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Abstract— In this paper a reactive control strategy intended for
human-robot interactions (HRI) is presented. A conventional
reactive control scheme is reviewed first. This is followed by the
introduction of a new prediction-based reactive control strategy.
The new control strategy considers foreseeable dangerous events
by predicting human motion using artificial neural networks,
based on the previous pattern of the motion. This approach
enables a robot to foresee an upcoming danger in order to take
preventive actions before the danger is immanent. Experimental
results for a CRS-F3 robot manipulator are presented in order
to demonstrate and validate the effectiveness of this method.

I. INTRODUCTION

S INCE THEIR inception, robot manipulators have been
an integral part of industrial automation resulting in

much higher productivity while relieving humans from labo-
rious tasks. In recent years, the integration of robotic systems
into human environments has become one of the most
prominent milestone of the robotic community [1]. Although,
motivated by in-depth research, it is not difficult to imagine
the socio-economic benefits of an interactive environment in
which robots and humans can share their space [2]. At the
same time, the prospect of introducing robots into human
environments has illuminated a universe of safety concerns
among standardization bodies, robotic manufacturers, and the
researchers. This is simply due to the fact that all existing
safety norms are founded based on isolating robots from
their surroundings and consequently are at odds with the
requirements of an interactive environment [3]. Thus, much
research has focused on developing a new breed of safe and
intelligent robots that can share a common workspace with
humans to perform common tasks either collaboratively or
individual tasks amicably [4]. In this regard, a significant
body of the work has focused on mechanical design of such
robots. These studies mainly pursue a mechanical design
that reduces manipulator link inertia and weight by using
lightweight but stiff materials, complemented by the presence
of compliant components in the structure in order to reduce
the instantaneous severity of an impact [4][5][6].
Controlling robots intended to interact with humans consti-
tute another important aspect of the introduction of robots
into the human environments [7]. In order to develop effec-
tive and dependable control strategies for HRI, the concept of
safety (or equivalently the lack of it, defined as danger) needs
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to be clearly addressed. The application of such methods as
artificial potential fields [8], elastic strip framework [9], and
linear impedance control [10] can partially address the issue
when the distance of the robot to the obstacle (e.g., human)
is used as a criteria for safety evaluation. Although these
methods are highly successful, a more effective collision
avoidance algorithm can be obtained by considering other
factors affecting the risk of collision. In order to identify the
risk involved in the current operation a danger index can be
defined such that it characterizes the impact force not only
based on the distance of the robot to the obstacle, but also
the relative velocity, the inertia, etc., [11]. Such indexes can
be used for path planning of an interactive robot, commonly
referred to as safe planning [12]. In our previous work [13],
an optimal safe planning method was developed by taking
advantage of one such danger evaluation method. In order to
enhance the previous method in responding to unanticipated
dangerous situations arising in interactive environments, it
seems natural to consider a sensor-based online reactive
component that can assess and predict the value of the
danger not only for the present moment but also for the near
future. The information from the sensor can be used as a
means of modifying the current robot path to avoid possible
(predicted) risks. The success of this method hinges upon an
accurate and high speed prediction of future dangers. The
current study addresses this issue using a prediction-based
danger evaluation method. By taking advantage of artificial
neural networks (ANN), a technique is developed that allows
prediction of the future trajectory of a human close to a
robot. Using this technique, a safety strategy for detecting
and reacting to upcoming dangers is proposed. In this way, a
preventive action is taken prior to the occurrence of a danger.
This will allow to compensate for the delay results from the
modification of the path and danger evaluations. To illustrate
the effectiveness of the proposed method, several simulation
and experimental results are presented and compared with a
conventional reactive control strategy.

II. PREDICTION OF THE HUMAN TRAJECTORY

A. Motivation

Generally speaking, humans tend to react differently toward
their robot counterparts than other humans. It is therefore,
expected that a more natural robot motion will assist to
change the acceptance of robots into the human environ-
ment [2]. Emulating human-like behaviors by a robot results
in a more effective integration of man and machine. For
instance, when the concept of perspective-taking that occurs
in collaborative environments (e.g., a team of astronauts)
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was applied to a robotic system, it resulted in an improved
collaboration between the robot and the human [7]. Also,
other studies suggest the importance of touch [14] and
body language [15] in approving an action or conveying
an expectation in human-robot interactions. In this section a
technique for predicting expected motion of a human (when
walking in the vicinity of a robot) is developed. The approach
is motivated by ordinary human-human interactions. As the
awareness of a person of another person’s motion allows
for a mental prediction of the future motion and preventive
action, including such an ability in the control strategy of an
interactive robot can significantly improve its effectiveness
toward safety. The application of human motion prediction,
through weighted averaging of previous human velocities,
in HRI is reported previously [16]. However, this approach
suffers from large prediction errors. In this section, we will
introduce the architecture of an ANN for accurate human
motion prediction and use its results in a danger evaluation
scheme to assess the risk involved in the motion. This will
be then used in a new reactive control strategy.

