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Abstract— This paper studies the controllability of pairs
of identical nonholonomic vehicles maintaining a constant
distance. The study provides controllability results for the five
most common types of robot vehicles: Dubins, Reeds-Shepp,
differential drive, car-like and convexified Reeds-Shepp. The
challenge of achieving controllability of such systems is that
their admissible control domains depend on configuration vari-
ables. A theorem of controllability specifical for such systems
has been obtained based on known controllability theorems.
As a result, we show that pairs of the latter three types are
completely controllable, i.e. can be steered between any two
arbitrary configurations. The same does not hold for pairs
of Dubins or Reeds-Shepp vehicles, and a description of the
reachable sets in these cases is provided. Finally, as direct
extension of controllability results of pairs of identical vehicles,
the controllability results for two kinds of formation of n
identical vehicles are presented.

I. INTRODUCTION

This paper provides the results of controllability for pairs

of identical vehicles maintaining a constant distance. The

controllability of a system answers the question about the

existence of an admissible trajectory between any given two

configurations, which is an important condition for a feasible

design of motion planning ([1]) and for the existence of

an optimal trajectory (see e.g. [2]). Moreover, the study of

pairs of vehicles maintaining a constant distance helps the

design of navigation strategies for a group of robots moving

in formation (see e.g. [3], [4] and [5]).

In this paper we adopt the notation used in [2],[6]. A

system is controllable if, for every pair of points p and

q in the configuration space, there exists a control that

steers the system from p to q. It is small-time locally

controllable (STLC) from a point p if the set of points

reachable before a given time T contains a neighborhood of

p for any T . A control system will be said to be small-time

controllable if it is small-time controllable from any point of

the configuration space. The small-time controllability can be

used to answer the problem about existence of collision-free

admissible paths (see e.g. [1]). The challenging aspect in the

controllability of the considered systems is that admissible

controls depend on the configuration variables. Therefore,

based on existing controllability theorems and on the ac-

cessibility rank condition of weakly reversible systems, we

provide controllability theorems specific for such systems.

Furthermore, conditions to verify the controllability of such

systems are also provided.
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Fig. 1. The admissible controls for five types of robot vehicles.

This paper provides the results of controllability for the

five most common types of robot vehicles which are widely

discussed in the literature: Dubins [7], Reeds-Shepp (RS)

[8], differential drive (DDV) [9], [10], car-like (Car) [11],

[12] and convexified Reeds-Shepp (CRS) [2]. As a result,

we show that while pairs of the latter three types of vehicle

can be steered between any two arbitrary configurations, the

same does not hold for pairs of vehicles of the first two

types. For these two cases, a description of the reachable

sets is provided. To the authors best knowledge, in the current

literature no result on the controllability of pairs of vehicles

that maintain a given distance is reported.

II. CONTROLLABILITY THEOREMS

We first introduce the controllability theorems and lemmas

that we will use in the following sections to prove control-

lability for the considered systems.

A. Controllability Definitions and Theorems

The systems we will study are affine control systems that

can be written as

Σaff :

{
ẋ = f(x, u) = g0(x) +

∑m
i=1 giui;

x ∈ X ⊆ R
n, u ∈ U(x) ⊆ R

m.
(1)

Let A := {fu = f(., u), u ∈ U} be the set of system’s

vector fields.

Definition 1: The Lie algebra ALA of vector fields A is

called the accessibility Lie algebra associated to the system.

The accessibility rank condition (ARC) holds at x0 ∈ X if

ALA(x0) = R
n.

Accessibility rank condition in [13] is also called control-

lability rank condition in [14], and Lie algebra rank condition
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in [2] and [15]. The verification of the accessibility rank

condition is not straightforward. However, from [16] and [13]

it holds

Lemma 1: If 0 ∈ conv(U) and aff(U) = R
m, then U is

called almost proper and ALA = {g0, · · · , gm}LA.
Where conv(U) and aff(U) are the convex hull and the affine

hull of U , respectively.

Recall that a system is symmetric if every trajectory run

backwards in time is also a trajectory.

Theorem 1: For a symmetric system, if the accessibility

rank condition holds at every point x0 ∈ X , the system is

STLC from every x0. In particular, if X is connected, then

it is controllable.

