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Abstract— A novel artificial-potential function approach is
presented for planning the paths of distributed sensor networks
in a complex dynamic environment. The approach implements
a novel potential function generated from a probability density
function (PDF) parameterized by an adaptive Gaussian mixture
that is optimized to meet network-level objectives, such as
cooperative track detection. The PDF represents the goal
density that would be obtained by sampling a statistically-
significant number of sensors from the mixture. However, since
a smaller number of sensors may be deployed, and each sensor
is represented by a disk, the potential function is generated
by multiplying the PDF by a likelihood update model that
produces networks with disjoint fields-of-view. The approach
is demonstrated through numerical simulations involving ocean
sensor networks deployed in a region of interest near the New
Jersey coast.

I. INTRODUCTION

The problem of cooperative track detection, originally

introduced in [1], is concerned with the probability that a

target track is detected by means of multiple independent

sensor detections, at various moments in time. It is motivated

by surveillance systems in which little or no prior infor-

mation is available about the targets, and the sensor obtain

elementary target detections that are both infrequent and

prone to false alarms [1]–[4]. Therefore, a track is declared

detected when it is estimated by fusing multiple independent

detections according to an assumed spatio-temporal model.

By this approach, the tracks of targets unknown in number

can be formed from data of multiple consecutive frames

of observations that are collected by simple, low-cost (e.g.

passive) sensors, using multiple hypothesis tracking (MHT)

[5] or geometric invariants [3] algorithms.

The probability of cooperative track detection in a polyg-

onal region of interest, also known as track coverage [2], is

the probability of obtaining multiple independent detections

from one or more targets that are assumed to traverse the

region with constant speed and heading. It was shown in [4]

that, when the number of sensors is very large, the probability

of cooperative track detection is given by an integral function

of the sensors’ density, represented by a joint probability

density function (PDF) of the sensors’ positions in the region

of interest. Recently, several authors addressed the funda-

mental problem of finding the sensors’ ranges and positions

that maximize the probability of track detection [1], [2],

[6]. When the sensors are static, an approximately optimal

sensors’ distribution can be determined in the form of a
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parameterized Gaussian mixture by computing the mixing

proportions via sequential quadratic programming [6]. As

shown in Section III, when the sensors are dynamic, the

probability of track detection can be integrated over time, and

optimized with respect to a time-varying Gaussian mixture

using a finite number of collocation points. In this case,

however, the resulting PDF cannot be sampled to obtain

individual sensor positions, because the optimal positions

change over time.

Therefore, this paper presents an artificial-potential ap-

proach that utilizes the time-varying PDF, provided in the

form of a Gaussian mixture, to generate near-optimal sensor

trajectories. Another novel potential function is defined from

the potential flow of the region of interest, for the purpose

of minimizing the power required by the sensors to move

in a current velocity field, representing a water body, or the

atmosphere.

Potential field is a well-known obstacle-avoidance tech-

nique that has been demonstrated very effective for online

robot-motion planning in [7]–[9]. In robot-motion planning

the objective is to avoid collisions with obstacles that are

sensed during the motion, while navigating toward a goal

position or configuration [10]. Although the potential field

method is well suited to online motion planning and to

convergence analysis, its effectiveness is limited by the

tendency of the robot to get stuck in local minima of the

potential function, e.g., due to narrow passages between

closely-spaced obstacles, and oscillations in the presence of

obstacles. One of the most effective approaches for escaping

these local minima is to “fill” them, and to follow a new

local path generated via random-walk algorithms. This paper

shows how, after the Gaussian mixture is optimized by the

approach presented in [6], the potential field approach can

be used to efficiently compute collision-free paths for the

individual sensors, such that their probability of detection is

maximized, and their power required is minimized.

The paper is organized as follows. The mathematical mod-

els, and the problem formulation are described in Section II.

