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Abstract— Stereo-based off-road obstacle detection is a com-
plex and still open problem. The challenges are in great extent
related to computational cost and noise level. Previous work
has shown that visual saliency and voting mechanisms are
extremely effective in tackling these issues. This paper proposes
a set of extensions to these mechanisms, to further improve the
detector’s speed-accuracy trade-off as well as its robustness.
The observed enhancements are due in part to the adaptive
way saliency is accounted for by the detector during the image
scanning procedure. Additionally, detector’s positive results are
in turn used to boost the saliency map itself, thus reinforcing the
analysis of relevant regions of the image. To enable detection in
highly roughed terrain, the detector’s invariance to the robot’s
posture is also enhanced. Experimental results show that, with
the extended detector, denominated of ESalOD, higher levels of
robustness, accuracy and computational efficiency are attained.

I. INTRODUCTION

Stereo vision aggregates a set of important features for all-

terrain service robots, such as general purpose capabilities,

small energetic footprint, light weight, small size and low

cost. However, the large amount of generated data, which is

also noisy, presents a series of challenges. These, allied to

the unstructured nature of off-road environments, makes the

use of stereo vision for robust and fast obstacle detection a

problem still open.

A typical approach for efficient obstacle detection is to

assume that the terrain can be approximated by a planar

model [1], [2], [3]. However, off-road environments are often

highly uneven, breaking down this assumption. In this case,

terrain’s surface variations for instance, can be erroneously

characterised as small obstacles.

A way of relaxing the planar terrain assumption without

losing computational performance is through the use of

heuristics applied locally to the disparity/range image [4],

[5], [3]. Another well known heuristic is traversability, which

is typically defined in terms of the residual resulting from

the fitting process of small planes [6], [7], [8], [9], [10], [11].

The major limitation of heuristic-based solutions is the

difficulty in defining obstacles in terms of the robot’s me-

chanical characteristics, i.e. systematically. A way of circum-

venting this limitation is through the construction of Digital

Elevation Maps (DEM) of the environment, upon which a
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Fig. 1. Examples of ESalOD obstacle detection results. Red overlay on
input image correspond to pixels classified as obstacle (within a 10 m range).

detailed kinematic and dynamical model of the robot can

be used for safe motion planning [12], [13], [14]. However,

these solutions tend to be too computationally demanding.

An alternative is to define obstacles in terms of geomet-

rical relationships between their composing 3-D points [15],

[16], [17]. From these, the model proposed by Manduchi

et al. [16] is the one providing the most exact definition

of obstacle. To overcome some of its limitation, i.e. to cope

with real-time constraints and noisy data, it has been recently

extended [18], [19], [20].

This paper proposes a set of improvements to those exten-

sions, in particular to saliency-based space-variant resolution

[20] and voting [19] mechanisms. Experimental results will

show that the improved detector, which we name ESalOD,

is more robust, accurate and computationally efficient than

its predecessors.

This paper is organised as follows. In Section II the

proposed model is exposed. Experimental results, obtained

with a stereo vision sensor, are subsequently described in

Section III, followed by conclusions and future work in

Section IV.

II. PROPOSED MODEL

This section describes the obstacle detector, whose oper-

ation is modulated by visual saliency and compensated ac-

cording to the estimated ground-plane. Saliency computation

and ground-plane estimation processes are based in previous

work [20] on off-road environments.

A. Obstacle Definition

As proposed by Manduchi et al. [16] in their model, from

now on denominated Original Obstacle Detector (OOD), a

3-D point is considered obstacle if it is compatible with any

other 3-D point. Two 3-D points, pa = (xa, ya, za) and pb =
(xb, yb, zb), are said to be compatible if,

Hmin < |yb − ya| < Hmax ∧
|yb − ya|

‖pb − pa‖
> sin θ (1)
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Fig. 2. Geometric interpretation of the base model (OOD) [16], where filled
and unfilled circles represent points that are compatible and incompatible,
respectively, with p1 or p2. It is also possible to depict the projection of the
3-D point p1 in the image plane, i.e. pixel p

′. The basic voting mechanism
[19] is also demonstrated. Considering that, for the sake of this example,
only p1 and p2 were tested for compatibility, p1 is said to cast 6 votes
whereas p3 is said to be voted 2 times. For readability reasons, both CL

and C′

L
are not represented in the figure.

where θ is the minimum slope a surface must have to

be considered obstacle, Hmin is the minimum height an

object must have to be considered an obstacle, and Hmax

is the maximum allowed height between two points to be

considered compatible with each other. As mentioned, two

compatible points pertain to the same obstacle. By transi-

tivity, two points that are linked by a chain of compatible

points are also part of the same obstacle.