The theorem follows from results in [2], [16] and [13].

B. Proposed Controllability Theorems

From the results on complete controllability for a weakly

reversible system which is stated in Theorem 2 in [13], we

can state the controllability theorem for the special systems

in which the control domains vary with configurations.

Definition 2: A system with state space X is weakly

reversible if x1 ∈ R(x0) if and only if x0 ∈ R(x1),
∀x0, x1 ∈ X .

Theorem 2: [13] For a weakly reversible system, if the

accessibility rank condition holds at every state x0 ∈ X and

X is connected, then the system is completely controllable.

Notice that any symmetric system is definitely a weakly

reversible system.

For systems in which there exists a set of points in X
such that the ARC does not hold, controllability can still be

ensured (based on a trivial extension of Theorem 2) whenever

from this set it is possible to reach points in which the ARC

holds:

Theorem 3: Given a weakly reversible affine control sys-

tem, such as 1, with X connected, and given S1 ⊂ X such

that

1) ∀x0 ∈ S1, U(x0) ⊆ R
m almost proper, ALA(x0) =

R
n;

2) ∀x0 ∈ S2 := X \S1, U(x0) ⊆ R
l, l < m, ALA(x0) 6=

R
n; but R(x0) ∩ S1 6= ∅,

then the system is completely controllable. Moreover, if it is

symmetric, then it is also STLC.

Remark 1: Whenever S2 does not have interior points and

it is such that its boundary function Φ(x) is differentiable,

a sufficient condition for R(x0) ∩ S1 6= ∅ is that there

exists an admissible control ω ∈ U(x0), x0 ∈ S2 such

that 〈f(x0, ω),
∂Φ
∂x

〉 6= 0. This condition will be used to

prove the controllability of Car and RS vehicles. And if

〈f(x0, ω),
∂Φ
∂x

〉 = 0, S2 is invariant under all admissible

control ω, hence the system is not controllable, see fig.2.

III. KINEMATIC MODELS

In this section the kinematic model for two identical

vehicles (Dubins, Reeds-Shepp, differential drive, car-like

and convexified Reeds-Shepp) traveling at constant distance

is obtained starting from the kinematic model of a single

vehicle. It is worthwhile noticing that the models will differ

in the control set and not in the kinematics.

Fig. 2. Illustration of the sufficient condition for R(x0) ∩ S1 6= ∅ when
int(S2) = ∅ and its boundary function Φ(x) is differentiable.

A. Kinematic Models for Single Vehicles

The kinematic model of the considered vehicles can be

described as




ẋi

ẏi
θ̇i



 =





cos θi
sin θi
0



ui +





0
0
1



 vi (2)

where ξi = (xi, yi, θi) ∈ R
2 ×S1 denotes a configuration

of vehicle i, i.e. (xi, yi) is the position and θi is the forward

direction angle with respect to the positive x-axis.

The controls ui and vi describe the linear and angular

velocities of vehicle i, respectively. We write (ui, vi) ∈ U ,

where U is the admissible control domain. Fig. 1 shows

the different admissible control domains for the above five

types of vehicles. Without loss of generality, we consider

normalized maximal and minimal velocities and assume

that the minimum turning radius Rmin = 1 for Dubins,

RS and car-like robots, although in order to emphasize its

influence Rmin often remains. For DDV the wheel angular

velocities are bounded, hence the admissible control domain

is a diamond (rhombus), i.e. UDDV = {(ui, vi))|0 ≤ |ui| ≤
1; 0 ≤ |vi| ≤ 1 − |ui| ≤ 1}. For car-like vehicles, Ucar =
{(ui, vi))|0 ≤ |vi| ≤ |ui| ≤ 1}. A Dubins vehicle is a car-

like vehicle which is only able to move forward with constant

velocity, i.e. UDubins = 1× [−1, 1]. RS vehicles, can move

both forward and backward at constant velocity 1, i.e. URS =
{−1, 1}× [−1, 1]. For CRS robots, UCRS = [−1, 1]× [−1, 1]
is obtained by convexifying URS and CRS is the kinematic

model of a tricycle.

