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Abstract— This paper reports on an autonomous mobile
robot embodying a simple instantiation of the Double Hybrid
Control Architecture, with a living animal in the control loop
for improving robot navigational capabilities.

In particular, a Carassius auratus (common Goldfish) receives
a natural visual feedback from the environment, while its
motor reactions, acquired by a digital camera and adequately
processed, are mapped into motor commands, which are fed as
inputs to the robot controller.

Both the hardware and the software required for robot
control is presented, as well as preliminary experimental data
demonstrating the viability of the proposed approach.

Index Terms— Biorobotics; double hybrid control architec-
ture; exploratory robotics.

I. INTRODUCTION

Robots are indispensable in scenarios that may be in-
tolerably dangerous or non viable for humans, such as in
space exploration or in hostile environments. Autonomous
robots are also helpful in the exploration of impervious small
cavities, e.g. through debris in rescue operations.

In such scenarios it is desired that robots exhibit au-
tonomous and effective navigational capabilities, adapting
their behaviour according to the unpredictable and complex
features of the unstructured environment.

If we consider nature, we see that even simple animal
forms exhibit remarkable navigational skills with a striking
robustness. Such performance is often unparalleled by ex-
isting control strategies. A possible approach to reduce the
performance gap between the biological realm and robotics,
pursued in this paper, consists in embedding animals ca-
pabilities in a robot, by physically integrating a biological
organism in a proper control scheme. Once all relevant
ethical issues related to the use of living animals are properly
taken into account, a number of technical challenges must
be considered. In particular, in order to harvest the potentials
of the animal intelligence, it is necessary to provide it with a
proper sensory flow. Then, it is necessary to adequately inter-
face the animal to the robot in order to extract a sequence of
motor commands coherent with the data processing occurred
in the animal’s brain.

In this paper we show that the proper choice of the
animal can simplify the design of the robot in the case
sensory information can be directly gathered by the animal
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sensory apparatus and motor commands can be decoded from
animal’s motions by means of a minimally invasive visual
inspection.

The robot described in this paper comprises a platform
hosting a transparent fish-bowl, where a Carassius auratus
(Goldfish) is free to move according to the environmental vi-
sual cues it perceives. The motion of the Goldfish is captured
by a digital camera mounted on the same platform and it is
mapped into motor commands fed to the platform controller.
We show that with this simple scheme the platform is able
to move according to the fish intentions, exhibiting useful
navigational behaviours (namely, obstacle avoidance) with
no need for algorithmic computation.

A quick overview of the state of the art on control
architectures with animal in the loop is provided in Sec.
II. The actual prototype used to perform preliminary tests is
described in Sec. III, while preliminary experimental data are
reported in Sec. IV. Finally, a discussion about the prototype
developed and future work is presented in Sec. V.

II. BACKGROUND ON ANIMAL-MACHINE
INTERFACES

A neural interface comprises a number of electrodes
implanted into the nervous system. As such, it is an invasive
interface, implying non trivial ethical issues, that impacts
the integrity of the animal and, expectedly, its capability to
behave and/or process information in a natural way.

On the contrary, a natural interface may be regarded as
a synthetic environment that is minimally invasive to the
animal, which is free to react to external stimuli according
to its neural processes. The natural interface maps the robot’s
sensors data into a sensory flow that is natural and intelligible
for the animal; on the other way, the interface maps animal’s
behaviours into proper motor commands sent to the robot.

To our knowledge, only one example of natural interfaces
used for robot navigation tasks has been presented so far.
The robot, developed at the Concept Lab at the University
of California at Irvine [2], is a mobile platform equipped
with distance sensors. It hosts an insect of the Blattaria order
(cockroach) held by a rigid support over a trackball, which
is put in motion by insect legs. The trackball codes animal’s
movements into electric signals, which are used as motor
commands for the robotic platform. A LCD panel provides
to the (photophobe) insect a coherent mapping of the external
environment, perceived through the robotic platform sensors.