The methodology for computing the time-varying Gaussian-

mixture PDF from the probability of cooperative track de-

tection is reviewed in Section III. The novel potential-field

methodology for computing sensors’ trajectories that follow

a time-varying PDF, while minimizing energy, is presented

in Section IV. The methodology is demonstrated in Section

V by applying the potential-field approach to a mobile sensor

network deployed in a region of interest near the New Jersey

coast, with ocean currents simulated using real coastal ocean

dynamics applications radar (CODAR) data.
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II. MATHEMATICAL MODELS AND PROBLEM

FORMULATION

This paper considers the problem of planning the paths

of a cooperative network or field of n mobile sensors. The

sensors are deployed in a rectangular region of interest

(ROI) for the purpose of tracking and detecting passive

targets during a time interval [t0, tf ]. The sensors’ optimal

distribution is represented by a time-varying PDF fx(xj , t)
that is computed by the distributed search approach presented

in [6], and reviewed in Section III. The ROI, denoted by

W = [0, L] × [0, L] ⊂ R
2, is populated by N fixed and

convex obstacles {B1, . . . ,BN} ⊂ W that are not necessarily

known a priori, but may be detected at any time t ∈ [t0, tf ].
Therefore, the sensors must avoid obstacles and mutual

collisions while following the optimal density fx(xj , t) with

minimum power required.

Every sensor consists of an autonomous underwater ve-

hicle (AUV) equipped with an on-board passive sensor that

moves according to the dynamical model,

M(xj)ẍj + h(xj , ẋj) + g(xj) = u(xj), j = 1, . . . ,m (1)

where M(xj) is the robotic sensor’s inertia matrix, h(xj , ẋj)
is the fictitious force, g(xj) is the gravitational force, and

u(xj) is the torque input [9], [11]. The AUV is subject to

the ocean currents and, thus, its velocity in inertial frame

is ẋj = νj + υj , where νj ∈ R
2 is the velocity vector in

body coordinate frame (fixed to the vehicle), and υj ∈ R
2

is the local current velocity vector. As shown in [12], [13],

the instantaneous AUV’s power required is proportional to

νj ∈ R
2, and can be represented by a quadratic cost,

e[νj(t)] = νT
j (t)Rνj(t) (2)

that penalizes large power dissipations more heavily than

small dissipations [14, pg.190]. Where, R ∈ R
2×2 is a

diagonal weighting matrix that, in this paper, is chosen as

R = wE I2, where I2 is a 2× 2 identity matrix, and wE is

a constant energy weight. Then, the power required by the

network of AUVs during the interval [t0, tf ] is given by the

integral cost,

E [ẋj(t), t0, tf ] = wE
∫ tf

t0

m∑
j=1

[ẋj(t)− υj(t)]
T

× I2[ẋj(t)− υj(t)]dt (3)

where, υj(t) is estimated from the forecast models of the

ocean dynamics, and on-line measurements, as explained in

Section IV.

The signal received by the jth sensor at xj is isotropic

energy attenuated by the environment according to the fol-

lowing power law,

Ej(t) = cF [λj(t)]
−α (4)

where, λj(t) is the distance between the jth sensor and the

target at time t. The attenuation coefficient α and the scaling

constant c depend on the physical mechanisms of wave

propagation and on the environmental conditions, and are

assumed to be known and constant in this paper. F represents

the target source level, and is assumed to be independent

of both time and sensor location [3], [15]. Then, a closest-

point-of-approach (CPA) detection is said to take place when

Ej exceeds a threshold ϑj , which is typically tuned by an

operator [16]. At the CPA detection time, the values of Ej

and xj are reported by the jth sensor to the central processor.

From (4), the maximum range at which the jth sensor can

report a CPA detection, given a target source level F and

a threshold ϑj , is rj = (cF )1/αϑj . Thus, neglecting the

effects of the AUV propulsion on sensing, the value of rj
can be estimated from the environmental conditions, and can

be assumed known and constant for all j = 1, . . . , n [2], [4].

