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Abstract— In this paper we address the problem of simul-
taneous object class and pose estimation using nothing more
than object class label measurements from a generic object
classifier. We detail a method for designing a likelihood function
over the robot configuration space. This function provides a
likelihood measure of an object being of a certain class given
that the robot (from some position) sees and recognizes an
object as being of some (possibly different) class. Using this
likelihood function in a recursive Bayesian framework allows
us to achieve a kind of spatial averaging and determine the
object pose (up to certain ambiguities to be made precise). We
show how inter-class confusion from certain robot viewpoints
can actually increase the ability to determine the object pose.
Our approach is motivated by the idea of minimalistic sensing
since we use only class label measurements albeit we attempt
to estimate the object pose in addition to the class.

I. INTRODUCTION

Object search (or active visual (object) search) is an

important component of a mobile robot’s action space [1].

For example, finding, identifying and localizing the pose of

objects is a prerequisite for a robot that wishes to interact

with objects in the environment. In [2] it is shown that a

human understanding of space is significantly based on the

objects present in the scene.

In this paper we are interested in the problem of simulta-

neous object class and pose estimation using a generic object

classifier and a spatially dependent measurement likelihood

model. One novelty we claim is the ability to estimate both

the class and pose of objects in the environment given only

measurements of the object class. Indeed, we attempt to push

the limits of what information can be estimated given nothing

more than a simple object class return and a model of the

spatial likelihood for that class return.

Most existing classification and pose estimation algorithms

match local geometric features of the object, such as corners,

edges, holes and surfaces to a precise geometric model of the

object [3]–[7]. Such techniques require extensive storage and

training data and are far from minimalistic. In addition, these

approaches are sensitive to object occlusions etc where object

class measurements are possible but precise geometrical

measurements of the object are not possible.

Other techniques [6], [8], [9] use a large number of labeled

images taken from different poses and attempt to match

specific images in order to determine the pose. The accuracy

of these approaches increases with the amount of training

and reference images. This technique critically ignores the
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relative geometry of the sensor and the object and the affect

of this relationship on the likelihood of recognizing certain

views (or more generally whole objects). In particular, we

show how we can achieve more with much less input if we

consider this relationship explicitly.

1) Original Contribution: We differ from existing object

search methods in the design of our spatial likelihood func-

tions. We will highlight throughout the paper that one novelty

of our approach is that it is truly minimalistic in nature. By

measuring only the object class label we attempt to extract

both the true object class and object pose (orientation and lo-

cation). Indeed, we generally ignore the notion of object view

recognition and assign class labels only to entire objects. We

certainly ignore any geometrical aspects of the object and we

employ generic classifiers (we ignore the particular features

employed by the classifier and indeed in our experiments

we use a recognition algorithm from the literature which

does not make use of any geometrical model of the object).

We can extract certain estimates of the object pose purely

from the structure of the likelihood functions which are

defined over the robot configuration space and hence are

geometrically related to the object pose. In addition, we

show how inter-class confusion, e.g. the ability to mistakenly

measure multiple class labels for a particular object type

from certain views, can be advantageous to the estimation

problem (specifically the estimation of object pose). We can

achieve a high degree of accuracy in pose estimation using

our technique and exploiting inter-class confusion. As far as

we are aware our technique is novel and truly minimalistic.

2) Paper Outline: This paper is organized as follows.

In the next section we outline the general notation used

throughout the paper along with the basics of the robot

dynamic model considered. In Section III we formulate the

problem and outline the design of the likelihood function.

We also provide some intuition regarding the design of the

spatial likelihood function through example. Furthermore, in

Section III we outline the recursive Bayesian algorithm for

computing an objects pose and class and we highlight the

algorithm behaviour using a simple toy example. We show

how measurements of the class label alone can be used to de-

termine accurately the object pose given a suitable likelihood

function defined over the robot configuration space. We then

outline an extension of the algorithm in Section IV for object

class and orientation estimation over a grid. In Section V we

provide the results of a practical experiment over a grid and

in Section VI we discuss the results and directions for future

work. Our conclusion is given in Section VII.
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II. PRELIMINARIES

In this section we outline some notational preliminaries

and the robot dynamical model considered.