An example of neural interfacing is presented in [3], where
biolectrical signals from a moth are read by implantable
electrodes and mapped into motor commands. The insect
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Fig. 1. Block diagram representing the elements oft the Double hybrid
architecture.

is provided with a desired sensory input flow through a
revolving wall with vertical stripes.

The two mentioned examples are very interesting because
they successfully attempt at harvesting insects pre-developed
intelligence for navigation purposes. Nevertheless, it must be
recognized that important advances in artificial intelligence
and mechatronics occurred over the past years. It is therefore
expected that the full potentiality of robots with animal-in-
the-loop control will be better harvested when an optimal
interaction will be achieved between the artificial and the
biological systems.

A theoretical investigation on how achieving this goal
has been recently reported, with the introduction of the
concept of Double Hybrid Architecture [1]. The name of
the proposed architecture refers to two hybridity relations:
deliberative-reactive and animal-machine. As known, the
deliberative-reactive paradigm seeks the emergence of com-
plex behaviours with no need for global planning, which is
critical in unstructured environments.

In the Double Hybrid Control Architecture, deliberative
and reactive control functions are respectively demanded to
the biological and the artificial components, which bidirec-
tionally exchange information as shown in fig. 1. In the most
general case, the information exchange can be achieved by
concurrently using neural and natural interfaces, while an
executive controller takes care of fusing and managing the
outputs from the low-level and high-level controllers.

This paper presents a simplified instantiation of the Double
Hybrid Architecture, where only motor mapping is required:
the animal receives inputs from the environment using its
own eyes, and no invasive interfaces are used. By exploring
the responses of the animal to external stimuli while em-
bedded in a moving platform it is possible to experimentally
investigate which behaviours emerge that can be exploited
for enhancing navigational capabilities. Such information
provide the necessary design hints for the development of

Fig. 2. Schematic of the system.

the mechatronic system, inclusive of navigation algorithms.

III. ROBOT DESIGN

A. Choice of the biological component

The Carassius auratus (goldfish) has a relatively complex
and pliant to environmental changes cognitive apparatus
[4] and even basic calculation capabilities [5]. Although it
elaborates no abstract models of previous experiences, it can
keep short term memories of episodes, classifying them as
negative (e.g. dangers) or positive (e.g. food).

While navigating, many fishes are able to recognize both
geometrical and featural environment cues [7]. Such ca-
pabilities have also been demonstrated for the Carassius
auratus [10], which can react to static and dynamic aspects
of the visually perceived environment. Fishes in general
have lateral eyes allowing an almost 360◦ visual field [6].
Anyhow, the angle of stereoscopic vision is comparatively
small: about ±15◦. As a consequence, the head of the fish
is always oriented towards the object that is stereoscopically
observed. This feature simplifies the understanding of where
the attention of the animal is most likely being directed
during demanding tasks.

B. Robotic platform

A schematic of the hardware is shown in fig. 2. The
battery-operated robotic platform is assembled using a devel-
opment kit (Robotech s.r.l., model RDS-X01). The platform
has a horizontal rectangular surface (20 cm×40 cm) support-
ing the fish-bowl (glass cylinder, internal diameter: 15 cm).
The fish-bowl is placed symmetrically on the platform and
its axis intersects the axis of the wheels. In this way, the
rotation of the platform does not cause any inertial effect on
the water, which is only slightly perturbed by small viscous
effects.

The bottom part of the horizontal surface hosts: two DC
gearmotors (reduction ratio 100:1) connected to the driving
wheels; an idle wheel providing mechanical support; a micro-
controller (PIC 16F877A); a power amplifier; four batteries
(1, 5V ). A camera (352 × 288 pixels, 30 frame s−1) is
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Fig. 3. Overview of the actual system.

supported by a frame connected to the base in such a way
it has a horizontal view plane, overlooking the fish-bowl.
The frames are sent to a PC via USB connection. Motor
commands are sent from the PC to the microcontroller via
RS232.

