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Abstract—This paper presents a method for catadioptric line
matching across multiple images. While most of previous works
deals with vertical lines and planar motion, our approach is able
to match any kind of lines between two views separated by a
rigid transformation without any prior knowledge of the epipolar
geometry. Catadioptric lines are represented by their normals in
sphere space and we use only these normals and their relative
positions in order to perform the matching. A geometric hashing
approach allows in the first image to construct hashing tables
based on bases defined by every possible couples of normals.
In the second image, a voting scheme permits to select the
best corresponding bases and subsequently to match catadioptric
lines. We show that the proposed representation is invariant in the
case of a pure rotation and quasi-invariant for a combination of
rotation and translation. We also propose different experimental
results obtained in real time on real outdoor sequences.

I. INTRODUCTION

Straight line segments are very useful features in computer
vision and in robotic applications. They are particularly suit-
able for man made environments and allow to perform 3D
reconstruction or motion estimation between three images [5]
[15] or two images under some hypotheses [21] [34]. Line
segments are generally less numerous than interest points but
richer in information. Moreover, their detection is very reliable
according to their orientation. Despite these advantages, line
matching is a particularly difficult problem and only few works
have been proposed in literature. These difficulties proceed
from different reasons such as the inaccuracy of the endpoint
extraction, the poor geometric disambiguity constrain and
the lack of significant photometric information in the local
neighborhood. Consequently, there is no real reference method
as in the case of points, but we can separate line matching
methods into two classes. The first class includes methods
which perform the matching of each line separately [2] [23]
[33] while the second corresponds to groups of line matching
methods [22] [18] [13].

Catadioptric sensors have taken for many years a growing
importance in applications such as SLAM (Simultaneous Lo-
calization And Mapping) [19], 3D reconstruction [20], visual
servoing [14], rotation estimation [10] [8] and we know that
catadioptric lines have some interesting properties such as the
projection of vanishing points in the image. In the case of
catadioptric images, 3D straight lines are projected into con-
ics. Consequently, the majority of catadioptric line matching

methods deals only with 3D lines parallel to the optical axis
[9] [17] [25] [26] [27] [31]. Indeed, in this case conics are
degenerated into radial lines. Similarly than the perspective
case, catadioptric line matching methods are also divided in
two classes respectively based on a separate matching [26]
[27] and on group matching [9].

In the case of individual matching, geometric attributes of
the lines such as length, orientation, overlapping were first
used [1] [2] [23]. These methods are based on the prediction-
verification techniques which consist in assuming some initial
matchings and in growing the set of matchings. The inital
matchings are generally based on local properties while the
verification is based on more global constrains. More recently,
some works have been done in order to develop stable descrip-
tors which can described efficiently line segments between
different perspective views [12] [30] or catadioptric views [26]
[27]. However, most of these methods [12] [26] [27] deal with
vertical lines only. Due to the distorsions of the catadioptric
images, this kind of methods based on descriptors, correlation
or geometric attributes are particularly inefficient in the case
of general lines.

Matching groups of lines allows to benefit from the sup-
plementary geometric information provided by their spatial
relationships [22] [18] [13]. However, these approaches are
very sensitive to the quality of detection. Other methods such
as [16] and [28] consider the epipolar geometry as known and
can then constrain the search space. In our case, the epipolar
geometry is not a priori known.

The work presented in this paper belongs to the group
of line matching category. We propose an invariant or
quasi-invariant representation of line groups if the motion is
respectively a rotation or a rigid transformation. We develop
an adaptation of the geometric hashing [18] applied to
the first image in order to build different indexing tables.
Geometric hashing consists in using some detected features
as a frame in order to express the other feature coordinates.
In our case, the features correspond to normals of great
circles in the sphere space which are the projections of 3D
lines. Two normals are then sufficient to form a basis and
to compute the spherical coordinates of the other normals.
These spherical coordinates are integrated in an hashing table
in order to provide a signature of the basis. Each couple of
normals is then represented by an hashing table. The second
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step is based on the peaking effect proposed in [7] which
describes the probability distributions of angles and length
ratios of two segments from random viewing directions. We
adapt this effect to the angle between normals of great circles
and use this phenomenon in the second image. The aim is
to find iteratively a pair of normals in the second image
which verifies the peak effect according to an other pair of
the first image. A voting method based on the hashing tables
is then used in order to verify the peaking effect. Once a
pair of bases has been matched between the two frames,
the other lines can be matched directly by a simple verification.