A. Notation

Introduce a global coordinate frame C at some pre-defined

time t0. Consider a set of objects O = {o1, . . . , ono
} with

position xi ∈ R
2 and orientation φi ∈ S1. Consider an

arbitrary object oi placed so that the R
2 location of the

object’s center hovers over the origin of C at t0. Introduce

a local two-dimensional coordinate frame Ci at the center of

oi. Then the orientation φi is defined as the relative rotation

of Ci with respect to C. Each object oi belongs to a class

{cj}nc
j=1 or the unclassified or non-object class c0.

The position of a single mobile robot is denoted by s ∈ R
2

with heading θ ∈ S1. The distance between the robot and oi

is given by ri = ‖xi − s‖. The relative direction to oi from

the robot’s heading is given by ϑi = αi − θ where αi is the

azimuthal bearing to oi in the global coordinate system and

ϑi ∈ S1. We then define a viewpoint pi = [s ϑi]
⊤.

B. Dynamics

Introduce the matrix Lie group SE(2) with group element

X(ψ,q) ∈ SE(2) with q = [x y]⊤ ∈ R
2 and a group (ma-

trix) multiplication operator. An element X(θ, r) ∈ SE(2)
acts on a point pi ∈ R

2 by mapping it to (R(θ)pi+r) ∈ R
2.

Here (R(θ) is the rotation matrix defined as

R(ψ) =

[
cos ψ − sin ψ
sinψ cos ψ

]
(1)

and note that all elements in SO(2) are congruent to such a

matrix. For notational brevity we write the action of X(ψ, r)
on q as

X(ψ, r) ◦ q = R(ψ)q + r (2)

which constitutes a left action of SE(2) on R
2. The inverse

X−1(θ, r) ∈ SE(2) maps pi to R⊤(θ)pi −R⊤(θ)r and the

identity is given by X(0,0) ∈ SE(2).
Associated with SE(2) is the vector space se(2) which is

a Lie algebra with respect to the Lie bracket operation. We

define the basis of se(2) by {Ex,Ey,Eψ} with

Ei =




0 0 1(i = x)
0 0 1(i = y)
0 0 0


 , Eθ =




0 −1 0
1 0 0
0 0 0


 (3)

with i ∈ {x, y} and where 1(·) is an indicator function.

Given translational and angular velocity control inputs

u1 = v and u2 = ω we then have

Ẋ(θ, t) = X(θ, t) (Exu1 + Eθu2) (4)

which constitutes a left-invariant, drift-free system on the

group SE(2). This model is the Lie group representation of

the unicycle model and is our robot kinematic model.

III. PROBLEM FORMULATION

In this section we outline the probabilistic framework

within which our estimation problem is formulated.

A. Classification Likelihoods on Lie Groups

For each p(t) the robot takes measurements of the poten-

tial class of oi in the form

yi(t) = [ĉj . . . ĉk]⊤ (5)

with y = [y⊤
1 . . . y⊤

no
]⊤. This means that a measurement

of object oi can return more than a single class value1.

We model the likelihood of measuring ĉj for oi as a

function of the robot pose. In fact, we model this likelihood

as a sum of Gaussian densities on the Lie group SE(2).
Consider an arbitrary normal density in R

n of the form

γ(x − µ,Σ) =
1

(2π)
n
2 |Σ|1/2

exp

(
1

2
‖Σ−1

2 (x − µ) ‖2
2

)

(6)

where Σ is the covariance matrix and µ is the mean. A

Gaussian distribution on the Lie group SO(2) is given by

χ(x − µ, σ2) =
1

σ
√

2π

∑

k∈Z

exp

[−(x − µ − 2πk)2

2σ2

]
(7)

and if σ2 << 2π in χ(x − µ, σ2) then χ(x − µ, σ2) can be

approximated well by the case k = 0 in (7). A Gaussian on

the product space SE(2) can then be denoted by ζ(x−µ,Σ).
We state the following lemma for completeness.

Lemma 1 ( [10]): There exists an integer m and constants

wi > 0 with
∑m

i=1 wi = 1, such that the Gaussian sum

papprox(x) =
m∑

i=1

wiγ(x − µi,Σi) (8)

can approximate any density function p(x) as closely as

desired in the sense that
∫

Rn |p(x) − papprox(x)| dx can be

made arbitrarily small.