This definition has an intuitive geometrical interpretation

(see Fig. 2). The 3-D points that are compatible with a 3-D

point p are all encompassed by two truncated cones CU and

CL with vertex in p, normal to the xz plane and symmetrical

to each other, with an aperture angle of (π−2θ) and limited

by |y| = Hmin and |y| = Hmax.

Checking the compatibility between all possible 3-D

points is limited by real-time requirements. Fortunately, only

a reduced subset of the pixels must be analysed if the

following procedure is followed [16]. Let p′ be the projection

of the 3-D point p onto the image plane. Accordingly, the

two truncated cones of p, CU and CL, project onto two

truncated triangles C ′

U and C ′

L in the image plane, with

vertex in p
′ (see Fig. 2). Thus, the compatible points of p are

limited to those whose projected pixels are encompassed in

C ′

U and C ′

L. Moreover, if the image is scanned from bottom

to top and from left to right, it suffices to consider only the

upper truncated triangle, C ′

U , to efficiently detect and label

all points compatible with p.

The truncated cone’s height is given by Hmaxf/pz , and

its width can be approximated by, 2Hmaxf
tan θmaxpz cos u

, where f
is the camera’s focal length and u = arctan(px/pz).

B. Roll Compensation

All the above geometrical considerations assume that the

camera is not tilted or rolled in respect to the ground-plane.

Fig. 3. Compatibility test on a real image. The zoomed image depicts
the results of the compatibility test regarding the pixel in the truncated
cone’s vertex. Red, green and black pixels overlay on the zoomed image
correspond to the compatible, incompatible and without computed range
points, respectively. Due to projection, incompatible points show up in the
truncated triangle. Note the rotation of the truncated triangle, which is a
result of the compensation for the camera’s roll angle, with respect to the
ground-plane.

This is an obviously unbearable constraint for all-terrain

robots. Small variations on the camera’s attitude could be

compensated by overestimating the truncated triangle’s size

[16]. However, this approximation increases the computa-

tional cost, and thus should be discarded.

Instead, a faster and more exact approximation to the prob-

lem is herein proposed. First, the dominant plane, assumed

to be the ground one, is computed [20]. Then, the full 3-D

point cloud is rotated in order to align the world’s reference

frame, given by the normal to the computed ground-plane,

with the camera’s reference frame [18], [20]. The projected

truncated triangle is also rotated according to the estimated

camera’s roll angle. This way, the pixels scanned in the image

plane better correspond to the 3-D points that are actually

encompassed by the rotated truncated cone (see Fig. 3). The

tilt angle is not considered in the truncated triangle rotation

due to its far less significant impact on detection accuracy.

C. Space-Variant Resolution

Despite the advantages of using a truncated triangle in

order to focus the compatibility test, the computational cost

of the method remains too expensive. Space-variant reso-

lution is thus essential to further reduce the computational

load. A successful extension to OOD [16] with space-variant

resolution, from now on denominated of Extended Obstacle

Detector (EOD) [19], can be summarised as follows.

For a given pixel p
′ (sequentially sampled from 1/n of

the full resolution, from the bottom of the image to its top

and from left to right), its C ′

U is first scanned for compatible

points with 1/m of the maximum resolution in a chess-like

pattern, where m > n. If a point compatible with p
′ is found,

C ′

U is rescanned as with 1/n of the maximum resolution;

then, finished the scanning procedure, the full resolution is

recovered with the following region growing method. For

each obstacle pixel p
′, all its neighbours within a distance

d in the image plane, are also labelled obstacles if their

corresponding 3-D points are within a distance g from p.

Despite its considerable achievements in reducing com-

putational cost, the EOD method [19] operates to a great
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extent blindly. That is, in order to reduce computational cost,

n and m are increased, and consequently the number of

skipped pixels as well. Visual saliency is known to be an

important asset in many search tasks and thus it is a powerful

candidate to guide the space-variant resolution mechanism in

an informed way. Bearing this in mind, EOD [19] has been

extended into a Saliency based Obstacle Detector (SalOD)

[20], which can be summarised as follows.

Rather than applying the compatibility test along the

whole scan, as performed by the OOD [16], the SalOD [20]

proposes to test a pixel p
′, sampled from 1/n of the full

resolution, if:

1) nslide consecutive pixels in the same row of p
′ have

not been tested so far; or

2) n consecutive pixels, after a pixel that has been tested

and labelled as obstacle in the same row of p
′, have

not been tested so far; or

3) there is a 10% increment between the local saliency of

p
′ and the one of its preceding scanned pixel, provided

that both share the same row; or

4) the last scanned pixel had no computed 3-D, and hence,

no information could be obtained from it.