It follows that a CPA detection may be reported by the jth

sensor only if the target comes within its maximum range

rj . Therefore, for an omnidirectional sensor that obeys the

isotropic law (4), the field-of-view (FOV) at time t is a disk

of constant radius rj , centered at xj , and denoted by Cj(t) =
Cj [xj(t), rj ] [4]. As schematized in Fig. 1, the sensor can

then be viewed as a disk that moves in W according to the

dynamic equation (1). The FOVs of all sensors in the network

are represented by the set S(t) = {C1(t), . . . , Cn(t)}, which

is specified by the n ranges r1(t), . . . , rn(t), and the n
state vectors x1(t), . . . ,xn(t). As a result, the network’s

probability of cooperatively detecting tracks of unauthorized

targets in W was recently shown in [2], [4] to be a function

of the sensors’ ranges and positions.
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Fig. 1. Schematic of jth mobile sensor (not to scale) taken from [17].

As reviewed in the next section, when n is very large,

the network’s state and probability of detection can be

formulated in terms of the sensors’ distribution, which can

be conveniently represented by a parameterized Gaussian

mixture [6]. This paper shows how, after the Gaussian

mixture is optimized by the approach presented in [6], it can

be used to efficiently compute collision-free paths for the

individual sensors, such that their probability of detection is

maximized, and their power required is minimized.

III. BACKGROUND ON COOPERATIVE TRACK DETECTION

The problem of cooperative track detection was first

introduced in [1], and is concerned with the probability that
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a target track is detected by a cooperative sensor network

by obtaining multiple elementary (e.g. CPA) detections at

various moments in time. A track is stated as detected when

it can be formed or estimated by fusing multiple detections

according to an assumed spatio-temporal model of the target

tracks. With this methodology, the tracks of an unknown

number of targets can be assembled from multiple consec-

utive frames of observations. This data can be collected by

simple, low-cost (e.g. passive) sensors, using MHT [5] or

geometric invariants [3] algorithms.

The dimensions of W and the time interval ΔT are chosen

such that the target can be assumed to move at a constant

speed V and heading θ, and to maintain a constant source

amplitude. After a minimum of k detections are obtained

from k distinct sensors in the network, the values of Ej and

xj are fused by a central processor to estimate the target

track [3]. The number of required target detections k depends

on the false-alarm rate, on the measurement errors, and on

the track accuracy required by the surveillance system [3].

A value of k = 3 was found to provide accurate tracking

by proximity sensors subject to few false alarms, and errors

normally distributed with a standard deviation of 20% [3].

When n is very large, the probability of cooperative track

detection, also known as track coverage [2], can be derived

by the distributed search approach presented in [4]. This

approach assumes that all n sensors have the same range,

rj = r for all j, and that the probability of detection of

the jth sensor is equal to one everywhere inside Cj(t) at t,
and is equal to zero elsewhere. The sensors’ state and the

targets’ speeds, headings, and initial positions are considered

as random variables described by the joint PDFs fx(xj , t),
fV (V, t), fθ(θ, t), and fT (xT0

, t), respectively. The PDF

of the sensors’ state is a function of time, because the

sensors move to optimize their probability of track detection.

The PDFs of the target track’s parameters are assumed to

be known functions of time that are obtained from the

aforementioned target-tracking algorithms [3], [5]. Then, the

detection region ΩT ⊂ W can be grown isotropically from

the target track,

xT (t) = xT0
+ V [cos θ sin θ]T dt (5)

over a time differential dt ⊂ [t0, tf ], where xT (t0) =
xT0 ∈ W . Let the event Dj = {1, 0} represent the set of

all possible mutually-exclusive outcomes corresponding to

sensor j reporting (1) or not reporting (0) a target detection.