B. Motion Prediction

The human motion follows a complex pattern that cannot
be presented with a simple dynamic model. The proposed
solution is to observe the pattern of the human motion and
predict his motion in the near future using an ANN. In our
previous work, we reported on a new sensory system that
measured the x − y location of fixed and mobile obstacles
and accompanied a firmware specifically designed for the
identification of human obstacles and their orientations [17].
The prediction becomes possible thanks to the information
obtained from this sensory system. To simplify the prediction
process, human trajectories in x and y directions are treated
separately. Fig. 1 shows an empirical architecture of a feed-
forward ANN for x direction that comprises 5 input neurons,
8 hidden neurons, and 3 output neurons. The hidden layer
has a tan-sigmoid transfer function, while the output layer
uses a linear transfer function. The inputs of the network are
the relative displacements of the human in the last four steps
(i.e., ∆x(n− i) = x(n− i+ 1)− x(n− i), i = 1, . . . , 4) as
well as the body orientation α(n) (the direction of human
heading, see [17]). The outputs are the next three relative
displacements (i.e., ∆x(n+i) = x(n+ins)−x(n+(i−1)ns),
i = 1, . . . , 3), where ns is equal to the number of steps
during which the displacement occurs. A similar ANN is
used for the motion in y direction.
As part of the architecture of an ANN, the number of inputs
can have a significant effect on the accuracy of the prediction.
While a large number of inputs (history of motion) may result
in more accurate and further prediction of the future steps, it
places the prediction process at disadvantages, since a large
number of inputs (i) adds to the computational complexity of
the network, (ii) makes the network reluctant (sluggish) to
predict sudden changes in human motion, and (iii) entails
more time (sufficient number of steps) for learning the
pattern of the motion of each new human obstacle as they
appear on the sensory system. Another notable point is

the use of the body orientation as an input. This input
considerably decreases the prediction error since the body
orientation is a good metric to predict the future direction
of the motion. The ANN requires to learn the pattern of the
human motion using a combination of both off-line (batch)
and online (incremental) training. None of these training
methods are individually sufficient. To this effect, an energy
function of the network error, introduced next, is used for
switching between the two training methods.
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Fig. 1. The architecture of ANN used for human motion prediction in x
direction (similar structure is used for the y direction).

C. Training of the Network

In order to obtain a training data set, a typical robot
workspace (Fig. 2) with several pre-determined obstacles is
considered. A set of randomly selected points visited by the
human are also considered. By selecting a different order in
which the points are visited, different training data sets are
generated. Each data set includes the relative displacement
along x and y axes as well as the body orientation.
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Fig. 2. Top view of the robot workspace. The gray areas are the pre-defined
obstacles, numbered rectangles present random points visited by the human,
and the hexagons present the preceding and future human’s steps following
instant n.

The network is then trained using the obtained data set and
the Levenberg-Marquardt algorithm [18]. In this algorithm,
the energy function of the error is used as an indicator of
the performance. The energy function is defined as,

Ej =
( 1
m

m∑
i=0

(∆x(i+ jns)−∆xd(i+ jns))2
)0.5

(1)
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Fig. 3. Trajectory prediction for (a) one, (b) two, and (c) three steps for a motion pattern (this pattern was not encountered during the training).

