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Physical Road Marker Property Estimation using Monoscopic Vision
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Abstract—In this paper algorithms are presented to extract
lane markers and their properties from monoscopic camera
images. A filter approach that takes into account the visual
appearance of the markers is presented. Another contribution
constitutes the measurement of physical marker width and
length from perspectively distorted images using only the
calibrated camera images. Also distances between markers can
be estimated. All algorithms are independent from a specific
lane model.

I. INTRODUCTION

Research in autonomous vehicles has gained traction tre-
mendously in the last years. Due to competitions like the
DARPA Grand Challenge and the DARPA Urban Challenge,
a lot of effort has been spent to create more intelligent
systems. One goal of this development is the creation of
automated vehicles that can safely be operated within the
existing road infrastructure, where automated and conven-
tional vehicles are going to drive at the same time. Another
goal that can be seen as a preliminary step is the assistance
of the driver through guidance and warning signals. In all
these scenarios it is crucial to build a scene representation as
complete as possible. Using different sensors and obtaining
information from sensor fusion is commonly accepted as a
necessity. One example which will be the subject of this
paper are road markings. Current research concentrates on
extracting marker positions and gradients to track lanes using
mostly Kalman- and Particle Filters [1][7].

To safely navigate on roads, more information than the
lane course is needed. The following examples are taken
from german roads, but similar concepts can be found
worldwide: A solid line indicates a lane border that must
not be crossed for overtaking. When leaving a motorway,
deceleration lanes are used to adjust the vehicle’s speed.
These lanes are separated from standard lanes using wider
markers painted at a higher frequency [9].

Driving on these lanes autonomously, or in an assistance
scenario, mandatory traffic rules can only be adhered when
information about the different lane markers is available.

II. STATE OF THE ART

Only a few publications dedicated to the subject of lane
marker classification can be found. Most of them address the
discrimination of dashed and solid lines. [2] presented an
approach that used intensity thresholds to distinguish dashed
from solid markers. Other than that, different marker types
cannot be detected. [S] used horizontal scanlines to detect
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marker information, and represent it as symbolic information.
[6] showed how to extract lane markers using a fixed set of
shapes by comparing moment features. [4] used frequency
analysis to determine lane marker types for straight lanes.

To extract all information embedded in the lane markers,
a more flexible solution is needed. This solution must be
able to directly measure marker length and width in a metric
world coordinate system. Extraction of marker information
must be invariant to the vehicles relative pose. Also to
reliably extract lane boundary types, the length of gaps
between markers is an important feature, which has to be
considered.

III. MARKER DETECTION

The goal of the first part of the presented algorithms is to
provide a method for the lane model independent detection of
marker candidates in the field of view of the camera. These
are used for generating region of interests for the subsequent
extraction algorithms.

A. Marker candidate extraction

Lane markers are usually painted on tarmac or similar road
surfaces in a bright color such as white or yellow. Therefore
orthogonally to the marker direction a typical signature of
dark road color, bright marking and again dark road color
is to be expected. On German roads and highways, marker
width has a specified range of 12-30 cm. These properties
have been used to develop the specific filter mask for lane
markings now presented. It is based on the lane marker
extraction algorithms presented in [8].

To extract the road markings, the grayscale image is
convoluted horizontally and vertically using the central,
symmetrical segment of a gaussian kernel g(x), which is
defined by the interval [—I,,l,]. An offset o, is subtracted
from the gaussian so that negative and positive areas enclosed
by the graph and the x-axis are equal, i.e. the integral of
the kernel equals 0. To calculate said offset, the gaussian
cumulative distribution function ¢, (x) is used to define the
roots of the desired function, —xp and xp:
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Fig. 1. Plot of g(x)—og used as underlying function to sample convolution
masks for extracting lane markers [8].

The variance ¢ of the gaussian kernel influences its
performance on lane markings of variable width and has been
experimentally chosen.

The gaussian kernel mask is sampled in a way that the
distance d,, of the roots 2 -xp is equal to the width of lane
markings. For each image line this width in pixels has to be
calculated using extrinsic and intrinsic camera parameters
(17).

As marker width is increasing within the lower parts of
the image, very long filter masks up to 90 pixels for the used
camera configuration would be necessary. Folding the image
using such large masks requires a high computational effort
that contradicts near real-time operation of the algorithm.
Instead a pyramidal approach is carried out by scaling image
regions so that the marker width in pixels remains equal to
an acceptable width. To create the complete filter result, the
filter response of these regions has to be scaled up again.