Then, assuming the targets are distributed uniformly in W ,

the probability of a detection being reported by sensor j is

given by a spatial Poisson process,

Pr{Dj = 1 | xT (t) ∈ W} = 1− e−φt (6)

where,

φt(xT0 , V, θ) =

∫ tf

t0

∫
ΩT (xT0

,θ,V dt)

fx(xj , t)dxdt (7)

is the coverage factor for a sensor sampled from fx(xj , t),
and with a detection region ΩT . The coverage factor of a

spatial Poisson process is defined as the expected value of

the number of points that fall in a small region or subset

of a Euclidian space. Where, every point that falls into this

region corresponds to a detection event Dj = 1.

In a network of n sensors, the set of events {D1, . . . , Dn}
is reported to the central processor to attempt to form a

target track, and a successful track detection is declared

when
∑n

j=1 Dj ≥ k. Thus, the probability of a successful

track detection by at least k sensors can be described using

Bernoulli trials [4]. Assuming that individual detection events

are statistically identical and independent, and that φt << 1
and n >> 1, the probability of successful track detection

in W can be approximated by an integral function of the

sensors’ PDF,

Pt ≡ Pr(
n∑

j=1

Dj ≥ k | xT (t) ∈ W) (8)

≈ 1−
∫ tf

t0

∫ 2π

0

∫ Vmax

Vmin

∫
W

e−nφt(xT0
,V,θ)fT (xT0

, t)

× fV (V, t)fθ(θ, t)
k−1∑
m=0

[nφt(xT0
, V, θ)]m

m!
dxT0dV dθdt

as shown in [4]. Where, Vmin and Vmax are the target’s min-

imum and maximum speeds, respectively, and φt(xT0
, V, θ)

is a function of fx(xj , t), as shown in (7).

From (8), an approximately optimal sensors’ distribution

can be determined in the form of a parameterized Gaussian

mixture, as shown in [6]. Assume the optimal sensors’

distribution be represented by a time-varying finite mixture

model of the form

fx(xj , t) =
m∑
i=1

wi(t)fi(xj , t), 0 ≤ wi(t) ≤ 1, ∀i, t
m∑
i=1

wi(t) = 1. (9)

The weights w1(t), . . . , wm(t) are called the mixing pro-

portions, and f1(xj , t), . . . , fm(xj , t) are the component

densities of the mixture. The component densities are defined

such that fi(xj , t) = 0 for all i and x 	∈ W , and (9)

must obey the normalization condition
∫
W fx(xj , t)dx = 1

at any t. Then, the probability of track detection Pt can

be optimized with respect to the mixing proportions by

evaluating (7)-(9) at M equally-spaced collocation points

tk = t0+kΔt, k = 1, . . . ,M , where Δt = (tf−t0)/M is the

discretization interval. At every point tk, the triple integral

in (8) is evaluated numerically using a multi-dimensional

fast Fourier transform (FFT) algorithm, as shown in [6].

When, the mixture in (9) is discretized with respect to time,

it can be represented by mM -mixing proportions represented

by the vector of weights χ = [w11 . . . wmM ]T , where

wik ≡ wi(tk).

The numerical optimization of (8) is then reduced to the
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nonlinear program (NLP),

max
χ

Pt(χ), (10)

subj. to

m∑
i=1

wik = 1, ∀k = 1, . . . ,M (11)

wik ≥ 0, wik ≤ 1, ∀k = 1, . . . ,M (12)

for which effective sequential quadratic programming (SQP)

algorithms are available [18]. The solution of (10)-(12),

denoted by χ∗, is an approximately-optimal vector of mixing

proportions for the Gaussian mixture (9). By substituting χ∗

in (9), an approximately-optimal PDF f∗
x(xj , tk) is obtained

for all tk, that maximizes the probability of track detection

(8) during [t0, tf ]. An example of this time-varying finite-

mixture PDF with m = 10 components, [t0, tf ] = [0, 12]
hr, is plotted in Fig. 2, at times t = 0, 2, and 9 hr.