where ∆x(i+ jns) and ∆xd(i+ jns) (j = 1, . . . , 3) are the
predicted and the actual values of the next jth displacement,
respectively. Moreover, m is the number of samples in the
training set. To study the effect of the number of inputs and
the use of body orientation as an input, 6 different ANNs
are considered. Table I compares the values of the error
energy function. Clearly, the larger the number of inputs is,
the more accurate prediction can be obtained. Furthermore,
it is evident that including the body orientation input can
significantly decrease the error energy. Based on the results
summarized in Table I, the network architecture depicted
in Fig. 1 (i.e., network No. 2 in the table) was adapted to
meet the accuracy and speed requirements for the problem at
hand. The performance of the adapted network was further
evaluated for different motions with various complexities.
One of these tests is shown in Fig. 3 which compares the
output of the ANN with the actual motion. The motion is
predicted for the next one, two, and three steps. The values
of the error energy for these cases are equal to E1 = 1.7
cm, E2 = 3.6 cm, and E3 = 5.8 cm, respectively. In all
cases there is a good match between the actual and predicted
motions. This indicates the suitability of the method for our
purpose (foreseeing the upcoming dangers).

TABLE I
COMPARING MOTION PREDICTION PERFORMANCE OF 6 ANNS

Network Number 1 2 3 4 5 6
No. of inputs 4 4 4 6 6 6

Body orientation used X X X X
ns 1 1 2 1 1 2
E1 (cm) 4.5 3.0 8.4 3.2 1.5 4.9
E2 (cm) 5.4 3.7 10.9 4.4 2.1 7.3
E3 (cm) 6.5 4.8 17.4 5.2 3.0 11.0

III. PREDICTION-BASED REACTIVE CONTROL FOR
HUMAN-ROBOT INTERACTION

In this section, a new control strategy that combines motion
prediction and danger evaluation results is introduced. Exist-
ing reactive strategies are mainly impedance based in which
the motion is modified in response to a virtual force repre-
senting the danger. The motion is modified through a series
of danger-reaction steps. It is clear that the prediction of the
future dangers can significantly contribute to the safety of the

motion. This should not come as a surprise if one remembers
how naturally the notion of anticipatory motion adjustments
is integrated in the normal human movements [19].

A. Formulation of the Danger Index

The evaluation of the level of danger is one of the key ele-
ments in the systems intended for interaction with humans.
Due to special shape of the human body, an accurate model
of the body is essential for defining a danger index. In our
previous work [20], an accurate, yet simple model for the
human body was developed using superquadric shapes [21].
The main advantage of this model is its simplicity and
accuracy in obtaining the distance of an arbitrary point in
3D space to the surface of the body. This model provides
a pseudo-distance, κ [20] that is used in the definition of a
danger index. Such indices are normally defined as a product
of several factors affecting the level of danger, e.g., distance
factor fD and velocity factor fV , etc. One such definition is
as follows,

DI(κd, κv) = fD(κd)fV (κv) (2)

where κd and κv are the pseudo-distance of the critical point
(closest point) to the obstacle (e.g., human) and its rate of
change, respectively. Also, fD and fV (the distance and
velocity factors) are defined as,

fD(κd) = kD(
e−κd

κd
− e−κdmax

κdmax

)2S(κdmax − κd) (3)

fV (κv) = kV (κv − κvmin)2S(κv − κvmin)

in which, kD = ( e
−κdmin

κdmin
− e

−κdmax

κdmax
)−2, kV =

(κvmax − κvmin)−2, κdmin is the minimum allowable distance
to the obstacle, κvmax is the maximum allowable velocity,
κdmax and κvmin are the effective ranges for the distance
and velocity factors, respectively, and S(.) is the unit step
(heaviside) function (for more details see [20]).

B. An Impedance-Based Reactive Control Strategy

In the following, the notion of impedance-based reactive
control strategy using danger index is briefly reviewed [22].
Given a threshold for the value of the danger index DImax,
the results of the danger evaluation for the critical points
(closest points on the robot links to the obstacle) can be
utilized to trigger a corrective control action in the robot
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motion. Here, exceeding the threshold DImax results in a
virtual repulsive force Fc, at the location of the critical point
that is given by,

Fc = kc1DI(κd, κv)uc (4)

where kc1 is a proportionality constant and uc is a unit vector
along the line connecting the critical point to the closest
point of the body. The force moves the robot away from the
danger through a series of steps as the danger is encountered.
In case of multiple links exceeding the threshold value,
a repulsive force is calculated for each link separately.
Following successful reduction of the danger index below
the threshold, a virtual damping torque (e.g., τd = −bq̇ with
b as the damping factor and q̇ as the joint velocity) is applied
to stop the robot.