Recall that the element X(ψ, r) : R
2 → R

2 acts on points

via left translation denoted by X(ψ, r) ◦ q. For notational

brevity we introduce the following notational definition

X(ψ, r) ◦ [q q3 q4 . . . qn]⊤ = [R(ψ)q + r q3 q4 . . . qn]⊤

(9)

which means that X(ψ, r) : R
2 × A → R

2 × A by acting

on the first two dimensions in the standard way and leaving

the remaining n − 2 dimensions unchanged.

We model the likelihood function by

p(ĉi, oj |ci, φj ,xj) = P(ĉi, oj |ci)
∑

ki

wki

(2π)
3

2 |Σki |1/2
×

exp

(
1

2
‖Σ

−1

2

ki
(pj − X(φj ,xj) ◦ qki

) ‖2
2

)
(10)

where
∑

ki
wki

= 1 with i = {1, . . . , nc}. For an object

with position xj and orientation φj we define X(φj ,xj)qki

1For example, observing a car from the front may yield several positive
car model class returns). We assume perfect data association, i.e. we know
which objects oi generate particular class measurements.
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with X(φj ,xj) ∈ SE(2) and qki ∈ R
2×SO(2) as the mean

of the ki
th Gaussian and Σki

is the covariance2.

The term P(ĉi, oj |ci) specifically deals with the likelihood

of oj being of class ci given the measurement ĉi whereas

p(ĉi, oj |ci, φj ,xj)/P(ĉi, oj |ci) is the likelihood of oj being

in position xj with orientation φj .

The likelihood p(ĉi, oj |ci, φj ,xj) is also a probability

density function such that for bounded regions of A of SE(2)
with positive Lebesgue measure the integral

∫

A

p(ĉi, oj |ci, φj ,xj) dp (11)

gives the probability of measuring ĉi for oj given that ok

is of class ci and with orientation φj and position xj . We

state this explicitly since we will require that the so-called

confusion densities p(ĉj , ok|ci, φk,xk) with i 6= j satisfy the

inequality
∫

A

p(ĉj , ok|ci, φk,xk) dp ≤
∫

A

p(ĉi, ok|ci, φk,xk) dp

(12)

or p(ĉj , ok|ci, φk,xk) ≤ p(ĉi, ok|ci, φk,xk) for all bounded

subsets A of SE(2) in a defined region of interest R ⊂
SE(2). That is, over any bounded region in R we want the

probability of measuring ĉj for oi to be less than (or equal

to) the probability of measuring ci given that the object is

of true class ci (and for all object poses).

Of course, this inequality cannot be satisfied over all

of SE(2) if the confusion likelihood is also required to

be a true density function. But to make this definition

consistent we note that when viewed as a likelihood function

p(ĉi, oj |ck, φj ,xj) is valid as long as it is congruent to a

probability density function via multiplication by a constant.

We model the likelihood function of false positives by the

following Gaussian mixture

p(ĉi, oj |ck, φj ,xj) =
∑

kik

common(ki,kk) wkik

(2π)
3

2 |Σkik
|1/2

×

exp
(

1
2‖Σ

−1

2

kik
(p − X(φj ,xj) ◦ qkik

) ‖2
2

)
P(ĉi, oj |ck) (13)

where the sum over kik has at most min(ki, kk) terms and

(12) must hold in R ⊂ SE(2). The function

common(ki, kk) ∈ {0, 1} (14)

captures the fact that an object oj can be confusingly

observed as ĉi and/or ĉk from some robot positions because

2We note at this point that the Gaussian parameters qki
and Σki

are
defined based on the training scheme of the object classifier and pj is the
robot position when the relevant class labels are measured. Heuristically,
qki

is taken to be (one of) the sensor’s position in SE(2) at training time
relative to the object (which is located at the origin during training with
the reference orientation). The variance is (in this paper) tuned to provide
a realistic model of the spatial dependence of the recognition algorithm at
run time to the trained classifier models. In the next subsection we provide
an example further illustrating how the likelihood functions are created.
However, we note here that the motivation for these likelihood functions
is motivated from experience where we have noticed that often simply by
measuring the class label for an entire object (not view point) we most likely

restricted one of a small number of points. In reverse, given a known robot
position, the object is most likely in one of a small number of locations with
one of a small number of orientations.

the underlying true classes ci and ck share a common

indistinguishability from such locations3.