A methodology based on probabilistic sampling was de-

veloped and demonstrated in [6] for placing n static sensors

in W , based on an approximately optimal static Gaussian

mixture. Although an approximately optimal time-varying

Gaussian mixture can be determined from (10), a method-

ology is not yet available for translating it into sensor paths

for dynamical sensors that obey the model in (1). This paper

presents a novel path-planning approach inspired by potential

field techniques that is described in next section, and can

be applied to a network of cooperative mobile sensors as

demonstrated by the numerical simulations in Section V.

IV. PROBABILITY DENSITY FUNCTION APPROACH TO

PATH PLANNING

Potential field is well-known approach to robot motion

planning that treats the robot as a particle under the influence

of an artificial potential field or function, U , that cap-

tures the geometric characteristics of an obstacle-populated

workspace, or ROI, W . So far, several potential field methods

have been developed for generating a collision-free path for

a single mobile robot (1) that must travel from an initial

configuration to a goal configuration, without a prior model

of the obstacles. One advantage of potential field over other

motion planning approaches is that it can easily account

for obstacles that are sensed online, i.e., during the motion

execution [10]. Another advantage demonstrated in this paper

is that the artificial potential function can be defined based

on other geometric objectives that are not necessarily related

to obstacles. The main disadvantage of potential field is that

the robot follows the direction of steepest descent of U and,

therefore, can potentially get stuck at a local minimum. In

this case, the method is combined with a graph searching

technique, or a random-walk algorithm, to help the robot

escape local minima [10].
In existing potential-field techniques, the potential function

is the sum of an attractive potential Uatt that “pulls” the

robot toward a goal state xf , and a repulsive potential Urep

that “pushes” robot away from the obstacles [9]. After U is

defined, the method is implemented by discretizing the robot

workspace W , and by evaluating the potential function for

all discrete value of x in W , using a finite resolution grid

[19]. Subsequently, at any time tk ∈ [t0, tf ], an artificial

force F(q) that is proportional to the negative gradient of

the artificial potential, −∇U(xj , tk), is applied to the robot,

in order to follow the steepest-descent direction of U .

This paper presents a novel potential field approach that

plans the paths of n cooperative sensors, such that they

follow (or are “pulled” toward) a time-varying PDF, com-

prised of the Gaussian mixture (9). The approach generates

a novel potential function that is defined as a linear combi-

nation of (i) an attractive potential, representing the desired

distribution (PDF) of the sensors, (ii) a repulsive potential

representing collision avoidance between sensors, and (iii)
the potential flow, representing the integral of the ocean

current velocity field. This novel potential function differs

from those previously presented in the literature in that it

is based on the joint PDF of the state of multiple robotic

sensors, it is time-varying, and avoids collisions between

sensors and multiple obstacles while minimizing the power

required to navigate in a known current velocity field.

The attractive potential is defined based on the

approximately-optimal PDF, f∗
x(xj , tk), computed from the

NLP (10). This PDF represents the goal density of sensors

and, when integrated over a region R ⊂ W , it provides the

probability that the jth sensor is located in R at tk, i.e.,

the probability mass Pr(xj ∈ R, tk) =
∫
R f∗

x(xj , tk)dx. In

order to obtain independent sensor detections, the sensors’

FOV must be disjoint. Thus, the effect of sampling a sensor

state xj from f∗
x(xj , tk) should downgrade the probability

mass corresponding to its FOV, such that if the jth sensor

takes a state value, the probability that another sensor in

the network takes the same state value is decreased. It was

recently shown in [6] that, when n static sensors are placed

based on a static PDF, for example, random sampling is

not very useful because random samples have an asymptotic

relationship with the distribution. Thus, unless a very large

number of sensors is deployed, a single realization of the

sampling procedure may not be representative of the optimal

sensor density.