C. Prediction-Based Reactive Control Strategy

In this section, a new prediction-based reactive control strat-
egy for human-safe robots is proposed. The new method uti-
lizes the future human motion predicted by the ANN in order
to obtain a value of the danger index. The predicted values
of the danger index will then be used in conjunction with
the impedance-based control scheme in order to maintain
the danger index consistently below its threshold values.
Previously, we introduced the architecture of an ANN that
could predict the human motion for the next three steps. By
fitting a curve of a proper order to these steps, one can obtain
a future motion trajectory of the human. The prediction-
based reactive control method utilizes this trajectory in its
entirety to obtain a modified path for the robot. To be more
specific, let us assume a case in which one or more robot
links crosses the predicted human trajectory. The impedance
reactive control scheme simply pushes the robot away to
a location whose corresponding danger index is less than
DImax. Since such reactions are only due to the present
value of the danger index, the new location of the robot
may or may not cross the future human trajectory. Thus, as
the human continues to move along his trajectory, another
dangerous situation may arise which in turn will call for
further reaction. Clearly, this method suffers from an ineffi-
cient way of dealing with current dangerous situations and
forestalling future ones. To address this issue, we introduce
a new approach that not only can guarantee the safety of the
human at present, but it also avoids any interference with
future motions of the human. The new approach utilizes the
predicted human trajectory in the definition of a new path
danger index PDI that for an arbitrary point along the link
of a robot is defined as,

PDI(n0, dp) = Cp(eλ(d̂p+κ̂dmax ) − 1)S(κ̂dmax + d̂p) (5)

where d̂p = (−1)n0+1dp, Cp = (eλκ̂dmax − 1)−1, dp is the
shortest distance of the considered point to the path of the
human, λ is the rate at which the danger index increases
near the human path, κ̂dmax = κdmax + wT

2 , wT is the average
width of the human trunk, and n0 is the number of times that
the portion of the link, starting from the base of the robot
to the considered point, crosses the human path. The value

of n0 plays a key role in evaluating the path danger index.
To exemplify the new danger index, let us consider the 3-
DOF planar manipulator depicted in Fig. 4 and an arbitrary
human path. In this example, the human path is shown using
a dashed-line in xy plane. In general, the human path in three
dimensional space can be represented using a manifold that
passes through all human steps and has an infinite height
along the z axis. The figure plots the value of PDI for
the assumed configuration with respect to the human path.
Starting from the base and moving along the links, it is clear
that as the link and the human path cross (future interference
- high risk), the value of PDI will exceed 1, and once the
link crosses the path for the second time (no interference -
low risk region) this value will become less than 1 again.
In this way, more emphasis is given to the part of the robot
which causes future obstructions in the human path.
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Fig. 4. Top: a 3-DOF planar manipulator and an arbitrary human path;
Bottom: the value of path danger index for each point along the links
(κ̂dmax = 0.4m, λ = 1, and the robot base is assumed at (0, 0)).

Combining the path danger index with the danger index
defined in (2) and applying the repulsive force of each index
to the robot yields a new prediction-based reactive control
strategy that meets all performance and safety requirements.
The new scheme uses the values of the danger index acquired
for the critical point on each link and apply a virtual force
Fc, when these values exceed the predefined threshold of
the danger index. This will guarantee the safety of the
human at present time. Additionally, the new scheme uses the
maximum value of the path danger index of a point on each
link and apply another virtual force Fp in order to clear the
future path of the human and avoid any danger in the future.
The value of the virtual force is a function of path danger
index and is given by,

Fp = kc2PDI(n0, dp)up (6)

where kc2 is a proportionality constant and up is a unit vector
connecting the point on the link with maximum PDI to
the closest point on the human path. The application of this
virtual force will push the links in a direction that does not
interfere with the human path.
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Fig. 5. Simulation Results for case study 1 (a1 and b1) and case study 2 (a2 and b2). These figures compare the performance of (a1,a2) Impedance- and
(b1,b2) prediction-based reactive control strategies.

IV. RESULTS

This section summarizes simulation and experimental results
for the prediction-based reactive control scheme. Simulation
results for a 3-DOF planar robot are compared to those
obtained from the impedance-based reactive control scheme.
Furthermore, experimental results for a 6-DOF CRS-F3 robot
manipulator are presented to validate the effectiveness of the
proposed method.