B. Kinematic Models for Pairs of Vehicles

Consider a pair of vehicles (ξ1 and ξ2) traveling while

maintaining a constant distance D. Let φ denote the angle

of vector (x2 − x1, y2 − y1) with respect to the x-axis, see

fig.3. Thus we can write:

x2 − x1 = D cosφ; y2 − y1 = D sinφ. (3)

We choose ξ1−2 = (x1, y1, θ1, φ, θ2) as the configuration

vector of the system consisting of two identical vehicles

maintaining a constant distance. The nonholonomic con-

straint for each vehicle is:

ẋi sin θi − ẏi cos θi = 0.
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Fig. 3. The kinematic model of pairs of identical vehicles.

From (3), we have that ẋ2 = −Dφ̇ sinφ + ẋ1 and ẏ2 =
Dφ̇ cosφ+ ẏ1.

Finally, the constraints for a pair of vehicles maintaining

distance D can be written as:

ẋ1 sin θ1 − ẏ1 cos θ1 = 0

(−Dφ̇ sinφ+ ẋ1) sin θ2 − (Dφ̇ cosφ+ ẏ1) cos θ2 = 0.
(4)

Hence, a system of 5 unknowns (ẋ1, ẏ1, θ̇1, φ̇, θ̇2) and 2
linear equations (4) have been obtained. By computing the

null space of the constraint matrix we obtain that there exists

u such that the kinematic model of a pair of identical vehicles

maintaining distance D is:













ẋ1

ẏ1

θ̇1
φ̇

θ̇2













=











D cos θ1 cos(φ − θ2)
D sin θ1 cos(φ − θ2)

0
sin(θ2 − θ1)

0











u+











0
0
1
0
0











v1+











0
0
0
0
1











v2 (5)

Let q = (x1, y1, θ1, γ1, γ2) be the new configuration of

the system with γ1 = φ − θ1, γ2 = φ − θ2. The kinematic

model of a pair of identical vehicles maintaining distance D
can be written as:

q̇ = f1u+ f2u1 + f3u2, (6)

where the system vector fields are:

f1 =









D cos θ1 cos γ2
D sin θ1 cos γ2

0
sin(γ1 − γ2)
sin(γ1 − γ2)









; f2 =









0
0
1
−1
0









; f3 =









0
0
0
0
−1









(7)

The relationship between u in (6) and u1 and u2 must be

found. To maintain distance D, the velocity of both vehicles

along distance direction should be the same, i.e.

u1 cos γ1 = u2 cos γ2. (8)

Hence, from (2) and (6), we obtain that

u1 = uD cos γ2;u2 = uD cos γ1. (9)

The systems of pairs of identical vehicles maintaining a

constant distance will be denoted by ΣDDV , ΣCar, ΣDubins,

(b) (c)(a)

Fig. 4. The admissible UDDV at configurations with (a): γ1 = γ2 = π

2
;

(b): γ1 = π

6
, γ2 = π

4
; and (c): γ1 = π

2
, γ2 = π

4
.

ΣRS and ΣCRS for differential drive, car-like, Dubins, RS

and CRS vehicles, respectively.

IV. CONTROLLABILITY FOR DDV, CAR AND CRS

SYSTEMS

A. Controllability for DDV

Theorem 4: ΣDDV is STLC and controllable on the con-

figuration space MDDV = R
2 × S1 × S1 × S1.

Proof: For DDV, the control is |ui| ≤ 1, and no

constraint limits the configuration variables θ1, γ1 and γ2.

Hence the configuration space is MDDV = R
2×S1×S1×

S1

Moreover, from (8) and |ui| ≤ 1 it follows

|u1| ≤ min

{
| cos γ2|

| cos γ1|
, 1

}

; |u2| ≤ min

{
| cos γ1|

| cos γ2|
, 1

}

.