For this reason, the potential function developed in this

paper for mobile sensors is generated from a likelihood

update model inspired by [6], and by which a goal posterior

PDF is updated by setting a likelihood function, denoted by

L(·), equal to zero inside the sensors’ FOVs. Let the set

X(tk) = {x1(tk), . . . ,xn(tk)} denote all sensors’ positions

at time tk. Then, the goal posterior PDF defined as,

π(xj , tk) = f∗
x(xj , tk) L[xj , tk | X(tk−1)] (13)

where,

L[xj , tk | X(tk−1)] ≡
{
0 ∀x ∈ Cj [xj(tk−1), rj ], ∀j
1 o.w.

(14)

is then used to move the sensors in place of the goal

PDF f∗
x(xj , tk). Therefore, in a dynamic sensor network

where sensors’ state is constantly changing in the ROI, the

likelihood and posterior functions are updated over time,

at every time step tk. The model likelihood update model
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Fig. 2. Example of time-varying finite-mixture PDF with m = 10, [t0, tf ] = [0, 12] hr, at times tk = 0 hr (a), tk = 2 hr (b), and tk = 9 hr (c).

in (14) effectively “cuts out” circles from the prior PDF

based on the sensors’ positions, in order to downgrade the

probability that multiple FOVs intersect. Then, the attractive

potential is defined as,

Uatt(xj , tk) = −π(xj , tk) (15)

such that the direction of its steepest descent will lead the

sensors to local maxima of the goal PDF f∗
x(xj , tk).

Collisions with a set of fixed obstacles B(tk) ≡
{B1,B2, . . .} that are sensed online by the time tk are

avoided by means of an additive repulsive potential that is

updated as new obstacles are sensed during [t0, tf ] [20].

Every obstacle Bi ∈ B(tk) in W maps in the sensor state

space C to a C-obstacle that is defined as the subset of C that

causes collisions with Bi, i.e., CBij ≡ {xj ∈ C | A(xj) ∩
Bi 	= ∅}, where A(xj) denotes the subset of W occupied

by the AUV geometry A when the sensor state is xj . The

union of all C-obstacles in W is referred to as the C-obstacle

region. Thus, the sensors can avoid collisions by remaining

in the free configuration space, defined as the complement

of the C-obstacle region CB in C, i.e., Cfree = C\CB [10].

Then, the repulsive potential for a set of obstacles B(tk) is

defined as,

Uobs(xj , tk) =

{
1
2η(

1
ρ(xj)

− 1
ρ0
)2 if ρ(xj) ≤ ρ0

0 if ρ(xj) > ρ0
(16)

where, ρ(xj) is the minimum distance from xj to CB at tk:

ρ(xj) = min
x∈CBj

‖xj − x‖, CBj ≡ ∪N
i=1CBij (17)

η > 0 is a scaling factor, and ρ0 > 0 is a distance-of-

influence parameter that is chosen by the user.

Although the likelihood function (14) already minimizes

the probability that multiple sensors take the same state

value, for added safety, collisions between the n UAVs are

avoided by introducing the repulsive potential,

U�rep(xj , tk) =

⎧⎨
⎩

1
2η

(
1

ρ�j(xj ,tk)
− 1

ρ0

)2

if ρ�j(xj , tk) ≤ ρ0

0 if ρ�j(xj , tk) > ρ0
(18)

where ρ�j is the Euclidian distance between the jthe AUV

and the nearest 
th AUV in the network at time tk, defined

as

ρ�j(xj , tk) = min
x�

‖xj(tk)−x�(tk)‖, 
 = 1, . . . , n, 
 	= j.

(19)

and the other quantities are defined as in Section III.