Local saliency is computed by taking the maximum

saliency from the set of pixels within the same column of

p
′ and contained in its truncated triangle, including itself.

This diminishes the effects of poor light conditions, which

in some situations makes the upper part of objects to appear

more salient than their lower part. If only the saliency of p
′

was used instead, many pixels in the lower part of objects

would be inappropriately skipped.

Roughly speaking, the described process slides along rows

for nslide pixels unless an increase in saliency is observed, or

an obstacle point is detected. While sliding, the compatibility

test is not performed, and consequently computational cost is

saved and the chances of generating false positives is reduced

[20]. However, some additional features can be added in

order to enhance both system’s performance and accuracy.

These changes are herein proposed as part of an improved

detector, the Extended SalOD (ESalOD).

First, p
′ is sampled from the full resolution input image,

rather than from only 1/n. As discussed later on (see

Section II-D) this is an important feature to enable a full

resolution algorithm. Secondly, rather than having a fixed

nslide, a dynamical one is used instead,

nslide(k) =

{

k · n if
(

k < nmax

n

)

nmax otherwise
(2)

where, k is the number of consecutive pixels tested and

labelled as non-obstacle, since the last time a pixel was

considered an obstacle, and nmax is an empirically defined

scalar. The application of this method results in skipping

progressively more pixels as obstacles are not found. Since

the sliding process starts with small jumps, the chances of

failing to detect the borders of objects are reduced, which

was one of the problems of SalOD [20].

Fig. 4. Graphical representation of the space-variant resolution for Image
#21 (see Fig. 8(j), Fig. 8(k) and Fig. 8(l), for corresponding input, saliency
and results images, respectively). The image has been cropped to range
r = 10 m. White pixels correspond to points that have been skipped by
the detector due to the lack of saliency or computed range. Gray pixels
correspond to points that have been analysed.

Additionally, every time a pixel p
′ is labelled as obstacle,

the saliency of all pixels compatible with p are increased

in 10% (empirically defined). This reinforces the presence

of the detected obstacle, which in turn raises the chances

of selecting other pixels of the obstacle, i.e. those whose

saliency has been magnified, for compatibility testing. Typ-

ically, saliency is used to modulate a task-specific detector,

e.g. (e.g. [21], [22]), as it is the case in the proposed

method. The other way around, i.e. allowing the results

of the detector to modulate the saliency map, is much

more atypical. Thus, the proposed mechanism to magnify

the saliency when compatible points are found, is itself an

innovation to saliency computation models.

Finally, instead of analysing every row that is multiple of

n, as in SalOD [20], ESalOD instead skips n+k rows, where

k is incremented every time an analysed row does not contain

any obstacle pixel. Whenever an obstacle pixel is found k
is zeroed. This procedure, which mimics to some extent the

row sliding process, is extremely useful in the reduction of

the computation load in environments with few obstacles, or

when obstacles are mostly in the far-field (see the effects

of this process in Fig. 4). Since the truncated triangles for

points in the near-field are quite large, skipping rows from

the bottom of the image when no obstacle is found there,

reduces considerably the computational cost.

D. Full Resolution Operation

Note that for the ESalOD case, n and m define a base

resolution which does not limit the algorithm from using full-

resolution if necessary. This is the case for instance when

a saliency increment is observed across two sequentially

analysed pixels. That is, every pixel in the input image has

non-null probability of being assessed. In this sense, the

ESalOD is a full resolution algorithm. In opposition, and

with the exception of the region growing mechanism, the

base resolution of EOD [19] and SalOD [20] are only able

to blindly reduce the amount of pixels being analysed.

E. Voting Filter

In addition to computational performance, both accuracy

and robustness are likewise important. These two additional
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ingredients, in the form of voting filters, are integral parts of

EOD [19]. These filters intend to diminish the effects caused

by artifacts introduced during the 3-D reconstruction process.

In this formulation, a given point p is said to cast a number

of votes equal to the number of points compatible with p,

and is also said to be voted by those points whose upper

truncated cone include p (see Fig. 2).

Formally, let p be a 3-D point and p
′ its projection in

the input image. Let A′

p be the set of pixels, with computed

range, falling inside the upper truncated triangle of p
′. Let

S′

p be the set of pixels whose corresponding 3-D points are

encompassed by the upper truncated cone of p, and thus

compatible with it. Hence, |S′

p| is said to be the number of

votes casted by p. Let B′

p be the set of pixels, with computed

range, whose upper truncated triangles encompass p
′. Let R′

p

be the set of pixels, whose corresponding 3-D points’ upper

truncated cones encompass p. Hence, |R′

p| is said to be the

number of times p is voted.