Figure 2 shows the resulting marker confidence image. To
actually gain distinct marker candidates, scanlines are used
to extract maximum peaks in the image. This is resulting in
a list of 2d marker candidates in the image plane. These are
transformed to metric positions using the following approach.

B. Inverse Perspective Transformation

1) Coordinate Systems: Two coordinate systems are re-
levant in the context of this paper: The camera coordinate
system (CCS) and the word coordinate system (WCS). Pixel
positions on the image plane are expressed in the CCS using
u and v for horizontal and vertical coordinates, the origin
being the top-left corner. The WCS is a coordinate system
following the right-hand rule modeled after ISO 8855 which
has x forward, z up and y pointing to the left-hand side of
the vehicle.

Fig. 2. Result of filtering a greyscale camera image with the marker
extraction mask.
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2) Projection: The camera image is a result of the per-
spective projection of the world near the vehicle onto the
image plane. The projection of a point Xwcs given in the
WCS into the CCS can be expressed using homogeneous
matrix multiplication. Necessary are the projection matrix
P and the matrix R, which contains a homogeneous trans-
formation matrix with the camera’s inverse orientation and
translation in WCS. The camera’s focal lengths are f;, fy; its
principal point is up, vo.

P=|vw O —f O (8)

Xces = P-R-Xwcs 9

3) Inverse Projection: To reverse the projection from CCS
to WCS, the inverse of the projection matrix is needed. Due
to the unknown distance of the projected point, the inverse
P! is defined as

0 0 0

1 9
Pl= 0k (10)

Iy b

0 0 1

X =R Pl Xees (11)

To create a useable inverse transformation from the CCS
to the WCS, the well-known flat earth assumption is used. It
allows us to represent the detected marker candidates in the
world coordinate system by limiting possible world positions
of the measurements to the floor plane. The coordinate z of
the WCS point X}, that is projected onto the floor plane,
is assumed to be equal to 0. This leads to a bijective relation
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between pixels and points on the floor plane. ngcs contains
the position of the camera.

!
Xires + 1 (Xijes — Xes) = 0 (12)
e
. S 13
€ _ 7P (13)
Xies = Xipes + 7 (Xifes — Xipes) (14)

In the representation of the WCS, equidistant sampling of
the most confident points is possible .

C. Orientation Projection / Inverse Projection

The orientation of objects in the WCS can be projected
by transforming start- and endpoints X3¢, X5 ¢ of a short
directional vector from the WCS to the CCS. The orientation
in the image plane can be calculated using

Oces = atan2(ugcs — ugcs, Vees — Vees) (15)

To inversely project the orientation of gradients extracted
from the image plane onto the floor plane, basically the same
technique is used. Start- and endpoints of the gradient chs’
chs in the image plane are projected to the floor plane,
therefore their z coordinate is 0. The gradient can then be
calculated as

owes = atan2(xjpes — xistSa Yives — ySWCS) (16)

D. Length Projection / Inverse Projection

Length projection is also needed later in the presented
algorithms. To project a length from the WCS to the CCS,
the length Ly s needs to be given as a relative vector to its
base position Xy s in the world. The projected length lccs
is then defined as

lecs = || Xees — PR - (Xwes + Lves) || (17)

To project a length Locg measured on the image plane onto
the floor plain, the same principle of projecting a distance
is used. Base position Xccs and the offset-vector Occs =
Xces + Lees are inversely projected to the floor plane. The
distance is then calculated as

lwes = ||Owes — Xwesl| (18)

IV. MARKER GRADIENT AND WIDTH

After initially detecting lane marker candidates, the algo-
rithms presented in this section provide additional informa-
tion about the markers.

A. Orientation

Detecting orientation of the marker candidate is vital for
the following steps. Marker width and length can only be
measured reliably along and orthogonal to the axis of the
marker, which in turn is determined by its orientation. To
create a robust estimation, a ROI in the grayscale image
around the marker candidate is created. This region is meant
to be the equivalent of a 40 cm square, so this distance is
perspectively projected at the position of the detected marker
to calculate the equivalent size in the image plane in pixels
using equation (17). An example for projected regions can
be seen in figure 3.

Fig. 3. Edge intensity in ROIs used for marker gradient and marker width
estimation.
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Fig. 4. Intensity-weighted histogram of edge orientation gained from a
ROI patch.