C. Mapping strategy

The motor mapping module is based on the analysis of
the images of fish motions, as better described in Sec. III-
D. Several motor mapping strategies can be devised and
have been experimentally tested. We limit our description
to the one actually implemented. Unfortunately, there is
no available literature on how inferring fishes’ cognitive
mechanisms from their movements. Nonetheless, it can be
observed that the fish, besides standing still, exhibits two
basic behaviours: quick rotation in place (up to ±180◦) and
straight swimming. The chosen motor strategy hinges around
the detection of such behaviours. The validity of the choice
is confirmed a posteriori by observing how the implemented
motor mapping strategy actually leads to useful behaviours
(i.e. escape from approaching obstacles, as better detailed in
Sec. IV).

In order to describe the selected motor mapping strategy,
we first need to introduce a few symbols.
• BVW (Binocular Vision Window): is the narrow (±15◦)

angular sector where the fish has binocular vision ca-
pability;

• p is the orientation vector parallel to BVW median axis
and oriented in the tail-to-head direction;

• q is the vector oriented as the longitudinal axis of the
robot;

• ϑ is the (smallest) angle between p and q;
• R is the inner radius of the cylindrical fish-bowl;
• r is the radius of the circle C centred with the fish-bowl,
r < R;

• P is the center of mass of the fish.
The above mentioned basic behaviours exhibited by the

fish can be replicated in the robotic platform using the
following strategy. If q is outside BVW, the robot rotates

Fig. 4. Example frame reporting the variables used for motor mapping
strategy.

around a vertical axis coincident with the fish-bowl axis, until
q is within BVW1. Then, two cases may occur. If P is in C
(i.e. far from the fish-bowl wall), the robot does not move,
otherwise it translates along p with constant speed. In this
way the robot moves only if fish head is sufficiently close to
the fish-bowl wall, otherwise (i.e. if P is in C and the head
is far from the wall) the fish is not expectedly focusing on
a specific target in the environment, and therefore there is
presumably no need for moving.

In summary, three basic behaviours, resembling those
exhibited by the fish, are allowed to the robot: 1. standing
still; 2. turning around a vertical axis; 3. straight moving
with constant speed.

D. Image analysis

An example frame acquired by the camera is shown in
fig. 4. The objective of the image processing module is to
extract the geometric features necessary for robot motion
control, namely ϑ, P and (p).

The first step consists in detecting fish body. Each acquired
frame is a RGB image, structured as an array of three 352×
288 matrices, denoted by the symbols: FR, FG and FB ,
where the superscripts stand for the corresponding colour
(Red, Green or Blue). The fish body corresponds to the frame
region where the red colour is dominant. The original frame
is filtered to produce a binary matrix D given by the boolean
assignment:

Di,j =
(
FR

i,j > α1F
G
i,j + α2F

B
i,j

)
where the coefficients α1 and α2 have been experimentally
determined (α1 = α2 = 1.0) in order to minimize the effect
of spurious optical effects (e.g. reflections).

The dominantly red pixels in the original RGB image (F )
correspond to the non-zero elements of the resulting matrix
D. Such filtering is computationally efficient2 and robust
with regards to environmental lightning changes. Image
ground noise is then filtered by eliminating clusters of less

1q reaches the closest boundary of the BVW with a non zero speed; the
resulting overshoot assures that q actually enters BVW.

2The time required for processing each frame on an Intel Core 2 duo
processor, 1.66 GHz, 2 Gb RAM is about 3 ms.
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than 200 pixels using the Matlab bwareopen command. The
center of mass P and the angle ϑ are retrieved from D using
the regionsprops Matlab command. The extraction of such
features requires about 25ms.

Orientation vector p is calculated by first localizing the
position of fish head with respect to the caudal fin. The head
is localized by exploiting body asymmetry (head is quite
larger than caudal fin) using a morphological manipulation
of the image, based on dilatation and erosion operations,
using a disc shaped structuring element that is approximately
equal in size to fish head. The orientation of p is the same
of the vector connecting P to the center of such disc. This
operation requires about 25 ms.