The class c0 is used to model unclassified classes or

locations in space where no object exists. The likelihood

p(ĉi, oj |c0, φj ,xj) where i 6= 0 is given by

p(ĉi, oj |c0, φj ,xj) = P(ĉi, oj |c0) (15)

which although not a true likelihood function is valid over

any bounded region R ⊂ SE(2) since it is congruent to a

uniform density over R. For all classes for which it is defined

we now require
∑

i P(ĉi, oj |ck) = 1.

For much of the space SE(2) the object recognizer will not

return any class value for oj . We can (if desired) model the

absence of any returns in {c1, . . . , cnc
} as a measurement

of the dummy class c0. We would then need to construct

the likelihood p(ĉ0, oj |ci, φj ,xj). We do not explore the

design of this likelihood in detail since we will not (in our

implementations) incorporate dummy measurements when

no class is detected4.

If we define c = [c0 c1 . . . cnc ] then the likelihood

p(ĉi, oj |c, φj ,xj) =
∑

k

p(ĉi, oj |ck, φj ,xj) (16)

is the multi-dimensional likelihood function of the object

being in all of the defined classes and all poses given a

particular class return. Given a return measurement yi(t) =
[ĉa ĉb . . . ĉz]

⊤ for object i then the joint likelihood is

p(yj , oj |c, φj ,xj) =
∏

ĉk∈yj

p(ĉk, oj |c, φj ,xj) (17)

under a naive Bayesian assumption, i.e. under the assumption

that p(ĉk, ·|c, ·, ĉj) = p(ĉk, ·|c, ·).
B. Example Likelihood Functions

We now provide some intuition regarding the design of

the likelihood functions. These examples are simplified but

illustrate the heuristics behind the likelihood structure.

Consider an object o1 of class c1 located at the origin at

time t0 with defined orientation φ1 = 0. An object classifier

is trained on object o1 from a number of relative positions

denoted by qk1
with qk1

= [q1
k1

q2
k1

0]⊤. For the kth training

position we define a Gaussian ζ(p1 −X(φ1,x1) ◦qk1
,Σk1

)
where Σk1

is tuned based on the specific classifiers prop-

erties5. We define p(ĉ1, oi|c1, φi,xi) as the sum of such

Gaussians as in (10) with wk1
= 1/4 and P(ĉ1, o1|c1) = 1.

In this example we set q11
= [10 0 0]⊤, q21

= [−10 0 0]⊤,

q31
= [0 10 0]⊤ and q41

= [0 − 10 0]⊤ with Σk1
=

diag(10, 10, π/4). Now consider a random object oi at xi =

3Such a case happens, for example, if there are object types which look
very similar or share a similar internal representation (ambiguous objects
or object-data) from certain views.

4The reason we do not generate dummy measurements is that ĉ0 will, in
general, provide little information about the true class cj (including c0) for
most robot positions p and objects oi. Heuristically, over bounded regions
the likelihood p(ĉ0, oj |ci, φj ,xj) would resemble a constant minus the
sum (16). Of course this would require some further justification in order
for p(ĉ0, oj |ci, φj ,xj) to be valid as a likelihood function.

5We discuss later that an interesting direction for future work is the design
of reinforcement learning schemes for tuning such parameters.
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[5 5]⊤ with φi = 45o. We plot p(ĉ1, oi|c1, φi,xi) with ϑi = 0
over s ∈ R

2 in Figure 1.

Fig. 1. An example likelihood function with ϑi = 0 over s ∈ R2.

Figure 1 shows from which positions in space relative to

the target object oi the likelihood of the class of oi being

c1 is given that we measure ĉ1 (and in essence assume

robot relative heading ϑi invariance - e.g. this will hold

for omni-directional cameras). Note that the likelihood just

demonstrated is symmetric in terms of the orientation φi, and

as a result φi can be determined only up to rotations modulo

π/2 given measurements of the class ĉ1. We outline the

specific estimation technique in the next subsection and later

provide examples of the pose accuracy that can be achieved.

However, we now demonstrate how inter-class confusion

can be aid the pose estimation problem if the views from

which the confusion is likely are not maximal. Consider an

object o2 of class c2 located at the origin at time t0 with

defined pose φ2 = 0. An object classifier is trained on object

o2 from a number of relative positions denoted by qk2
and

for the kth position we define a Gaussian ζ(p2−X(φ2,x2)◦
qk2

,Σk2
). Then we define p(ĉ2, oi|c2, φi,xi) as the sum of

such Gaussians as in (10) with wk2
= 1/4 and P(ĉ2|c2) = 1.

