts)}. cj
B(ts)∈ℜ2 and rj

B∈ℜ are respectively the 
centers and radii of circles sj

B(ts), ∀j. B’s speed at ts is 
vB(ts)∈ℜ2 and its constant acceleration is aB∈ℜ. B’s 
positions SB(t) for all t∈[ts,ts+Δt] are indicated in (11). 

Depending on the acceleration and the time horizon, the 
sign of a motion might change, for instance, from forward to 
backwards. If this situation happens, A and B motions will 
be conveniently divided. Only motions without changes in 
their signs are considered. 

Each of the n×m stadiums in SM(t) is defined by a start 
point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B and an axis. From the de-

finition of the A and B motions in (17) and (11) is concluded 
that there are n different axes and they are cycloid-like. Each 
of the n axes pi

M(λ)∈ℜ2 ∀i is described by λ∈[0,1] as  
 

( )
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The angle θi

A(t) has been defined in (17).  
The instant in time when A and B are at their MTD is 

obtained by applying the algorithms AL-GJK and ALin-GJK. 
The AL-GJK and ALin-GJK algorithms are respectively 

analogous to the LL-GJK and LLin-GJK ones. Only the sub 
 

 

 
 

Fig. 4.  Distance between two mobile objects following linear motions, with 
||vA(ts)||=2.2 m/s, aA=1 m/s2, ||vB(ts)||=3 m/s, aB=−0.5 m/s2, ts=0s, and Δt=5s. 
(a) A and B positions are only depicted at ts, 0.5s, 1.25s, 2s, 2.75s and 3.5s. 
The positions where A and B are at their MTD are in red. The MTD of 
penetration dO

M is given at tO
M=2.75s. (b) Axes of the eight stadiums in SM(t) 

and the distance dO
M. For clarity, only extreme circles, axis, and edge of the 

closest external stadium to O are depicted. 
 
tle differences between them are pointed out in this Section. 

The subdistance_algorithm and subdistance_in_algorithm 
now compute the distance between O and a cycloid-like 
axis. Let ca

A(ts)−cb
B(ts), ra

A+rb
B with (ca

A(ts),ra
A)∈SA(ts) and 

(cb
B(ts),rb

B)∈SB(ts) be a stadium with axis pa
M(λ). The dist-

ance between O and such a stadium is determined by finding 
the λc that minimizes ||cA−cb

B(ts)+pa
M(λ)||, i.e., by solving 

 
0λ||)λ()(|| =+− dptccd M

as
B
bA

 
   (19) 

 
λc is then found by applying the Secant method to (19), 

but this method works properly if there is one minimum in 
||cA−cb

B(ts)+pa
M(λ)||. Given that the axes of the stadiums are 

cycloid-like, if A’s angular displacement is lower than π, 
then ||cA−cb

B(ts)+pa
M(λ)|| with λ∈[0,1], contains, in the worst 

case, one maximum and one minimum (apart from the 
extremes of the search interval). Consequently, if such a 
condition is false, then A and B motions are properly divided 
before running the distance-computation algorithms. 

Note that while Secant method iterates, it is trivial to de-
tect if the root being searched is a maximum or a minimum. 

As a consequence of dealing with cycloid-like axes, 
support function h'M(η) has to be updated in the AL-GJK and 
ALin-GJK algorithms as follows 
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Fig. 5.  Distance between two mobile objects. A’s motion is arc-like. B’s 
motion is linear. The motions are defined by ωA(ts)=−18º/s, αA=−0.5º/s2, 
||vB(ts)||=3 m/s, aB=1 m/s2, ts=0 s and Δt=5 s. (a) A and B positions are only 
depicted at ts, 0.6s, 1.1s, 2s, 1.6s and 2.1s. The positions where A and B are 
at their MTD are in red. The MTD of penetration dO

M is given at tO
M=1.1s. 

(b) Cycloid-like axes of the corresponding eight stadiums in SM(t) and the 
distance dO

M. For clarity, only extremes circles, axis, and edge of the closest 
external stadium to O are depicted. 

 
Two objects, A and B, following respectively arc-like and 

linear motions with constant accelerations, s-tope SM(t), and 
the positions where A and B are at their MTD are shown in 
fig. 5. A is modeled by a 4-order s-tope (potytope), while B 
is a 2-order s-tope. dO

M and tO
M have been obtained in 17.6 

μs in an Intel® CoreTM 2 Duo E8200 processor at 2.66 GHz. 

V. DISTANCE BETWEEN TWO OBJECTS FOLLOWING ARC-
LIKE MOTIONS WITH CONSTANT ANGULAR ACCELERATION 
The computation of the distance between two objects 

following arc-like motions with constant angular accelera-
tions is tackled in this Section.  