E. Modelling and control

The replication by the mobile platform of the three desired
behaviours described in par. III-C is demanded to the low
level control module. Since two of the three behaviours,
namely standing still and straight motion, can be trivially
implemented, we focus here only on how turning behaviour,
which aims at tracking fish angular position, is achieved.

DC motors are powered in PWM. Pure rotation is achieved
by powering both motors with opposite voltages and the
same duty cycle, which is modulated by a PD controller
to regulate the angular speed.

A trial-and-error approach has been used in order to tune
both the proportional (Kp) and derivative (Kd) coefficients
of the PD controller. A first estimation of such parameters
has been done in simulation, using a model of the system.
The final tuning of the parameters has been performed on
the actual hardware.

A simple electro-mechanical model for DC motors is given
in eqs. (1) and (2):

V = R i+ L
di

dt
+Kaω (1)

Jω̇ + bω = Kai+ Tm (2)

Equation (1) relates supplied voltage (V ) to armature
current (i) and shaft’s angular speed (ω) through the electric
resistance (R), the inductance (L) and the armature constant
(Ka). In (2), J is the sum of the shaft intrinsic inertia Is,
provided by the manufacturer (Is = 0.5 10−6 kgm2) and the
equivalent inertia of the robot as seen at motor shaft (Ieq);
b is the friction constant and Tm is the load torque applied
to the shaft. Since only an inertial load is present during
rotation, Tm = 0.

Not all the parameters appearing in (1) and (2) are
available on the motors datasheet. Therefore, preliminary
measurements were made. In particular, R was measured
with a multimeter when drive shaft is blocked (e = 0) and
electric transient is extinguished (i.e. di

dt = 0). We found:
R = 0.85 Ω.
L was measured by blocking the drive shaft (e = 0)

and applying a step voltage. L was calculated by measuring
the time constant of the voltage at the brushes: L =
3.52 10−4 H .

To measure armature constant Ka, DC motors were used
as dynamos: their shaft was put into rotation by an exter-
nal motor controlled at constant speed (ω = 120 rpm).
Being ω = const, di

dt = 0. Motors were connected to a
voltmeter providing V . Being i ≈ 0, we got Ka = V/ω =
5 10−3 V s/rad.

Friction constant (b) was calculated by measuring i when
dω
dt = 0 and Tm = 0: b = 2.5 10−6 Nms.

As it regards Ieq , we first evaluated the moment of inertia
of the robot with respect to the rotation axis (Ir) and then
its equivalent Ieq as seen at the shaft. Some approximations
were used for evaluating Ir. During pure rotation water is
fixed with respect to an inertial frame of reference3 and
therefore its mass does not contribute to robot moment of
inertia (Ir). The fish-bowl is therefore modelled as a hollow
cylinder. The other components (batteries, motors, frame,
camera) are approximated to homogeneous parallelepipeds
and spheres. Their moment of inertia is referred to the robot
axis of rotation through Huygens-Steiner theorem. In this
way we got: Ir = 1.11 10−2kgm2.

With reference to fig. 2, robot inertia at drive shaft (Ieq)
can be evaluated considering the radius of the wheels (R),
the distance between the wheels (L) and the reduction ratio
of the gear train connected to the motors (τ = 100 : 1)4.
After simple calculations, one gets:

Ieq = 2
IrR

2

L2τ2
= 0.4 10−7 kgm2 (3)

Therefore, J = Is + Ieq = 0.54 10−6 kgm2.
The reduction gear is fabricated by serially assembling

7 moulded plastic gears, forming 6 meshes. If η1 is the
kinematic efficiency of a single mesh, the overall reduction
gear efficiency is η = η6

1 . The actual value of η1 is unknown
and its value has been set to match model predictions with
measured data. In particular, robot angular speed for different
input voltages was measured and compared to model predic-
tions. η1 was adjusted to have a residual mean error of less
than 5◦/s. With this procedure we found η1 = 0.30.