The main contributions of our method are the following :

• The method is not restricted to vertical lines and can treat
any oriented lines.

• The invariant or quasi-invariant representation allows to
support respectively rotations and rigid transformations
between the views. The quality of the matching is then
only bounded by the ratio between baseline and scene
depth. We show that the performances of the method
decrease slowly according to the length of the baseline.

• No prior knowledge about the epipolar geometry is
required. Only the intrinsic parameters are necessary in
order to compute the equivalent spherical image.

• The method is robust to luminance changes since we use
only geometric information.

• The method is very fast and proposes a real time line
matching.

The main limit of the method is the length of the baseline
according to the mean distance between the camera and the
3D lines. For a baseline with a length less than 30% of this
mean distance, the rate of correct matching between two
images is approximately equal to 85%. The performances
decrease severely beyond this limit. The second limitation is
the single viewpoint requirement of the sensor.

The rest of the paper is organized as follows. Section
2 is dedicated to the central catadioptric lines and their
properties during a camera motion. We present in Section 3 the
construction of indexing tables while Section 4 proposes our
voting method and the final matching. We show experimental
results on real sequences in Section 5 before a conclusion.

II. CENTRAL CATADIOPTRIC LINES AND THEIR
PROPERTIES

A. Catadioptric Line Formation and Detection

It has been proven that central catadioptric sensors with a
single point of view [3] can be represented by two projections
via a unitary sphere [11]. Consequently, 3D lines are projected
on the sphere as great circles and in the image plane as conics
[4]. In this way, catadioptric lines can be represented by the
normal of their equivalent great circle on the sphere if the
intrinsic parameters of the sensor are known. Besides, most of
the catadioptric line detection methods assume the knowledge
of the intrinsic parameters [6] [24] [29] [32]. In our case, we

use the adaptation of the polygonal approximation described
in [6] for our line detection. In the rest of the paper, we then
consider that a catadioptric line corresponds to a normal on
the unitary sphere.

B. Catadioptric Lines in Motion

This part deals with the behaviour of different normals
when the catadioptric sensor is in motion and analyzes their
relative spatial relations. In this way, we consider p lines in
the first image I1 and q lines in I2. We assume the motion
between I1 and I2 to be a rigid transformation (rotation R
and translation t).

Let ni with i = 1 . . . p be the normals of p lines (great
circles) in I1 and n

′
j with j = 1 . . . q the normals of q lines

(great circles) in I2.

Property

If i and j are matched ni ↔ n
′
j , then n

′
j ∼ Rni + t × Ru

where u is the direction of the corresponding 3D line.

1) Catadioptric Lines in Motion with Pure Rotation: If t =
0, n

′
j = Rni. Thus, if i1 and i2 are respectively matched with

j1 and j2, we have

n
′
j1 · n

′
j2 = Rni1 · Rni2 = ni1 · ni2 (1)

Proposition: A set of two matched lines is sufficient to
determine the other matching.

Hypothesis: n1 ↔ n
′
1

n2 ↔ n
′
2 (after rearrangement of vectors)

Let note N1 = {ni, i = 1 . . . p} the normal family in I1 and
N2 = {n′

j , j = 1 . . . q} the normal family in I2. We assume
two normals n1 and n2 in I1 such as n1 × n2 �= 0. Let pose
n3 = n1×(n1×n2). Then, {n1, n3, n1×n3} is an orthonormal
basis of N1.
In this way, we have

∀i = 1 . . . p, ni = (ni ·n1)n1 +(ni ·n3)n3 +(ni ·(n1×n3))n1×n3

(2)
Similarly :

∀j = 1 . . . q, n
′
i = (n

′
i ·n

′
1)n

′
1 +(n

′
i ·n

′
3)n

′
3+(n

′
i ·(n

′
1×n

′
3))n

′
1×n

′
3

(3)