(10)

From |vi| ≤ 1 − |ui| ≤ 1, we obtain that

if γ1 = γ2 = π
2 , its admissible control

set is UDDV = {(v1, v2, u)||vi| ≤ 1; |u| ≤ 1},

shown in fig. 4 (a); otherwise, UDDV ={

(v1, v2, u)||vi| ≤ 1; |u| ≤ min
{

1−|v1|
cos γ2

, 1−|v1|
cos γ1

}}

, shown

in fig.4 for two kinds of configuration with (b):

γ1 = π
6 , γ2 = π

4 ; (c):γ1 = π
2 , γ2 = π

4 . Thus for any

configuration, it satisfies 0 ∈ conv(U) and aff(U) = R
m.

Computing the vector fields (7), we have f4 = [f1, f2]=
(D sin θ1 cos γ2, −D cos θ1 cos γ2, 0, cos(γ1 − γ2), cos(γ1
−γ2))

T and f5 = [f1, f3]= (−D cos θ1 sin γ2,

−D sin θ1 sin γ2, 0, − cos(γ1 − γ2), − cos(γ1 − γ2))
T .

Notice that rank([f1, . . . , f5]) = 5, hence ARC holds at

every q ∈ MDDV . ΣDDV is also symmetric, thus from

Theorem 1, ΣDDV is STLC. Moreover MDDV is connected,

and the system is controllable.

B. Controllability for CRS

Theorem 5: ΣCRS is STLC and controllable on the con-

figuration space MCRS = R
2 × S1 × S1 × S1.

Proof: MCRS = R
2 × S1 × S1 × S1 follows directly

from |ui| ≤ 1 with the same reasoning used in the previous

theorem.

Similarly to the proof of Theorem 4, the admissible

control set is UCRS = {(v1, v2, u)||vi| ≤ 1; |u| ≤ 1} if

γ1 = γ2 = π
2 , shown in fig. 5 (a); otherwise, UCRS =

{

(v1, v2, u)||vi| ≤ 1; |u| ≤ min
{

1
D| cos γ2|

, 1
D| cos γ1)|

}}

,

shown in fig.5 (b) at a specified configuration. The

admissible control set UCRS is proper for all configurations,

ΣCRS is symmetric and MCRS is connected. Hence the

thesis.
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(b)(a)

Fig. 5. The admissible UCRS at configurations with (a): γ1 = γ2 = π

2
;

(b): γ1 = π

6
, γ2 = π

4
.

(a) (c)(b)

Fig. 6. The admissible Ucar at configurations with (a): γ1 = γ2 = π

2
;

(b):γ1 = π

6
, γ2 = π

4
; and (c): γ1 = π

2
, γ2 = π

4
.

Fig. 7. The admissible Ucar at a configuration with cos γ1 = 0 and
cos γ2 6= 0.

C. Controllability for Car

Theorem 6: Σcar is STLC and controllable on the config-

uration space Mcar = R
2 × S1 × S1 × S1.

Proof: Mcar = R
2 × S1 × S1 × S1

follows directly from |ui| ≤ 1. From (10) and

|vi| ≤ |ui| ≤ 1, we can get that if γ1 = γ2 = π
2 ,

UCar = {(v1, v2, u)||vi| ≤ 1; |u| ≤ 1}; otherwise UCar ={

(v1, v2, u)||v1| ≤ min
{

| cos γ2|
| cos γ1|

, 1
}

; |v2| ≤ min
{

| cos γ1|
| cos γ2|

,

1} ; |u| ≤ min
{

1
D| cos γ2|

, 1
D| cos γ1|

}}

. As shown in fig.6,

UCar is almost proper at all configurations except at γi =
π
2

and γj 6=
π
2 , i, j = 1, 2. For such configurations U is shown

in fig.6(c) and aff(UCar) = R
2. Considering γ1 = π

2 , γ2 6= π
2

(see fig.7), we have Φ(x) = γ1 − π
2 . If we choose

u1 = 1, v1 = −1, then f(x0, ω) = (∗, ∗, ∗, 1/D + 1, ∗)
and ∂Φ

∂x
= (0, 0, 0, 1, 0). Thus 〈f(x0, ω),

∂Φ
∂x

〉 > 0. Thus the

thesis follows from Theorem 3.

V. CONTROLLABILITY FOR RS

For RS vehicles, ui = ±1. Hence, from (8), we have:

cos γ1 = ± cos γ2. (11)

Four possible angular relationships between two vehicles

can thus be obtained (see fig. 8 ):

Fig. 8. Four angular relationships for ΣRS and configuration representation
by 4-dimensional parameters plus angular relationships {a1, a2, b1, b2}.