Let A be an object modeled by an n-order s-tope whose 
arc-like motions is the same that the given in the previous 
Section.  

And, let B be an object following an arc-like motion and 
modeled by an m-order s-tope. B’s position at ts is given by 
SB(ts)={s0

B(ts),s1
B(ts),…,sm−1

B(ts)}. cj
B(ts)∈ℜ2 and rj

B∈ℜ are 
respectively the centers and radii of circles sj

B(ts), ∀j. B’s 
arc-like motion is centered at cB. With respect to cB, each 
center ci

B(ts) is expressed by a radius ρj
B and angle θj

B(ts). 
B’s angular speed at ts is ωB(ts)∈ℜ. B’s constant angular 
acceleration is αB∈ℜ. 

Assuming a time horizon Δt, positions SB(t)={(cj
B(t),rj

B), 
∀j} for all t∈[ts,ts+Δt] are parameterized by λ∈[0,1] 
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[0,1]λ  and   ],[  ;λ:    
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If signs of the angular speed and acceleration are diffe 

 

           
 

Fig. 6.  Distance between two objects with arc-like motions. The motions 
are described by ωA(ts)=50º/s,αA=5º/s2, ωB(ts)=−30º/s, aB=−2.5º/s2, ts=0s, and 
Δt=3s. (a) A and B positions are only depicted at ts, 1s, 1.5s, 2s, and 2.5s. 
The positions, where A and B are at their MTD, are in red. The MTD, dO

M, 
is given at tO

M=2s. (b) Rose-like axes of the eight stadiums in SM(t) and the 
distance dO

M (at a different scale). For clarity, only extremes circles, axis, 
and partially the edge of the closest external stadium to O are depicted. 
 
rent, and depending on Δt, an arc-like motion might change, 
for instance, from going clockwise to counterclockwise. If 
this situation happens, then A and B motions have to be 
divided. Only motions without these changes are considered. 

The axes of the stadiums in SM(t) are now rose-like 
(rhodonea curve) [15]. SM(t) has n×m different axes 
pij

M(λ)∈ℜ2 ∀i,j. These axes are parameterized by λ∈[0,1] as 
 

)))(θsin()),(θ(cos()))(θsin()),(θ(cos()λ( jjjiiiij ttttp BBBAAAM ρρ −= (22) 
 

where t=ts+λ·Δt. The angles θi
A(t) and θj

B(t) are respectively 
given by (17) and (21). Each stadium is defined by a start 
point ci

A(ts)−cj
B(ts), a radius ri

A+rj
B, and an axis pij

M(λ).  
The instant in time when A and B are at their MTD is 

obtained by applying the AA-GJK and AAin-GJK algorithms. 
These algorithms are analogous to LL-GJK and LLin-GJK. 

The subdistance_algorithm and subdistance_in_algorithm 
now compute the distance between O and a stadium whose 
axis is rose-like. Let ca

A(ts)−cb
B(ts) with (ca

A(ts),ra
A)∈SA(ts) 

and (cb
B(ts),rb

B)∈SB(ts), radius ra
A+rb

B, and axis pab
M(λ) be a 

stadium. This distance is obtained by finding λc that minimi-
zes ||cA−cB+pab

M(λ)||, i.e. by applying the Secant method to 
 

0λ||)λ(|| =+− dpccd M
abBA

 
   (23) 

 
As axes of the stadiums are rose-like, if A and B angular 

displacements are lower than π, then ||cA−cb
B(ts)+pa

M(λ)|| 
with λ∈[0,1] contains, in the worst case, one maximum and 
minimum (apart from the extremes of the interval of search). 
If this condition is not true, then A and B motions have to be 
divided before running the distance-computation algorithms. 

Given that rose-like axes are being dealt, support function 
h'M(η,λc) in the AA-GJK and AAin-GJK algorithms is updated  
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Fig. 7.  Computational cost of the algorithms. 
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Fig. 8.  Average number of iterations in the algorithms per distance 
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Fig. 9.  Average number of iterations in the Secant method per distance. 
 

constant accelerations, s-tope SM(t), and the positions where 
A and B are at their MTD are shown in fig. 6. A is modeled 
by a 4-order s-tope (polytope), while B is a 2-order s-tope. 
dO

M and tO
M have been obtained in 16.5 μs in an Intel® 

CoreTM 2 Duo E8200 processor at 2.66 GHz.  

VI. ALGORITHM ANALYSIS 
All the support functions in this paper verify  
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where SA(t), SB(t) represent A and B positions at t=ts+λc·Δt. 
Proof of (25) is trivial. As a consequence of conditions in 
(25), s-tope SM(t) does not need to be compute before 
running any of the LL-GJK, LLin-GJK, AL-GJK, ALin-GJK, 
AA-GJK, and AAin-GJK algorithms. And then, complexity of 
all these algorithm is O(n+m) instead of O(n×m).  