Finally a potential field defined in terms of the potential

flow is introduced in order to minimize the power required

in (3), which is proportional to the AUV’s velocity vector in

body coordinate frame (i.e. relative to the ocean current). As

shown in [12], [13], [21], the ocean currents can be modeled

using environmental forecasts with assimilated data [22] in

order to exploit the natural dynamics for AUVs’ transport and

minimize the power required. Using the approach presented

in [21], a smooth functional representation of the current

velocity field in W , during the time interval [t0, tf ], can be

obtained by training a feedforward neural network (NN),

υj(xj , tk) = W2Φ(W1 [xT
j tk]

T + b1) + b2 (20)

with a given ocean forecast containing estimates of υj

at sample points in space and time. Where the operator

Φ(n) ≡ [σ(n1) · · · σ(ns)]
T represents one hidden layer of

s sigmoidal functions, σ(ni) ≡ 1/(1 + e−ni). And, the NN

weights W1 ∈ R
s×3, W2 ∈ R

2×s, b1 ∈ R
s, and b2 ∈ R

2,

are determined by a Bayesian regularization backpropagation

algorithm (‘trainbr’ [23]) as demonstrated in [21].

As can be expected, minimum-energy AUVs’ trajectories

utilize knowledge of the ocean’s velocity field, thereby

minimizing deviations from the trajectories of Lagrangian

fluid particles in an irrotational flow with a vector field given

by the model (20). The ocean flow velocity υj is a vector

field that is equal to the negative gradient of the velocity

potential ϕ, i.e., υj = −∇ϕ [24]. It follows that the power

required by the jth target can be minimized by including an

attractive potential given by the potential flow corresponding

to the model of ocean currents in (20). Thus, the artificial

potential function for sensor j is defined as,

U(xj , tk) = wf Uatt(xj , tk) + Uobs(xj , tk) (21)

+
m∑

�=1,� �=j

U�rep(xj , tk) + wE ϕ[xj(tk), tk],

for all tk ∈ [t0, tf ], where wf , wE > 0 are constant

weights chosen by the user based on the desired tradeoff

436



between the goal of following the PDF f∗
x(xj , tk) and

the goal of minimizing the power required. Although the

velocity potential could be obtained by integrating (20), in

the implementation it is not computed because the paths of

the AUVs are computed from the gradient of (21).

According to the potential field approach, the force applied

to the jth sensor is proportional to the negative gradient of

U at tk,

F(xj , tk) = −∇U(xj , tk) = −
[
∂U(xj , tk)

∂xj
. . .

∂U(xj , tk)

∂yj

]T
(22)

where xj = [xj yj ]
T . However, In this paper, every sensor

j is assumed to move with a constant speed relative to a

fixed point. This is achieved by using the constant speed

value as a reference for a PID controller that returns the

appropriate propeller rotational speed to compensate for a

changing ocean flow velocity, vj . Since the speed of sensor j
in the workspace is independent of F(xj , tk), the gradient of

the artificial potential U is only used to determine the optimal

heading angle of the UUV during [t0, tf ]. Sensor j adjusts to

the heading angle by using it as a reference for a second PID

controller that computes a rudder position. In future work,

the method will be further improved such that the artificial

potential in (21) may be used directly to compute the control

input for the AUV platform. For example, the following time-

varying feedback control law,

u = −∇U(xj , tk) + d(xj , ẋj) (23)

where d(·) is an arbitrary dissipative force, may be adapted

from [9], and applied to the jth AUV with dynamic equation

(1) for inner-loop control.

V. SIMULATIONS AND RESULTS

The methodology presented in the previous section is

demonstrated here on a simulated ocean sensor network com-

prised of n = 12 sensors and m = 5 fixed obstacles deployed

at arbitrary positions in a ROI, W = [0, L1]× [0, L2] where

L1 = 90km and L2 = 82.51 km. The simulation was run

over the time interval t ∈ [t0, tf ] in increments of ts = 1 sec
with t0 = 0 and tf = 9 hr. The sensor ranges for all vehicles

are set as r = 5 km. The repulsive potential constant η was

set as 200, and ρ0 was chosen as 10 km for the effective

distance from other sensors to prevent sensor overlapping and

collisions and 5 km for the distance from static obstacles and

the ROI boundaries. The mixing proportions were all set to

be identical values of 0.0833 with m = 12. The time-varying

ocean current velocity field within W was generated from the

feedfoward neural network (20) and CODAR data given by

COOL at Rutgers University [25]. A snapshot of the velocity

field and of the ROI boundaries is shown in Fig. 3.