Fig. 9. Four angular relationships for pairs of RS vehicles and the combined
cases.

a1 : γ1 = γ2; a2 : γ1 = γ2 − π;
b1 : γ1 = −γ2; b2 : γ1 = −γ2 − π.

(12)

For simplicity and clarity of configurations representation

for ΣRS , we reduce the variables to 4 (x1, y1, θ1, γ1) and

we use a parameter (a1, a2, b1, or b2) to denote the angular

relationship (12). In fig.9 four possible angular relationships

are represented together with the shared cases: |γ1| = |γ2| =
0 and |γ1| = |γ2| =

π
2 .

We denote with ΣA
RS the system ΣRS when relation a1

or a2 holds (in this case v1 = v2). From (5), the kinematic

model of ΣA
RS is









ẋ1

ẏ1
θ̇1
γ̇1
γ̇2









=









cos θ1
sin θ1
0
0
0









u1 +









0
0
1
−1
−1









v1, (13)

with u1 ∈ {−1, 1} and v1 ∈ [−1, 1].
Remark 2: Notice that γ̇1 = −θ̇1, hence there always

exists a control (u1, v1) that steers γ1 between any two values

keeping φ = γ1 + θ1 constant.
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Fig. 10. Feasible configurations ΣB

RS
when D = Rmin.

Fig. 11. If D = Rmin, the admissible control v1 with respect to γ1.

We denote with ΣB
RS the system ΣRS when relation b1 or

b2 holds (in this case v2 = 4 sin γ1

D
u1−v1). From uD cos γ2 =

u1 and (11), we have that the kinematic model of ΣB
RS is









ẋ1

ẏ1
θ̇1
γ̇1
γ̇2









=









cos θ1
sin θ1
0

2 sin γ1

D
−2 sin γ1

D









u1 +









0
0
1
−1
1









v1. (14)

Let the 4-dimensional system Σ̃B
RS be system ΣB

RS pro-

jected on the first four coordinates. Hence, the configuration

of Σ̃B
RS is q̃ = (x1, y1, θ1, γ1) and the vector fields are

g1 =







cos θ1
sin θ1
0

2 sin γ1

D







; g2 =







0
0
1
−1







. (15)

Therefore, the kinematic model of Σ̃B
RS is:

˙̃q = g1u1 + g2v1, (16)

where u1 ∈ {−1, 1} and

max

{

−1,
4u1 sin γ1

D
− 1

}

≤ v1 ≤ min

{

4u1 sin γ1
D

+ 1, 1

}

.

(17)

To satisfy (17) we have 4u1 sin γ1

D
−1 ≤ 1 and 1+ 4u1 sin γ1

D
≥

−1, hence

| sin γ1| ≤
D

2
. (18)

Fig. 12. If D = 2Rmin, the admissible control v1 with respect to γ1.

Fig. 13. If D = 4Rmin, the admissible control v1 with respect to γ1.

It is now important to explicit the dependence of the results

with respect to Rmin. Indeed, (18) would be | sin γ1| ≤
D

2Rmin
. If D > 2Rmin, γ1 ∈ S1. On the other hand, if

D ≤ 2Rmin γ1 ∈ ΓI ∪ ΓII ∪ Γs, where

ΓI =]− arcsin(D2 ), arcsin(
D
2 )[,

ΓII =]− arcsin(D2 ) + π, arcsin(D2 ) + π[,
Γs = {γ1|| sin γ1| =

D
2 }.

(19)

For example, for D = Rmin feasible configurations are

represented in fig. 10 and admissible controls (ΓI =]− π
6 ,

π
6 [,

ΓII =] 5π6 , 7π
6 [, and Γs =

{
−π

6 ,
π
6 ,

5π
6 , 7π

6

}
) are represented

in fig. 11.

We denote with M̃B+

RS = R
2 ×S1 ×S1 the configuration

space when D > 2Rmin, and with M̃B−

RS = R
2 × S1 ×

ΓI ∪ ΓII and M̃Bs

RS = R
2×S1×Γs the configuration space

when D ≤ 2Rmin. Notice that M̃Bs

RS consists of singular

configurations.