In this formulation, only points that cast more than

nvotes votes and are voted by more than nvoted points,

are considered obstacles. Thus, rather then the one-to-one

mapping considered in the OOD [16], where compatibility

is sufficient to define obstacle, in EOD [19] a many-to-many

mapping is necessary. This naturally results in higher levels

or robustness.

A careful empirical observation revealed that the and

operation employed in EOD [19] is too strong, making the

system’s output highly sensitive to the voting thresholds

parametrisation. As a consequence, we set the ESalOD

to use the logical disjunction instead. This slight change

allows reducing the false positives rate by pushing further

the voting thresholds, with minimum impact on the true

positives. Moreover, a mechanism to normalise the number of

votes associated to each point, according to the theoretically

maximum number of possible votes, i.e. |A′

p| and |B′

p|, is

also missing in EOD [19]. The relevance of this issue stems

from the fact that farther obstacles are represented by fewer

pixels than closer obstacles.

Both disjunction and normalisation mechanisms are then

used to determine whether point p can be accepted as an

obstacle point, according to the following condition,

(

|S′

p|

|A′

p|
> nvotes

)

∨

(

|R′

p|

|B′

p|
> nvoted

)

(3)

where for the context of this article both voting thresholds

are identical v = nvotes = nvoted.

F. Area Filter

Although the voting filters are extremely powerful, their

operation can be better exploited when in conjunction with

an area filter, as demonstrated by the experimental results

(see Section III). The area filter comes into play to remove

any residual noise left by the voting filters.

For the area filter application, the obstacle points are seg-

mented in the 3-D space according to the method employed

in OOD [16]. Once all obstacles are segmented, the area

filter eliminates those segments, i.e. objects, whose area is

below an empirically defined scalar a. Formally, an obstacle

point p is considered non-obstacle if |Ap| < (100 · a) /z2

p ,

where Ap is the set of points with the label of p, i.e. that

correspond to the same object.

III. EXPERIMENTAL RESULTS

A set of 36 stereo 640× 480 images, published elsewhere

[20], along with its corresponding hand-labelled ground-

truth (obstacle/non-obstacle), was used throughout all exper-

iments. Images composing the dataset have been acquired

with a 9 cm baseline Videre Design STOC sensor, at an

approximate height of 1.5 m. Due to poor light conditions

and blur induced by motion, the acquired low contrast

images generate noisy 3-D point clouds. These are stringent

conditions but quite realistic for outdoor robots. Small Vision

System (SVS) [23] and OpenCV [24] were used for stereo

and low-level computer vision routines, respectively. When

nothing is said otherwise, the ESalOD model has been

parametrised for the best performance, Hmin = 0.1 m,

Hmax = 0.4 m, θ = 40◦, (n × m) = (3 × 6), a = 25,

v = 20, nmax = 30, g = 0.4 m, d = 8, rmin = 1 m,

rmax = 10 m, nhypo = 500. Additional parameters for

saliency computation and ground plane estimation have been

set to their default values [20].

The area filter, which aims at removing false positives,

showed to be pivotal for the overall improvement (see Fig. 5).

The Receiver Operating Characteristic (ROC) curves for

different thresholds reveal that a = 25 is the one producing

better results, and consequently considered for the best

parametrisation.

The synergistic effect between both area and voting filters

can be appreciated in Fig. 6, which illustrates the ROC curves

of the several tested models when varying the voting thresh-

olds. The curves also clearly show the proposed ESalOD

model outperforming its preceding models in both accuracy

and robustness. In fact, the curves show that ESalOD reduces

in ≈ 70% the FPR of OOD, with only ≈ 10% of reduction

in terms of TPR.

Finally, Fig. 7 shows that the added complexity of ESa-

lOD, which endows it with higher levels of accuracy and

robustness than its predecessors EOD [19] and SalOD [20],

while performing in full resolution, does not compromise

its performance. An additional experiment showed that the

saliency-based slide mechanism is responsible for 17% sav-

ing of computation time. On a Centrino Dual Core 2.0

GHz CPU running Linux, stereo, saliency, and ground-plane

estimate computation, take in average, 40 ms, 43 ms and

54 ms, respectively.

The original obstacle detector (OOD) performs on average

110 times slower than ESalOD. The timing information re-

ported by Manduchi et. al [16] varies between 0.67 s and 4 s

(after conversion to 640×480 images). This is rather different

from the 40 s (on average) obtained with our implementation

of their algorithm. We believe this is mostly due to the fact

that most of our images cover larger areas of the near-field.