By introducing the effect of friction, and recalling that
Tm = 0, eq. (2) reduces to:

Jω̇ + bω = ηKai (4)

F. Preliminary evaluation of control parameters by simula-
tion

In order to get a preliminary choice of Kp and Kd, 6
constant angular positions (from 30◦ to 180◦ with increments
of 30◦ ) were provided as reference for the control. The
simulated position of the robot was retrieved from the model
every 100ms, since this is the time interval, experimentally
evaluated, required to calculate fish position by image pro-
cessing (about 53 ms) and to send appropriate commands to
motors (about 45 ms).

3The low viscosity of water assures that the moment generated by viscous
shear stress during robot rotation is negligible.

4Wheels inertia is negligible.
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Fig. 5. Trajectory tracking using robot model.

Fig. 6. Actual robot trajectory tracking.

The optimal parameters, in terms of rise time, overshoot
and stability, change with step amplitude. Anyhow, a good
compromise for all amplitudes occurs when Kd

∼= 0.1Kp.
To find the actual values of the parameters, the tracking of

recorded fish movements was simulated, using robot model,
and looking for the least average absolute position error. The
optimal values for Kp and Kd found are respectively 3.5 and
0.4, which correspond to an average absolute position error
smaller than 1◦. An example plot of simulated trajectory
tracking is shown in fig. 5.

IV. EXPERIMENTAL RESULTS

A first session of experimental trials was performed with
the of finely tuning the control parameters. In order to have
a repeatable scheme, absolute fish movements (with respect
to an inertial observer) were recorded using the camera
mounted on the platform for 50 s. By applying the video
processing procedure, described in Sec. III-D, the absolute
trajectory of the fish was calculated off-line and recorded.

Then, a printed image of the fish was connected to a fixed
support and exposed to the camera. During robot rotation, the
fish picture, which is fixed for an inertial observer, rotates
with respect to the robot. The angular relative position is
calculated on-line using the video processing procedure. This
assures that the update time is the same as in the real
scenario, where the processing procedure is applied on-line
to the actual fish video, because the video of the (relatively)
rotating fish image is processed using the same procedure
that would be used if the camera was looking at the fish.

With this set-up, both fish and robot’s movements are
observed with respect to an inertial reference frame, and
it is possible to extract ϑ. By controlling the robot using
the parameters found in simulation, the mean angular error
results to be about 11.5◦.

Fig. 7. Error in trajectory tracking during an experimental session with
the Carassius auratus.

Fig. 8. Example experimental trajectories of the robot when an obstacle is
approaching along the direction indicated by the grey vertical arrows. The
position of the robot is extracted from a fixed videocamera every 270 ms.

A finer tuning of the control parameters (ultimately set
to Kp = 2.9 and Kd = 0.3) was performed by trial-and-
error until a minimum error was reached (mean value: 7.0◦;
σ = 7.52◦) (fig 6).

A second session of experimental trials was performed
by letting the fish actually control the robot. In this session
the three fish behaviours were implemented (i.e. standing
still; straight motion; turning). Thanks to the low viscosity of
water, the rotation of the robot does not cause any rotation of
the liquid, thus assuring a minimal perturbation of the fish’s
environment5.

An example plot of the tracking error corresponding to
these tests is shown in fig. 7.

As shown in fig. 7 the peak error is of about ±40◦. Such
a high value is basically due to the ability of the fish to
perform quick and large rotations (up to 180◦ in less than
1 s), while the maximum angular speed of the robot is about
120◦/s.

A final experimental session consisted in approaching
coloured boxes (approx. 30 cm × 30 cm × 30 cm) to the
robot while it was freely wandering, in order to simulate
unknown dynamical obstacles. The boxes where manually
moved toward the robot, with an estimated average speed of
1 m/s 6, and stopped about 10 cm from it.