Remark: Since ‖ni‖ = ‖n′
j‖ = 1, we can express 2 and

3 in spherical coordinates. In {n1, n3, n1 × n3}, ni has the
following coordinates (θi, ϕi), where

ϕi = arccos(ni · (n1 × n3))

θi =

⎧⎨
⎩

arccos ni·n1√
(ni·n1)2+(ni·n3)2

if ni · n3 ≥ 0

2π − arccos ni·n1√
(ni·n1)2+(ni·n3)2

if ni · n3 < 0

Property: If ni ↔ n
′
j then θi = θ

′
j and ϕi = ϕ

′
j . Thus, ni

and n
′
j have similar coordinates in their own basis.
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Proof: ni · n1 = n
′
j · n

′
1 (see 1)

ni · n2 = n
′
j · n

′
2

ni · n3 = ni · [(n1 · n2)n1 − n2]
= (n1 · n2)(ni · n1) − ni · n2

= (n
′
1 · n

′
2)(n

′
j · n

′
1) − n

′
j · n

′
2

= n
′
j · n

′
3

θi = θ
′
j

ni · (n1 × n3) = ni · [n1 × ((n1 · n2)n1 − n2)]
= −ni · (n1 × n2)

However, ‖n1 × n2‖ = | sin(n1 · n2)| = | sin(n
′
1 · n

′
2)| =

‖n′
1 × n

′
2‖, then

ni · (n1 × n3) = nj · (n′
1 × n

′
3)

ϕi = ϕ
′
j

Consequently, if we know two matched lines between I1 and
I2, the other matchings can be deduced by the comparison of
their spherical coordinates.

In order to find the initial set of two matched lines, we
propose a voting method approach. Consider the following
function :

δ
i,j,i

′
,j

′ (n, n
′
) =

{
1 if |θn

i,j − θn
′

i
′
,j

′ | < εθ and |ϕn
i,j − ϕn

′

i
′
,j

′ | < εϕ

0 else
(4)

Then, δi,j,i′ ,j′ (n, n
′
) = 1 if n and n

′
have the same spherical

coordinates up to respectively εθ and εϕ in their respective
bases {ni, ni×(ni×nj), ni×nj} and {n′

i, n
′
i×(n

′
i×n

′
j), n

′
i×

n
′
j}. We have then to find :

i, j, i
′
, j

′
/ arg max

i,j,i′ ,j′

np∑
n=n1

n
′
q∑

n′=n
′
1

δi,j,i′ ,j′ (n, n
′
). (5)

2) Catadioptric Lines in Motion Including Translation: In
this part, we aim at quantifying the influence of the translation
on the angle between normals since there is no more invari-
ance. This study is made according to the 3D line directions,
the orthogonal distance between 3D lines and the camera
center and the translation (we neglect the possible rotation
since we have demonstrated the invariance previously).

Then, for two distinct 3D lines, we have :

s
′
1n

′
1 = s1n1 + t × u1

s
′
2n

′
2 = s2n2 + t × u2

where si and s
′
i are scale factors. The normalized dot product

between n
′
1 and n

′
2 is equal to :

n
′
1 · n

′
2 =

s
′
1n

′
1 · s

′
2n

′
2

‖s′
1n

′
1‖‖s′

2n
′
2‖

=
(s1n1 + t × u1) · (s2n2 + t × u2)
‖s1n1 + t × u1‖‖s2n2 + t × u2‖

If we decompose t such as t = α1u1 + β1n1 + γ1n1 × u1,
we obtain :

s1n1 + t × u1 = s1n1 + β1(n1 × u1) + γ1(n1 × u1) × u1

= n1(s1 − γ1) + β1(n1 × u1)

and

‖s1n1 + t × u1‖2 = (s1 − γ1)2 + β2
1

Similarly, if we consider t = α2u2 + β2n2 + γ2(n2 × u2),
we obtain :

s2n2 + t × u2 = n2(s2 − γ2) + β2(n2 × u2)

and

‖s2n2 + t × u2‖2 = (s2 − γ2)2 + β2
2

Dot product is then equal to :

n
′
1 · n′

2 =
[n1(s1 − γ1) + β1(n1 × u1)] · [n2(s2 − γ2) + β2(n2 × u2)]√

((s1 − γ1)2 + β2
1)((s2 − γ2)2 + β2

2)