In this example we set qi2 = qi1 and Σk2
= Σk1

. Now

consider a random object oi at xi = [5 5]⊤ with φi = 45o.

The plot of p(ĉ2, oi|c2, φi,xi) with ϑi = 0 over s ∈ R
2 is

identical in this case to the likelihood shown in Figure 1.

Now suppose from a number of positions we know that

o1 and o2 can be confusingly recognized as both c1 and c2

in some instances. In this example,

common(21, 22) = 1 (18)

and all other common(·) equal to zero. We let Σk1,2 =
Σk2

= Σk1
and wk1,2 = 1/4. Also let P(ĉ2|c1) =

P(ĉ1|c2) = 1/2 and now let P(ĉi|ci) = 1/2. Then

p(ĉj , oi|cj , φi,xi), for j = {1, 2}, with ϑi = 0 over s ∈ R
2

is the same shape as in Figure 1 except both likelihoods are

weighted by 1/2. In Figure 2 we plot p(ĉ1, oi|c2, φi,xi) =
p(ĉ2, oi|c1, φi,xi) with ϑi = 0 over s ∈ R

2 for the same

random object oi at xi = [5 5]⊤ with φi = 45o.

Given a random object oi of class c1 or c2 we now

gain some intuition about how class confusion can aid in

removing any ambiguity regarding the pose of the object.

For example, if oi were viewed from a number of robot

positions around X(φi,xi) ◦ q21
, i.e. around the confusion

Fig. 2. A confusion likelihood function with ϑi = 0 over s ∈ R2.

peak, and both ĉ1 and ĉ2 were measured at these positions

then the likelihood of the object pose would be (significantly)

dominated by a single mode at the true pose. We will explore

a detailed toy example illustrating this property later. We

will also explore a practical example showing a real-world

experimental result.

C. Maximum A Posterior Probabilities

In terms of Bayes’ rule we know

p(ci, φj ,xj |ĉi, oj) =
p(ĉi, oj |c, φj ,xj)p(ci, φj ,xj |oj)

p(ĉi, oj)
(19)

or in terms of y(t) we have

p(ci, φj ,xj |yj , oj) =
p(yj , oj |c, φj ,xj)p(ci, φj ,xj |oj)

p(yj , oj)
(20)

where the denominator is given by

p(yj , oj) =∫

SE(2)

p(yj , oj |c, φj ,xj)p(ci, φj ,xj |oj) dφjdxj (21)

Note we have neglected illustrating the dependence on

time but the recursion is clear with the prior p(ci, φj ,xj)
at time t equal to the posterior p(ci, φj ,xj |yj , oj) computed

at some time τ < t. We also know that

P(ci|yj , oj) =

∫

SE(2)

p(ci, φj ,xj |yj , oj) dφjdxj (22)

is the posterior probability of object oj being of class ci

given the measurements yj and
∑

i P(ci|yj , oj) = 1 where

i = 0 can be included naturally. For any oj we then have

∑

i

∫

SE(2)

p(ci, φj ,xj |yj , oj) dφjdxj = 1 (23)

where the sum is taken over all classes c0 to cnc
.

If we want the maximum a posterior (MAP) class and

object orientation (or pose) then we can take the maximum

class index and object pose estimates via

{c̃i, φ̃j , x̃j} = argmax
i,φj ,xj

{p(ci, φj ,xj |yj , oj)}i∈{1,...,nc}
(24)

where c̃i is the MAP class estimate for object j correspond-

ing to the maximization argument index i.
In general, (24) leads to nc maximization problems

for each oj . Each density is often multi-modal but each
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mode can be determined easy via grid-search. If ĉk /∈
yj(t) and p(ĉk, oj |ci, φj ,xj) = 0 for all i 6= k then

p(ci, φj ,xj |yj , oj) = 0 at time t and at least one maxi-

mization problem is avoided.

D. Bringing it All Together with a Toy Example

A toy example is now examined in order to further develop

an intuition regarding the approach outlined in this paper. A

more detailed practical experiment is given later in the paper.