In these situations the upper truncated triangle is quite large

and consequently expensive to analyse. This happens because
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Fig. 5. Impact of the area filter. Each plot is the average of the
Receiver Operating Characteristic (ROC) curves of the area filter over all
images in the dataset, for a given parametrisation. For a given image and
parametrisation of the area filter, a ∈ {0, 5, 25}, the ROC curve is built by
sliding the threshold of the votes filter over its domain, v ∈ {0, 5, . . . , 100}.
The absence of the area filter, i.e. a = 0, results in the poorest curve, i.e.
with the lowest area under the curve, showing the usefulness of the filter.
The relative performance associated of the other two different values, i.e.
a ∈ {5, 25}, switches at the intersecting point of the corresponding ROC
curves. Nevertheless, a = 25 is selected as it is the one performing better
for higher values of TPR.

our images were taken from a lower height, and many of

them with large tilt angles pointing downwards. Note that

all tested algorithms are built from the same backbone, i.e.

our OOD implementation. This reduces to the minimum any

bias that could benefit any of the models. Fig. 8 illustrates the

product of ESalOD, with its best parametrisation, on three

typical images.

IV. CONCLUSIONS

A saliency-based obstacle detector for all-terrain environ-

ments, denominated of ESalOD, was presented. Experimen-

tal results showed that the detector is more robust, accurate

and computationally efficient than the models on which it is

based on, i.e. OOD [16], EOD [19] and SalOD [20].

The obtained improvements are due to a set of factors.

First, the adaptive (progressive) way saliency is accounted

for during the detection process allows the system to better

skip uninteresting pixels without failing to detect obstacles’

boundaries. Second, the fact that the detector’s positive

results are used to boost the saliency map itself, which is

innovative in terms of saliency models, reinforces the analy-

sis of relevant regions of the image. This helps for instance

on dealing with local saliency failures. The improvements in

terms of detection invariance to robot’s posture have shown

to be essential for a proper operation in highly roughed

terrain. Finally, the way 3-D points are allowed to vote on

each other, normalised by the distance, increases robustness

considerably. All these results contribute to the evidence that,

visual saliency and voting mechanisms are key to enable both

parsimonious and robust all-terrain obstacle detection.

Quantisation for extensive use of look-up tables is known

to reduce considerably detection computation time [18].

Fig. 6. ROC curves comparison. Each plot is the average of the ROC
curves over all images in the dataset, for six different configurations: (1)
OOD, with resolution (1 × 1), which by not having a voting mechanism
is limited to a point; (2) EOD, with resolution (3 × 6) and v ∈ [0, 15];
(3) SalOD, with resolution 3 × 6, which by the same reason of OOD is
constrained to a point; (4) ESalOD with votes filter on, v ∈ {0, 5, . . . , 100},
and area filter off, a = 0; (5) ESalOD with votes filter off, v = 0,
and area filter on, a ∈ {0, 5, . . . , 100}; (6) ESalOD with both filters on,
a = 25 and v ∈ {0, 5, . . . , 100}. The ROC curves associated to using
only the voting mechanism or the area filter are below the curve when both
are employed. The fact that the voting mechanism and area filter curves
switch their relative performance at an interception point show that their
relevance depends on the preferred trade-off. The blend of both mechanisms
is always better than each in isolation, i.e. the area under the curve is higher,
whatever the preferred trade-off. It is also visible that ESalOD performs
better and more robustly than its previous versions, i.e. OOD, EOD and
SalOD. The fact that the ROC point of SalOD, which is not endowed
with voting mechanism, coincides with the EOD ROC curve, reflects the
power of saliency on FPR reduction. The grey square signals the point
associated to the ESalOD chosen configuration, i.e. a = 25 and v = 20.
With this configuration, almost no false positives were visible, and most of
the loss in terms of true positives were restricted to obstacles’ inner points.
A proper representation of obstacles’ boundaries are barely untouched. This
configuration thus provides a clean and sufficiently complete environment’s
representation for obstacle avoidance purposes (see Fig. 8).

The advantages of introducing such technique, which is

complementary to the ones proposed in this paper, will be

subject of future work. Special attention will be given to the

unavoidably loss of accuracy.

The saliency map is used to guide the application of the

obstacle detector, which is in turn modulating the former

as obstacles are detected. This mutual influence, which is

innovative, will be pushed further in subsequent work. In

particular, the output of the obstacle detector will be used

to determine which feature maps should contribute more to

the saliency map [25], and as a consequence improve the

correlation between saliency and obstacle presence.
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