Lemma 2: For Σ̃B
RS , ARC holds at any q̃ ∈ M̃B+

RS if D >

2Rmin and q̃ ∈ M̃B−

RS if D ≤ 2Rmin. But ARC fails at

q̃ ∈ M̃Bs

RS .

Proof: We start applying remark 1 for D ≤ 2Rmin and

q̃ ∈ M̃Bs

RS . In this case sin γ1 = D
2Rmin

. The only two ad-

missible controls are either (u1
1, v

1
1) = −(u2

1, v
2
1) = ±(1, 1)

or (u1
1, v

1
1) = −(u2

1, v
2
1) = ±(−1, 1), see fig.12. Notice

that aff(U) 6= R
2 implies that only one motion direction

is feasible at q̃. In this case Φ(x) = γ1 − arcsin( D
2Rmin

).

For all possible controls, f(x0, ω) = (∗, ∗, ∗, 0) and ∂Φ
∂x

=

346



Fig. 14. All q̃ ∈ M̃B
s

RS
can only reached points on a circle through q̃ of

radius Rmin.

Fig. 15. ΣB

RS
is controllable for any given distance D.

(0, 0, 0, 1). Thus 〈f(x0, ω),
∂Φ
∂x

〉 = 0. Hence, all reach-

able configurations from q̃0 = (x0
1, y

0
1 , θ

0
1, γ

0
1) ∈ M̃Bs

RS

lays on a circle with radius Rmin and centered at (x0
1 −

Rmin sin θ
0
1sign(sin γ

0
1), y

0
1 + Rmin cos θ

0
1sign(sin γ

0
1)), see

fig.14.

For q̃ ∈ M̃B+

RS , or q̃ ∈ M̃B−

RS , 0 ∈ conv(U) and aff(U) =
R

m, see fig.13, 11 and 12. From (15) and (16), we have:

[g1, g2] =







sin θ1
− cos θ1

0
2 cos γ1

D







; [g1, [g1, g2]] =







0
0
0
−1







(20)

The accessibility rank condition holds and hence the thesis.

Lemma 3: Σ̃B
RS is STLC at any q̃ ∈ M̃B+

RS and any q̃ ∈
M̃B−

RS .

Proof: ΣB
RS is symmetric because for any required

distance D, at any q ∈ M̃B+

RS (or M̃B−

RS ), if (u1, v1) is a

feasible control, then (−u1,−v1) is also feasible, see fig. 12.

From Theorem 1 and Lemma 2 the thesis follows.

If D ≥ 2Rmin, M̃B+

RS is connected, so we can get the

following corollary.

Corollary 1: If D ≥ 2Rmin, Σ̃B
RS is also controllable.

We are now able to prove controllability for the 5-

dimensional system ΣRS . With a slight abuse of notation

we denote with MA
RS = R

2 × S1 × S1 × {a1, a2} and

MB
RS = M̃B

RS × {b1, b2} the configuration spaces for ΣA
RS

and ΣB
RS , respectively. Furthermore let, M̃B

RS = M̃B+

RS

(M̃B−

RS ) if D ≥ 2Rmin (D < 2Rmin). Finally, let MAi

RS

be associated to relations ai and MBi

RS to relations bi.

Fig. 16. ΣA

RS
is controllable for both φ = φs and φ 6= φs.

Theorem 7: ΣRS is controllable on MRS = MA
RS ∪

MB
RS .

Proof: Corollary 1 states that ΣB
RS for D ≥ 2Rmin is

controllable.

We now prove that for D < 2Rmin, the system can be

steered between any two configurations in M̃B−

RS crossing

MA
RS . Without loss of generality let q0 ∈ M̃B

II = R
2×S1×

ΓB
II , a trajectory from q0 to q1 = (x1, y1, θ1, π) for some

(x1, y1, θ1) that evolves in M̃B
II always exists for Lemma 3,

see fig. 15. The system then evolves in MA
RS (as ΣA

RS),

and can reach q2 = (x̂1, ŷ1, θ̂1, 0) for some (x̂1, ŷ1, θ̂1) for

Remark 2. Then system can evolves in M̃B
I to achieve any

qf ∈ M̃B
I for lemma 3. There exists an equivalent control

law that steers the system from q0 ∈ M̃B
I to qf ∈ M̃B

II .