The fact we can localize the pose of the object accurately

(even up to an ambiguity determined by the number of

Gaussians in the likelihood function) is quite novel given we

only use class label measurements. However, we go further

then this and show how class confusions (from certain view

points) can even reduce the number of ambiguities.
Consider an object o1 located at x1 = [5 5]⊤ with true

orientation φ1 = 45o. Consider two potential object classes
c1 and c2 with defined likelihood functions

p(ĉi, o1|ci, φ1,x1) =
0.2495

(2π)
3

2 |Σ1i |
1/2

×

exp

(
−1

2
‖Σ

−1

2

1i
(p − X(φ1,x1)q1i) ‖

2

2

)
+

0.2495

(2π)
3

2 |Σ2i |
1/2

exp

(
−1

2
‖Σ

−1

2

2i
(p − X(φ1,x1)q2i) ‖

2

2

)
(25)

for both i = 1 and i = 2 (with P(ĉi|ci) = 1/2 − 0.001 as

a consequence). The mean parameters are given by q11
=

q12
= [0 10 0]⊤ and q21

= q22
= [0 − 10 0]⊤. The false

positive likelihoods are given by

p(ĉi, o1|cj , φ1,x1) =
0.2495

(2π)
3

2 |Σ1i,j |1/2
×

exp

(−1

2
‖Σ

−1

2

1i,j

(
p − X(φ1,x1)q1i,j

)
‖2
2

)
(26)

with i 6= j ∈ {1, 2} and q1i,j = [0 10 0]⊤ (and P(ĉj |ci) =
1/2 − 0.001). The variance is given by Σij = Σ1i,j =
diag(10, 10, π/4) for all combinations of i and j. Now
consider the class c0 with

p(ĉi, o1|c0, φ1,x1) = P(ĉi|c0) = 0.001 (27)

for i ∈ {1, 2}. The recognition system can return class

measurements ĉ1 and ĉ2.

We plot p(ĉi, o1|ci, φ1,x1) and p(ĉi, o1|cj , φ1,x1) with

i 6= j ∈ {1, 2} and with ϑi = 0 over s ∈ R
2 in Figure 3.

Fig. 3. The likelihoods p(ĉi, o1|ci, φ1,x1) and p(ĉi, o1|cj , φ1,x1) with

i 6= j ∈ {1, 2} evaluated at x1 = [5 5]⊤ and φ1 = 45o. This shows the
relationship between the robot position and the likelihoods.

In this example we assume x1 is known but the true object

class and orientation φi is unknown. This is a reasonable

approximation in many active object search problems6. In

the next section, we consider a grid-based object search

and orientation estimation problem where this assumption

is explicitly realized.

The initial priors are thus p(ci, φ1,x1|o1) = 1/(2π). We

simulate measurements at a number of positions in space in

order to examine their affect on the posterior densities.

Time 1

The robot position is given by p = X(φ1,x1)◦[2 −10 0]⊤.

The measurements are given by y1(1) = [ĉ1]
⊤. The posterior

density functions are shown in Figure 4.
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Fig. 4. The posteriors densities after the first measurement.

We know P(ci|yj , oj) =
∫

SO(2)
p(ci, φj ,xj |yj , oj) dφj

and we can compute P(c0|y1, o1) = 0.4231, P(c1|y1, o1) =
0.4244 and P(c2|y1, o1) = 0.1524 all at time 1. Then for the

maximum class posterior estimate c̃1 we can compute the

maximum argmaxφ1
p(c1, φ1,x1|y1(1), o1) which is clearly

(up to numerical tolerance) ambiguous with φ̃1 ≈ 55o and

φ̃1 ≈ 235o. The estimate of c̃1 is not overwhelmingly

probable and the orientation estimate φ̃1 is not exceedingly

accurate since we have only employed a single measurement.

Time 2

The robot is at p = X(φ1,x1) ◦ [−2 − 10 0]⊤. The

measurements are given by y1(2) = [ĉ1]
⊤. The posterior

density functions are shown in Figure 5.