After using sobel filters to extract horizontal and vertical
gradient images of the ROI, these are used to calculate
intensity and phase edge images. To create a representation
of the gradient distribution in the ROI, the phase values are
aggregated in a histogram. The phase value determines the
histogram bin. The corresponding intensity is interpreted as a
confidence measure for detected edges, and therefore mapped
to the increment value. The resulting histogram is smoothed
by gaussian filtering.
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An example of such a histogram can be seen in figure 4.
Both peaks for the opposite edges of the marker are clearly
visible. As the sign of the extracted orientation is irrelevant,
the histogram bins corresponding to the same absolute angle
are combined and the bin with the peak in the resulting
histogram is taken as dominant gradient for the ROL

B. Inverse Orientation Projection

The gradient extracted from the edge image is also based
on the perspectively disturbed view of the lane markers. To
gain orientation information useable in the context of the
WCS, 2d orientation has to be inversely projected onto the
floor plane using equation (16). Figure 5 shows the resulting
marker orientation from figure 3 in a birdview representation.

Fig. 5. Bird view representation of extracted gradients in the WCS.

C. Width Extraction

The goal of the following set of algorithms is the visual
estimation of marker width. The relevant visual features are
the edges between marker and road surface. Orthogonal to
the 2d gradient in CCS extracted in section I'V-A, a projection
base line is constructed in the CCS as a weighted histogram.
The histogram’s bin for the value O is aligned with the
position of the marker. The corresponding bin for each ROI
point is then calculated by projecting it onto this base line,
and the increment is again determined by edge intensity.
Figure 6 shows a result.
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Fig. 6. Intensity weighted histogram of projected edge pixels. Left and
right marker edges at -2.25 and 1.25.

Splitting the histogram at bin number 0, representations
for the left and right edge distribution are separated. After
smoothing each of these histograms, the bin with the highest
values represents the position of the left and right marker
edge. Adding the absolute values of these positions leads to
the 2d orthogonal distance dccg between the marker edges in
the CCS. For the example visualized in figure 6, dccs would
be 3.5 pixels wide.

To calculate the accurate width of the marker, the angle
difference y between the normal of the 2d gradient in the
CCS , and the projection of the normal of the 3d orientation
in WCS (see (15)) has to be considered. Therefore, the width
of the marker wces is calculated as:

wees = decs/cos(Y); (19)

Figure 9 shows the result of the presented algorithm.
Marker width is extracted for all visible lane markers.

v

Fig. 7. Extracted marker widths for multiple lanes in the image plane.

To express the extracted marker width in meters, it has
to be inversely projected back onto the ground plane using
equation (18).

The estimated position of the marker coordinates is meant
to be in the middle of the lane markers. Due to sampling
and scaling errors, imperfections can accumulate to a degra-
ded position estimation. By setting the coordinates exactly
between the left and right marker edge, the marker position
can be estimated more accurately in the CCS. The adjusted
2d coordinates are inversely projected to also correct the 3d
position in the WCS.

V. MARKER LENGTH

Markers can occur as a solid line, or dashed in different
lengths and frequencies. Solid lines must not be crossed by
a car. The different kinds of dashed lines carry information
about the lanes that they are separating. One example on the
german Autobahn are the markers that separate regular lanes
from exit lanes, as these are wider and the gaps between the
markers are narrower than the markers, that separate regular
lanes. So to safely navigate on these types of lanes, it is
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crucial to extract the correct length of markers and the gaps
in between.

A. Point Linking

First the lane marker measurement points need to be linked
to marker strips. Using an agglomerative clustering approach,
strips of marker points are created.

B. Lane Marker Patch Generation

A suitable representation of the marker strip image region
is a necessary prerequisite to reliable extract the length of
the markers. In the given perspectively distorted camera
image, lengths are not directly measurable. Also in curves,
the markers are not on a straight line, which also causes
problems for extracting lane marker length.

So ideally the marker image region would be in a straight
line, without perspective distortions, in which the marker’s
dimensions are unaffected by its position in the image. It
should have a width that is slightly wider than the maximum
marker width of 30 cm.

To create this representation first a suitable result image
has to be created. Experiments showed that a resolution of 50
pixels per meter yields good results, so the resulting image
height is 0.4m-50 = 20 and its width is /- 50, where [ is the
length of the concatenated segments, which are created by
connecting neighboring lane marker points.