We now prove that the system can be steered between

any two configurations in M̃A
RS crossing MB

RS . For q0 =
(x0

1, y
0
1 , θ

0
1, γ

0
1) ∈ MAi

RS , Remark 2 implies that any point

with φ = γ1+θ1 = γ0
1+θ01 = φ0 can be reached in MAi

RS , see

fig.16 (a). Referring to fig.16 (b), if the final point in MAi

RS is

such that φ 6= φ0 we proceed as follows: 1) from q0, achieve

a configuration q1 = (x1
1, y

1
1 , θ

1
1, γ

1
1) with θ11 = φ1 = φ0,

notice that q1 ∈ MB
RS with γ1

1 = 0. 2) from q1, reach q2

with θ21 = φ2 = φf , evolving with ΣB . This is possible for

the first part of this proof. 3) from q2, reach qf evolving

according to ΣA
RS (Remark 2).

Finally, the four systems ΣAi

RS and ΣBi

RS are controllable

for each angular relationship. The switches between them are

shown in fig.9, so that ΣRS is controllable.

VI. CONTROLLABILITY FOR DUBINS

For Dubins vehicles, ui = 1, hence from (8), we have:

cos γ1 = cos γ2. (21)

Thus we have two possible angular relationships between

two vehicles

a : γ1 = γ2; b : γ1 = −γ2. (22)

Angular relationships and their intersection cases a ∧ b :
γ1 = γ2 = kπ, k = 0, 1 are reported in fig.17.

Using the same reasoning used for ΣRS , when a : γ1 = γ2
(v1 = v2), the kinematic model of ΣA

Dubins is
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Fig. 17. Two angular relationships a, b for ΣDubins.









ẋ1

ẏ1
θ̇1
γ̇1
γ̇2









=









cos θ1
sin θ1
0
0
0









+









0
0
1
−1
−1









v1, (23)

where u1 ∈ {−1, 1} and v1 ∈ [−1, 1].
If two vehicles have the angular relationship b, then

kinematics of ΣB
Dubins is:









ẋ1

ẏ1
θ̇1
γ̇1
γ̇2









=









cos θ1
sin θ1
0

2 sin γ1

D
−2 sin γ1

D









+









0
0
1
−1
1









v1. (24)

The range of v1 is given by max
{

−1, 4 sin γ1

D
− 1

}

≤

v1 ≤ min
{

4 sin γ1

D
+ 1, 1

}

and | sin γ1| ≤
D
2 .

The controllability of ΣDubins requires similar reasoning

as the controllability of ΣRS . However, it is much more

challenging to prove that ΣDubins is a weakly reversible

system, details of the proof can be found in [17]. For space

limitations, we only report the controllability results for

ΣDubins.

Let MA
Dubins = R

2 × S1 × S1 × {a} and MB
Dubins =

R
2×S1×ΓDubins×b. Let also ΓDubins = {γ1|| sin γ1| <

D
2 }

and Γs
Dubins = {γ1|| sin γ1| =

D
2 }.

Theorem 8: [17] ΣDubins is controllable on the configu-

ration space MDubins = MA
Dubins ∪MB

Dubins.

When D ≤ Rmin, if q ∈ MBs

Dubins = R
2×S1×Γs

Dubins×
b, the reachable configurations is a limit circle.

VII. CONTROLLABILITY FOR n VEHICLES

This section gives a direct extension of above controllabil-

ity results for pairs of vehicles to n identical vehicles both

for a star formation with a leader and for a chain formation.

Fig. 18. The admissible controls UDubins with respect to γ1.

1
θ

Fig. 19. The star formation for n vehicles.

A. Controllability for n vehicles with star formation

Given n vehicles Vi, i = 1, · · · , n, let V1 be a leader.