We compute P(c0|y1, o1) = 0.3019, P(c1|y1, o1) =
0.5735 and P(c2|y1, o1) = 0.1247 at time 2. Then for

the maximum class posterior estimate c̃1 we compute the

maximum argmaxφ1
p(c1, φ1,x1|y1(1), o1) which is again

(up to numerical tolerance) ambiguous with φ̃1 ≈ 45o

and φ̃1 ≈ 225o. However, now the orientation estimate

is accurate up to the ambiguity. The increased accuracy

in the orientation (neglecting the ambiguity) is a result of

the spatial averaging that occurs when observing the object

from different robot positions (and this accuracy is quite

interesting given we only physically measure the class label).

6For example, laser or stereo vision can be used to position objects in
space in some scenarios but does not necessarily aid in the estimation of
object class or orientation. In any case, we make this assumption here for
simplicity and to make the example intuitively clear.
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Fig. 5. The posteriors densities after the second measurement.

In the next time step we move to the other side of the object

and show how confusion aids in removing the ambiguity.

Time 3

The robot position is given by p = X(φ1,x1)◦ [0 10 0]⊤.

The measurements are given by y1(3) = [ĉ1 ĉ2]
⊤. The

posterior density functions are shown in Figure 6.
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Fig. 6. The posteriors densities after the third measurement.

We compute P(c0|y1, o1) = 0.1502, P(c1|y1, o1) =
0.8498 and P(c2|y1, o1) = 1.8 × 10−5 at time 3. Then for

the maximum class posterior estimate c̃1 we compute the

maximum argmaxφ1
p(c1, φ1,x1|y1(1), o1) which is now

unique φ̃1 ≈ 45o. The orientation estimate is non-ambiguous

in this case since we exploited inter-class confusion.

Note that we have estimated the orientation quite accu-

rately using only measurements of the object class label and

a pre-defined heuristic spatial likelihood function. We believe

this is a novel result in the sense of minimalistic sensing7.

IV. GRID-BASED OBJECT CLASSIFICATION AND

ORIENTATION ESTIMATION

Consider a grid on R
2 denoted by G. For simplicity,

we assume the grid G consists of ng grid squares of uni-

form size (the generalization to nonuniform grid cells is

straightforward). Each grid square is denoted by gi ∈ G
and can be characterized by the center point gi ∈ R

2. We

are interested in assigning to each cell gi the probability

7The sequence of measurements (and confusions) affect the evolution of
the posterior densities in interesting ways but we cannot explore all the
cases here. In the experimental section more examples are given.

density p(ci, φj ,xj |yj , gj) from which we can determine the

probability P(ci|yj , gj) via marginalization. In fact, for each

cell we assign nc such probability densities - one for each

class. Then
∑

i P(ci|yj , gj) = 1 where i = {0, . . . , nc} for

each cell. In practice a lot of the cells will be dominated by

the probability value P(c0|yj , gj).
In this scenario, xj is the location of the j’th cell gj and

is known. If we imagine a robot located at s with ϑj the

direction to oj defines a ray which we limit to the length d.

We update the set of cells {gj} that intersect such a ray using

the posterior density formula given in the previous sections.

The value xj is taken as the cell center gj ∈ R
2 and thus

cells close or far from the robot (along the ray) are likely to

be estimated as c0. We could also define a conic region, e.g.

by defining two rays using the bounding box of the object

in the image, and then update the cells which intersect the

conic region, e.g. see Figure 7.
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The cells intersected by the
ray to the object (for a set
distance d in front of the robot)
are updated as potential object
locations. The location of these
cells are known.

The bounding box of the object
can also be used to generate a
conic region in which cells are
updated. This can aid in finding
accurate intersections.

Fig. 7. An example grid environment.

The grid-based estimation problem follows closely the

examples given in the last subsection where the location

of each cell is known and is analogous to the location of

an object position. For simplicity we have assumed cell

independence. It is possible to relax this assumption but

there are difficulties in doing so that are beyond the scope

of this paper. For the grid-based scenario we will examine a

practical experiment which is outlined in the next section.

V. EXPERIMENTAL RESULTS

The robot considered in the experiments is equipped with

a Point Grey Flea stereo camera (only one camera used in

the experiment) on top of a Pioneer P3X robot base; see

Figure 8.

We use FERNS as an object class detector [11], [12]. The

robot position is computed from only odometry and the grid

organization is known (each grid cell is 2 square decimeters).