These algorithms are implemented in C and run in an Intel 
Core 2 Duo E8200 processor at 2.66 GHz. The objects and 
motions have been generated randomly. More than 1,500 
different experiments have been run. 

The runtime of the algorithms per each computed distance 
is shown in fig. 7. The complexity of the algorithms is linear 
with respect to the total number of circles modeling both 
objects. 

The total number of iterations in all the algorithms is 
stable. Fig. 8 shows the average number of iterations per 

each computed distance. The iterations in the Secant method 
are also stable. See fig. 9.  

VII. CONCLUSION 
This paper has shown a method for detecting a collision 

between two mobile objects without stepping their motions. 
Specifically, this method obtains the instant in time two obj-
ects in motion are at their minimum translational distance of 
separation or penetration. The mentioned distance and time 
instant are parallely computed. The distance’s sign encodes 
if objects collide or not. 

Objects are modeled by bi-dimensional convex hulls. 
Their motions are non-holonomic (linear or arc-like) with 
constant accelerations. The positions of the objects are 
assumed to be measurable and their motions are estimable. 

Some experiments have been run to conclude that the 
method is stable in the number of iterations. And, it is fast 
enough to be run as frequent as new information from the 
sensors system is receive. 

This method is also able to compute the instant in time of 
the first contact by forcing the distance to be zero. A future 
extension of this work consists of updating it to deal with 
non-convex objects.  

REFERENCES 
[1] D. Ferguson, T. M. Howard and M. Likhachev, “Motion planning in 

urban environment: Part I,” in Proc. IEEE/RSJ Int. Conf. on Intelligent 
Robots and Systems, 2008, pp. 1063-1069. 

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, et al., “Autonomous 
driving in urban environments: Boss and the urban challenge”. 
Journal of Field Rob., vol. 25, nº 8, pp. 425-466, 2008. 

[3] F. Schwarzer, M. Saha, J-C. Latombe, “Adaptive dynamic collision 
checking for single and multiple articulated robots in complex enviro-
nments,” IEEE Trans. on Robotics, vol. 21, nº 3, pp. 338-353, 2005. 

[4] P. Jimenez, F. Thomas, C. Torras, “3D collision detection: a survey,” 
Comput. Graph., vol. 25, pp 269-285, 2001. 

[5] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision 
detection between rigid bodies,” Computer Graphic Forum, vol. 21, 
no. 3, pp. 279-288, 2002. 

[6] J. Canny, “Collision detection for moving polyhedra,” IEEE Trans. 
Pattern Anal. Machine Intell., vol. 8, nº 2, pp. 200–209, 1986. 

[7] Y-K. Choi, W. Wang, Y. Liu and M-S. Kim, “Continuous collision 
detection for two moving elliptic disks,” IEEE Trans. Robotics, vol. 
22, nº 2, pp. 213-224, 2006. 

[8] S. Cameron and R. K. Culley, “Determining the minimum transla-
tional distance between two convex polyhedral,” in Proc. IEEE Int. 
Conf. on Robotics and Automation, 1986, pp. 591-596. 

[9] E. J. Bernabeu, “Fast generation of multiple collision-free and linear 
trajectories in dynamic environments,” IEEE Trans. Robotics, vol. 25, 
nº 4, pp. 967-975, 2009. 

[10] E. G. Gilbert, D. W. Johnson, S. S. Keerthi, "A fast procedure for 
computing the distance between complex objects in three-dimensional 
space," IEEE Journal Robot. & Autom., vol. 4, nº 2, pp 193-203, 1988. 

[11] G. J. Hamlin, R. B. Kelley, and J. Tornero, "Efficient distance calcu-
lation using spherically-extended polytope (s-tope) model," in Proc. 
IEEE Int. Conf. on Robotics and Automation, 1992, pp. 2502-2507. 

[12] E. J. Bernabeu and J. Tornero, “Hough transform for distance compu-
tation and collision avoidance,” IEEE Trans. Robotics & Automation, 
vol. 18, nº. 3, pp. 393-398, 2002. 

[13] http://www.mathworld.wolfram.com/Stadium.html 
[14] J. H. Mathews, Numerical Methods for Computer Science, Engine-

ering and Mathematics Prentice Hall, 1987, pp. 59-74. 
[15] http://www.mathworld.wolfram.com/Rose.html. 

Total number of circles (n+m) modeling the involved objects 

Total number of circles (n+m) modeling the involved objects 

Total number of circles (n+m) modeling the involved objects 

4034