A. Simulation Results

A 3-DOF planar robot (see Fig 4) is considered in order
to study the feasibility and effectiveness of the proposed
method. The parameters used throughout the simulations are
listed in Table II. Note that the simulation results are for
the sake of demonstrations and the dimensions of the human
body may not be a true representative of an actual human.
Each method (impedance- or prediction-based method) is
evaluated for two different cases.

TABLE II
PARAMETERS OF SIMULATION STUDIES

Parameter Description Value
l1, l2, l3 Length of links 1, 2, and 3 0.75,0.5,0.5 m
λ, b Slope and damping factors 1, 0.1
kc1 , kc2 Proportionality constant in (4) and (6) 1,1
wT , lT Torso width and thickness 0.2, 0.07m
κdmin Minimum allowable distance to obstacle 0.2 m
κdmax Maximum effective range for fD 0.2 m
κvmin Minimum effective range for fV -0.1 m

s
κvmax Maximum allowable relative velocity 0.1 m

s
DImax Maximum acceptable DI and PDI 0

In the first case, a human is considered to be surrounded
by all three links of the robot while approaching the robot,
while, in the second case, it is assumed that a human
is approaching the robot from the right-hand side. The
results are presented in Fig. 5. As observed both methods
are successful in moving the manipulator away from the
present location of the human and avoiding arising dangerous
situations. However as it can be seen in Figs. 5(a1 and a2),
using the impedance-based method, the robot finds itself
blocking the human path in each step, as the human walks
along the path. This procedure eventually leads to a situation
(local minimum) in which neither the human nor the robot
can continue their motions without encountering a danger.

However, the predication-based reactive control as shown in
Fig. 5(b1 and b2) pushes the robot in such a way that it
clears the current and future path of the human. The proposed
method successfully and intelligently forestalls and clears the
future dangerous situations.

B. Experimental Results

This section presents experimental results for impedance-
and prediction-based method on a 6-DOF CRS-F3 robot
manipulators. A real-time control platform consisting of a P4,
2.8GHz computer, a C500C CRS controller, and ActiveRobot
software were used [23]. The required information about the
human were obtained using a new sensory system called
safety mat [17]. The motion prediction ANN and reactive
control algorithms were coded in C++ classes to be added
to ActiveRobot software. In this section, average values for
the width and thickness of human torso were considered
(wT = 0.4 m, lT = 0.25 m). Also, the minimum allowable
distance and maximum allowable velocity to the obstacle
were κdmin = 0.1 m and κvmax = 1 m

s , respectively.
In addition, effective ranges considered for distance and
velocity factors were κdmax = 0.2 m and κvmin = −0.1 m

s ,
respectively. The rest of the parameters were the same as the
ones in Table II. The performance of the impedance- versus
prediction-based methods for a case in which a human walks
around the robot on a curved path (close to the base of the
robot) are compared. Figs. 6 (a1-f1) presents the snapshots
of the robot for impedance-based method. The robot moves
on a step by step basis to temporarily clear the path of the
human without considering the future path of the human.
Thus, the first joint of the robot rotates about 180◦. This
clearly presents the shortcoming of the impedance-based
method. On the other hand, the prediction-based reactive
control method, as presented in Figs. 6 (a2-f2), efficiently
pushes the second and third links of the robot to an upright
direction in order to clear the path of human. The first joint
of the robot moves much less than that in the impedance-
based method. As a result, the danger is eliminated faster
and the human can pass the robot with no obstruction. This
shows the advantages of the prediction-based method.

V. CONCLUSION

This paper presented the results of a study on a reactive
control strategy for HRI applications. It was shown that by
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Fig. 6. Experimental results for (a1-f1) impedance-based strategy (step by step retraction - high danger) and (a2-f2) prediction-based strategy (path
clearance - fast elimination of danger).

using a feed-forward ANN the future motion trajectory of the
human can be integrated in a reactive control safety strategy
in order to foresee and react to an upcoming dangerous
situation prior to its occurrence. It was shown that applying
a prediction-based reactive control strategy can compensate
for the delay due to danger evaluations and the modification
of the path and can significantly improve the performance
of the safety strategy. As for the prediction-based method,
simulation as well as experimental results for a 3-DOF planar
manipulator and a CRS-F3 manipulator were presented.
The results showed high efficiency and intelligence of the
presented safety strategy in ensuring human safety during
human robot interactions. It was shown that prediction-based
method are more successful in fast elimination of the current
and future potential hazards in comparison to conventional
reactive control methods.
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