Typical responses of the robot are shown in fig. 8, where
obstacles’ direction of motion is indicated by the vertical
grey arrows.

The robot, relying on the sole response of the fish,
successfully changes its trajectory in order to avoid collisions
(fig. 8). As the experiment is repeated over and over, the

5On the contrary, linear accelerations cause perturbations in the form of
non-vertical pressure gradients; anyhow linear accelerations have a short
duration thanks to the high reduction ratio of the motor reduction gears.

6Approaching velocity does not appreciably influence the response of the
robot.
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response of the fish becomes less escape-oriented and, after
about 5 repetitions, it appears to be curiosity-driven, with the
fish approaching the box and even following it in case it is
slowly moved away. The former escape-oriented behaviour
is recovered as soon as the colour of the box is changed.

V. DISCUSSION

By comparing fig. 5 and fig. 6, we observe that the latter
shows a greater residual error. This is due to a number
of factors that were not taken into consideration in the
modelling phase.

First of all, the robotic platform provides an angular
acceleration that is too low compared to that required by
the specific animal. Besides, the reduction gears used have
a non negligible back-slash, that hinders prompt reactions.
Moreover, fish position detection is often affected by errors
caused by specific lightning condition, as well as by the
undulation of the water surface, which produces spurious
optical effects. Finally, static friction, not taken into consid-
eration in (2), blocks robot motion when the voltage is below
a given value, impeding small rotations.

Nonetheless, the experimental mean error (7◦) found in
tracking appears to be acceptable, because a number of
tests proved that the robot was able to replicate the fish
behaviour. This allows the interaction of the animal with
surrounding environment in a coherent way, with particular
regard to dynamic situations requiring the avoidance of
approaching objects. Anyhow, a deep investigation on the
actual capabilities of the Carassius auratus in navigational
contexts, has still to be performed.

VI. CONCLUSIONS AND FUTURE WORK

For the first time, a higher than insect animal form, kept
in ecological conditions, is inserted in a control loop. The
robot presented in this paper embodies an animal-in-the-loop
control architecture, which can be considered as a simplified
instance of the Double Hybrid Control Architecture where
input channels coincide with the animal own sensors, and
motor commands are extracted by observing the animal
motions (motor mapping), with no need for invasive, tethered
sensors.

A detailed description of the control strategy is provided,
as well as the computational technique used to extract fish’s
center of mass (P ) and orientation (p). Such data are fed
as input to the robot control, whose objective is to have
the robot replicating the basic fish movements (stand still;
rotate; straight swimming). A number of experimental tests
allowed the fine tuning of control parameters, as well as the
evaluation of the mean tracking error (about 7◦).

Experiments have shown that the robot replicates fish’s
obstacle-avoidance behaviour. Quite interestingly, the learn-
ing capabilities of the fish allows the robot to discriminate
erratic from repetitive dynamic obstacles. In the first case,
the robot exhibits a cautious behaviour, characterized by
quick trajectory changes in order to avoid the obstacle; in the
second case, the robot exhibits a behaviour characterised by
curiosity, getting close or even following the moving objects.

Compared to existing navigation strategies, such as those
implemented in autonomous vehicles moving in fully un-
structured environments or in urban sets, the behaviour of
the robot is not goal-oriented, i.e. the fish is not taught a
specific objective to pursue.

Anyhow, in line with the rationale of the Double Hybrid
Control Architecture, robust and goal-oriented behaviours of
autonomous robots can be achieved by adequately merg-
ing algorithmic capabilities, which can be embedded in
the mechatronic platform, with the natural capabilities of
the biological organism, especially in terms of reaction to
unpredictable events.

To this aim, the preliminary investigation of animal’s
reactions is mandatory. One simple approach consists, as
in this paper, in observing emergent behaviours while the
robot merely replicates the behaviours of the animal, which is
left free to explore an environment. More refined approaches
can be borrowed from Ethology, which could also provide
important hints for the selection of the most appropriate
animal forms for specific exploratory tasks.
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