For each segment, a ROI is projected into the source
image. These ROIs are undistorted and stitched together into
the result image by using a warp transform. The resulting
image is stitched from the chained ROIs creating an image
strip. In curves, the segments gently follow the bent markers.
As these segments are then mapped to the straight result
image, the markers are also straightened. An example for a
resulting marker strip image is the top row of figure 8.

EDI———— 2 0 0000

Fig. 8. Top row shows a marker strip image generated from lane marker
candidate positions. Bottom row shows the result of applying a Prewitt filter
to the vertically averaged image. Lines indicate gap- and marker length.

C. Length extraction

To perform length extraction using the undistorted, straigh-
tened marker strip image, first an average of the intensity in
each column is calculated. This results in a vector in which
higher values indicate a marker, while lower values are to be
expected for the gaps in between. Binarizing this data using
a threshold between the min and max values seems to be
straightforward, but unfortunately the intensity levels even
within one frame vary greatly. This can be to the extend that
the values that are measured from a marker near the car are
lower than those measured in a gap between markers at a
distance of 40m. This can also be observed in figure 8.

As using the absolute values in the vector is not feasible,
the marker and gap ranges have been extracted using gra-
dients. Resolution in the original image is low for markers
further away from the vehicle, so the interpolated intensity
image shows no sharp edges, but a rather shallow slopes
(compare top row of figure 8). Therefore the edge extraction
convolution kernel needs to be long to cover these smooth
transitions between markers and road surface. A empirically
determined one-dimensional Prewitt edge filter with a length
of 30 pixels is sufficient.

The bottom row in figure 8 shows a typical filter response.
Positive/negative peaks are shown as white/black respec-
tively. To get the borders between marker and road region,
the maximum absolute values are searched within a sliding
window of 1m width. Positive peaks indicate a transition
from road to marker, while negative peaks are present at the
end of a marker. The distance between following positive and
negative peaks is stored in a marker length histogram, while
the distance between negative and positive peaks is stored
in a gap length histogram (compare figure 8). Distances of
peaks with identical signs are ignored. The histograms are
used as a mean of temporal fusion, to gracefully handle
measurement errors. Figure 10 shows a resulting histogram.
After smoothing, the peak of these histograms represent the
extracted lengths.

VI. EVALUATION

The following tables contain standard values for marker
width and length, and the distance between markers.
These values are valid for german roads, and taken from
Richtlinien fiir die Markierung von Straffen(RMS)[9], which
also contains additional information.

Autobahn | other roads
narrow marker 15 cm 12 cm
wide marker 30 cm 25 cm

This table shows commonly used marker widths on
german roads.

motorway country city
standard | 6 m (I12m) | 4 m (@ m) | 3 m (6 m)
warning | 6 m 3 m) |4m@2m) | 3m (1.5 m)

This table shows the lengths used for markers (gaps).
Standard markers are half the length of their distances,
while warning markers are painted double the length.

For the evalutation a motor way sequence has been chosen
to validate extracted marker dimensions. According to RMS,
on a german Autobahn standard dashed lane markers are 15
cm wide and have a length of 6 m. The gap between the
markers should be 12 m. These dimensions are evaluated
against the extracted results of the presented algorithms.

Figure 9 shows a histogram of marker widths extracted
from the video sequences before smoothing. The peak clearly
has its center at about 15 cm. According to RMS[9], the other
possible marker width for motorways is 30 cm, which could
be easily distinguished.
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Fig. 9. Histogram of marker width
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Fig. 10. Histogram of marker length

The raw histogram resulting from marker length extraction
can be seen in figure 10. It shows some shorter measu-
rements, but the bulk of measured lengths can be seen at
the 6m mark. This is also the only valid marker length for
motorways. It is accurately enough to distinguish it from 4m,
which is used on country roads[9].

Figure 11 shows a histogram of extracted length values
for the gaps between the markers. The values are not as
clearly aligned, as it is the case with lane marker length and
width values. Nevertheless according to [9], valid lengths on
motorways are 12m gaps for a standard lane marking, and
3m gaps for special lane markings, which could be easily
distinguished.

VII. CONCLUSION

In this paper algorithms have been presented to extract lane
markers and their properties from camera images. A robust
filtering approach has been presented to extract markers from
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Fig. 11. Histogram of the distance between markers

greyscale images. Also their orientation has been determined
in the WCS. A major contribution constitutes the measure-
ment of physical marker width and length from perspectively
distorted images using only a calibrated camera image. Also
distances between markers can be estimated. This work is a
necessary base for a more complete scene interpretation and
representation.
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