Assume the distances Di, i = 2, · · · , n between V1 to Vi are

different such that no collision between vehicle occurs. Let

γ1,i (γi,1), i = 2, · · · , n denote the angle from the heading

direction of V1 (Vi) to the distance direction from V1 to Vi,

see fig.19. Such system is denoted by Σn
s .

Let q̄ = (x1, y1, θ1, γ1,2, γ2,1, · · · , γ1,n, γn,1) be the con-

figuration of Σn
s . If vehicles are all DDV, Car or CRS

types, the configuration spaces can be written as M̄ =
R

2×S1 × · · · × S1

︸ ︷︷ ︸

2n−1

. From Theorems4, 5 and 6 corresponding

Σn
s are completely controllable.

For RS and Dubins vehicles, since for Di ≤ 2Rmin

the admissible control v1 does not exist for all possible

configurations, we assume that Di > 2Rmin for all i =
1, . . . , n. For RS vehicle, define SA = S1 with angular

relation a1 : γ1,i = γi,1 and a2 : γ1,i = γi,1 − π;

SB = S1 with angular relation b1 : γ1,i = −γi,1 and

b2 : γ1,i = −γi,1 − π. For Dubins vehicles, define SA = S1

with angular relation a : γ1,i = γi,1 and SB = S1 with

angular relation b : γ1,i = −γi,1. Then we can write
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1
θ

Fig. 20. The chain formation for n vehicles.

M̄ = R
2 × S1 × S1 × SA ∪ SB × · · · × S1 × SA ∪ SB

︸ ︷︷ ︸

n

.

From Theorems7 and 8 corresponding Σn
s s are completely

controllable.

B. Controllability for n vehicles with chain formation

This part gives another extension of controllability results

for chain formations consisting of n vehicles Vi, i =
1, · · · , n. Assume the distances Di, i = 1, · · · , n − 1
between Vi to Vi+1 are specified such that no collision

between vehicle occurs. Let γi,i+1 (γi+1,i), i = 1, · · · , n−1
denote the angle from the heading direction of Vi (Vi+1)

to the distance direction from Vi to Vi+1, see fig.20. Such

system is denoted by Σn
c .

Let q̄ = (x1, y1, θ1, γ1,2, γ2,1, · · · , γn−1,n, γn,n−1) be the

configuration of Σn
c . If vehicles are all DDV, Car or CRS

types, the configuration spaces can be written as M̄ = R
2×

S1 × · · · × S1

︸ ︷︷ ︸

2n−1

. From Theorems4, 5 and 6 corresponding Σn
c

are completely controllable.

For RS and Dubins vehicles, we assume that all distance

Di > 2Rmin. For RS vehicle, define SA = S1 with angular

relation a1 : γi,i+1 = γi+1,i and a2 : γi,i+1 = γi+1,i − π;

SB = S1 with angular relation b1 : γi,i+1 = −γi+1,i and b2 :
γi,i+1 = −γi+1,i − π. For Dubins vehicles, define SA = S1

with angular relation a : γi,i+1 = γi+1,i and SB = S1 with

angular relation b : γi,i+1 = −γi+1,i. Then we can write

M̄ = R
2 × S1 × S1 × SA ∪ SB × · · · × S1 × SA ∪ SB

︸ ︷︷ ︸

n

.

From Theorems7 and 8 corresponding Σn
c s are completely

controllable.

VIII. CONCLUSIONS

This paper has provided controllability results for pairs of

identical vehicles (Dubins, Reeds-Shepp, differential drive,

car-like and convexified Reeds-Shepp) that move maintaining

a constant distance. Known theorems of controllability have

been extended to solve the controllability problem for special

affine control systems whose admissible control domains

depend on their configurations. Furthermore, a practical

condition has been provided to apply the proposed theorem

for studied systems.

As a result, for differential drive, car-like and convexi-

fied Reeds-Shepp vehicles complete controllability has been

proved. The same does not hold for pairs of Dubins or Reeds-

Shepp vehicles, and a description of the reachable sets in

these cases has been provided. Limit circles for particular

configurations have been proved to exist in case of small

distance to be maintained.

Finally, controllability results have been presented, as a

direct extension of pairs, for n identical vehicles with star

formations and chain formations. The optimal control for

larger groups of robots are under study.
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