The behaviour of the normals depend then on the ratio
between s1, s2 related to the scene depth and β1, β2, γ1, γ2

related to the translation magnitude and orientation. For ex-
ample, if we consider that the scene depth is largely more
important than the magnitude of the translation, i.e. s1 �
γ1, s2 � γ2, s1 � β1, s2 � β2, then the dot product becomes
:

n
′
1 · n

′
2 	 n1 · n2 + ε, where ε 	 0

We have estimated the angle difference between two nor-
mals for 100000 simulations of any couple of 3D lines with
any possible translation (Figure 1). We can see that even for
a translation equal to the scene depth, the angle difference
between the normals in consecutive images is less than 20
degrees. Consequently, we propose to use the same voting
approach than in the pure rotation case in order to find the
initial set of two matched normals. The next parts are dedicated
to the implementation details of the algorithm.

III. HASHING TABLE CONSTRUCTION

Since we have demonstrated that knowing two matched
lines, we can deduce the other matchings, we propose to use
a geometric hashing algorithm [18] in order to find this set
of two initial matched normals. Geometric hashing consists
in selecting a set of features as basis and in expressing the
coordinates of the other features in this basis. In our case,
we know that we can form a basis from two normals. In this
way, if we consider every possible set of two normals in the
first image, the aim will consist in finding in the next image
a set of two normals corresponding to one of these basis in
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Fig. 1. Angle difference between two normals in consecutive views for
100000 trials.

Fig. 2. Example of an hashing table associated to a couple of normals. 10
other normals consitute the descriptor.

the first image. The hashing table is then the first step for the
characteristic function proposed in equation 4.

Rather than exploring every couple of normals in the first
image, we propose to select p normals associated to the longest
lines (the length is equivalent to the number of pixels) in
order to maximize the probability to find the same lines in
the next image. Among these p normals, we then consider
every combination of two normals to form different bases. For
each basis, we define a descriptor composed by the spherical
coordinates (θn

i,j , ϕ
n
i,j) of the p − 2 remaining normals. It is

worth noting that for each great circle, we consider its two
antipodal normals since it is impossible to disambiguate them
after a motion.

Each basis is then represented by a hashing table. The axes
of such a table correspond to the spherical coordinates in the
interval [0; 2π[ and

[−π
2 ; π

2

]
. The values of the hashing table

are binary. 1 corresponds to the presence of a normal n and
is applied to its neighborhood defined by parameters εθ and
εϕ as described in equation 4. Figure 3 illustrates a hashing
table associated to a couple of normals and described by 10
other normals.

Fig. 3. Example of voting for a couple of normals in the second image
according to all the frames in the first image.

IV. MATCHING

The matching is divided into two steps which are re-
spectively the initial basis matching by voting followed a
verification step. The voting part aims at solving equation 5 by
searching a basis of two normals in the second image which
corresponds to one of the bases proposed in the first image.
The verification step consists in matching the other normals.

A. Basis Matching by Voting

The method consists in considering the two longest cata-
dioptric lines and their normals i

′
, j

′
as a potential basis. We

choose the longest lines in order to maximise the probability to
select a frame already referenced in the first image. Similarly
than previously, we express the spherical coordinates of the q
other normals according to the basis i

′
, j

′
. We then apply the

equation 4 by accumulating the votes for each basis of the first
image. Figure 3 shows an example of voting for a couple of
normals in the second image according to whole possibilities
of frames among ten normals in the first image. We can note
that an individual peak of votes appears at the 106th frame
of the first image. If there is no detected peak, we consider
an other couple of normals in order to find an initial basis
matching.