The goal heading angles of the sensors are set equal to the

optimal directions of movement calculated with the method

described in Section IV. The gradient of the potential U
is estimated by evaluating the potentials at several points

around xj , but the ’gradient’ function in MATLAB can also

be used. The desired speeds were set to be constant at 2.0 m/s

:  NN approximated trajectory 
:  Measured trajectory 

:  Velocity vector of current 

Fig. 3. Example ocean current velocity field obtained from the neural
network model and from CODAR measurements in the ROI W (black
rectangle) with longitude of 72.7◦ W to 74.1◦ W, and latitude of 38.6◦ N
to 39.5◦ N (taken from [21]).

relative to a fixed point, but the vehicle speeds relative to the

ocean current velocities, and therefore the propeller rotational

speeds, were continuously changed depending on the ocean

movements at the AUVs’ positions. Figure 5 shows the the

positions of the sensors (triangles) at various times during the

interval [t0, tf ] illustrating that, by following the negative

gradient of the potential, the sensors’ density reflects the goal

PDF plotted on the background, while avoiding collisions

with the obstacles (white squares), and while avoiding mutual

collisions or intersections between FOVs (circles). In this

simulation, the sensors are initially deployed at arbitrary

locations (Fig. 5.a), and subsequently reconfigure based on

the PDF by means of the potential field method presented in

Section IV. Another possibility is to first place the sensors at

a set of n initial positions sampled from fxj
(xj , 0), and then

to apply the potential field method in Section IV such that the

desired density is followed at all times. The former approach

is used here to illustrate the effectiveness of the potential field

method. This effectiveness is also demonstrated by plotting

the trajectories of the sensors using the artificial potential

function in (21) with wf = 0. As shown in Fig. 6, in this

case the sensors avoid obstacles and mutual collisions, but

never follow the goal PDF, illustrated in Fig. 5.

Depending on the user’s preferences, the behavior of

the sensors may be tuned to meet desired criteria. Since

the weighting constants, wf and wE , are included in the

artificial potential function, the vehicles can be instructed

to favor following the gradients of the PDF over the paths

that minimize required energy and vice versa. The effect of

changing the weights is demonstrated in Figure 7. When wf

is kept constant and wE is increased, it is seen that the power

consumption decreases significantly. If wf is set very low

relative to wE , as in Fig. 6 where wf = 0, the sensors ignore

the PDF and simply follow the ocean currents to minimize

the power required.
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(a) (b)

(c) (d)

Fig. 5. The positions of a network of twelve sensors deployed by the potential field approach are plotted at times (a) t = 0.2 hours, (b) t = 3.5 hours,
(c) t = 6.5 hours, and (d) t = 9 hours, superimposed over the time-varying PDF.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a methodology to plan the paths of

a distributed sensor network in a complex dynamic envi-

ronment, based on a goal PDF that is parameterized by a

time-varying Gaussian mixture. The methodology is based on

the potential field approach, and generates a novel potential

function by multiplying the goal PDF by a likelihood update

model that produces networks with disjoint FOVs. The

goal PDF may, therefore, be optimized to meet network or

field-level objectives, such as cooperative track detection,

that would otherwise be computationally too expensive to

optimize with respect to the individual sensors’ trajectories.

The methodology is applied to an ocean sensor network

deployed in an obstacle-populated ROI near the New Jersey

coast, and subject to a time-varying current velocity field

modeled from real data. The results show that by using

the PDF-based potential function, and a function based on

potential flow, the sensors follow the PDF while, at the same

time, minimizing power required, and avoiding collisions

with obstacles that are sensed online.
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