B. Verification and Final Matching

The verification step consists in counting the total number
of normal matchings obtained from the bases selected in
the previous step. In this way, the spherical coordinates of
the normals detected in both images are expressed in their
respective bases i, j and i

′
, j

′
. Two normals are then matched

if their spherical coordinates verify the conditions of the
equation 4. In order to avoid multiple matchings, we apply
a cross-verification. Indeed, we associate the closest normals
which verify equation 4 respectively between the first and
second images and between the second and first images. If we
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obtain the same couple of normals, the matching is validate
otherwise it is cancelled. If the number of total matched
normals is at least equal to the half of the number of normals,
the final matching is accepted. At the contrary, if the number
of matching is insufficient the voting step is repeated with an
other couple of normals.

V. EXPERIMENTAL RESULTS

A. Introduction

Results are given for two different outdoor sequences
acquired with a paracatadioptric sensor of RemoteReality
company. Each sequence represents a distance around fifty
meters and is submitted to several changes of environment and
luminance conditions. The first sequence has been captured
continuously during the motion (small baseline) while the
second is constituted by images taken every meter (wide
baseline). In both sequences, the mean number of detected
lines is equal to 40. In order to evaluate the performances
of the method, we propose different measures such as the
percentage of total good matching (TGM), the mean number of
consecutive line matching (CLM) and the percentage of good
matching per image (GMI). TGM represents the ratio between
the number of consecutive pair of views correctly matched and
the number of pair of images in the sequence. CLM describes
the capacity to track a particular line consecutively, it is equal
to the mean number of consecutive matchings in the sequence.
GMI corresponds to the number of line matchings according
to the number of possible line matchings.

B. Sequence with Small Baseline

Figure 4 proposes the matching result for two consecutive
views with a small baseline. The lines with similar colors are
matched. A part of the sequence can be viewed in supple-
mentary material. Figure 4 illustrates perfectly a successful
matching between two views. TGM is equal to 96%, which
means that the matching is almost perfect during this sequence.
CLM is equal to 9.5 with several peaks between 60 and 65.
We are then able to track some lines during 65 consecutive
images and almost 10 in the general case. GMI is around 88%
but can reach 100% for some couple of images. During the
sequence, we have also noted that even in the case of blurry
images, the method is able to detect most of the lines and to
match them correctly (see supplementary material). It is worth
noting that in all experiments, we fixed p = 10.

In order to test deeply the approach by increasing the
baseline, we also applied the matching every five images. In
this case, we obtain TGM equal to 84%. However, we do
not have precisely the real baseline and can not judge the
significance of this result. CLM is slightly greater than 4 with
a maximum of 38. GMI is equal to 69% due to the variation of
the detected lines essentially on the surrounding of the images
(see supplementary material).

C. Sequence with Large Baseline

Figure 5 shows an example of the results obtained with
our method for a baseline equal to one meter. The sequence

(a) (b)

Fig. 4. Two consecutive images with small baseline. Lines with similar color
are matched.

(a) (b)

Fig. 5. Two consecutive images with large baseline. Lines with similar color
are matched.

contains 90 images and we obtain TGM, CLM and GMI
respectively equal to 82.5%, 6.5 and 80%. These results
demonstrate the validity of the method even in presence of
large motions. Figure 6 presents results obtained for a baseline
equal to 3 meters. It is worth noting that in all the experiments,
we always use the same εθ and εϕ both equal to 3 degrees.

VI. CONCLUSION

In this paper, we proposed a method for catadioptric line
matching based on an invariant or quasi-invariant representa-
tion of line groups according to respectively rotation or rigid
transformation between views. We proposed an adaptation of
geometric hashing and peak effect in order to perform this line
matching. This method presents several advantages :

(a) (b)

Fig. 6. Two images with a baseline of 3 meters. Lines with similar color
are matched.
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• It is very fast, each pair of views is treated in less than
10 ms.

• There is no restriction about the 3D line orientation.
• 3D motions are allowed between views as well as large

baselines.
• It is robust to luminance variations.

Future works will consist in using the results of the method
for 3D reconstruction and motion estimation. We also aim
at extending the method for the line matching between het-
erogeneous central vision sensors (catadioptric, perspective,
fisheye). In this way, we will add some photogrammetric
measures such as color histograms in order to robustify the
matching.
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