The robot is in a room with three objects, o1 is a box

containing physics books and o2 and o3 are identical boxes

containing robot parts. The boxes are located as shown in

Figure 8. All objects have the same CAS lab logo on one

of their sides and cannot be differentiated based on the

class returns when viewed from this side. We call this the

confusion side of the object. On the polar opposite side, o1

exhibits a label indicating the box contains physics books

whereas both o2 and o3 contain identical labels indicating
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they contain robot parts. Views of this distinguishing box

label are said to be of the non-confusion side of the object.

The true orientations for o1, o2 and o3 are φ1 = 255◦,

φ2 = 315◦ and φ3 = 180◦.

Fig. 8. [Left] CogX robotic platform and [Right] the robot trajectory and
layout of the environment.

The robot starts at (0, 0) and follows the trajectory

shown in Figure 8. Numbered positions in Figure 8 are

where the robot takes a class label measurement. The non-

object class, physics books box and robot parts box are

labeled as c0, c1 and c2 respectively. In this scenario

the units are decimeters. As such, the likelihood functions

p(ĉi, oj |ci, φj ,xj) for i ∈ {1, 2} and j ∈ {1, 2, 3} are

identical to those defined in (25) in the simulated example

problem. Similarly, p(ĉi, oj |ck, φj ,xj) for i 6= k ∈ {1, 2} are

identical to the likelihood functions defined in (26). Finally,

p(ĉi, o1|c0, φ1,x1) for i ∈ {1, 2} is identical to the function

defined in (27). The recognition system can of course return

class measurements ĉ1 and ĉ2.

A. Orientation Estimation at the Correct Grid Cell

The estimation algorithm in this section is run over a grid

as discussed in the last section. However, to visualize the

orientation estimate’s density we need to essentially look

at an individual cell. Thus, in this subsection we examine

the orientation estimate in the practical experiment at the

true object grid cell. Later we examine the grid map for

the environment and show the distribution of the class label

probabilities over a number of cells.

At point 1, the robot detects o2 on its confusion side,

i.e. both ĉ1 and ĉ2 are measured. The resulting orientation

estimates for each class are shown in Figure 10 part (a).

Since both ĉ1 and ĉ2 are detected and no further information

is available, the probability estimates for both classes are

equal but the maximum a posterior orientation estimate is

non-ambiguous. The orientation estimate φ̃2 ≈ 317◦ which

is relatively close to the true orientation estimate.

At point 2, the robot detects o3 from a non-confusion side;

see Figure 9. The class measurement is only ĉ2 since the

observed side is a discriminative one. However notice that

the orientation estimate is multi-modal with φ̃3 ≈ 3◦ and

φ̃3 ≈ 183◦. Since this box is on a shelf against a wall, it

is not possible to observe it from other sides. We will show

in the following how observing the confusion side improves

the overall orientation estimate.
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Fig. 9. The robot measures c2 only. Note that the distribution is multi-
modal. No further measurements are taken of this object.

At point 3, the robot observes a non-confusion side of o2,

i.e. only ĉ2 is measured which is the true class of o2; see

Figure 10 part (b). Notice that the probability over φ2 for

the class c1 has dropped and will continue to do so as more

measurements of ĉ2 are acquired.
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Fig. 10. [Top] The object is first seen from its confusion side. This
is not enough to determine the class therefore class estimates are equal.
[Bottom] The observation from its non-confusion side helps improving the
class estimates.

At point 4, the robot detects the o1 from its non-confusion

side, i.e. only ĉ1 is measured which is the true class of o1. As

with the first measurement of o3, we have two peaks for the

detected class shown in Figure 11. The orientation estimate

is given by φ̃1 ≈ 57◦ and φ̃1 ≈ 237◦. The maximum class

estimate is c̃1.

At point 5, the robot observes o1 from its confusion side.

In this case since the object has been detected once from its

non-confusion side, the probability of o1 being of class c1 is

now much higher and the orientation estimate is now non-

ambiguous with φ̃1 ≈ 258◦ as shown in Figure 11. We now

see that the confusion side helps to eliminate one of the peaks

in the orientation estimate and the spatial likelihood function

has helped the estimate converge to an accurate value.
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Fig. 11. [Top] The robot first measures c1 and then [Bottom] both c1 and
c2. Notice even though the confusion of the second measurement improves
the orientation estimation.

B. Class Probability Estimation over the Grid Map

As described previously, the estimation algorithm is ex-

ecuted over a grid where the detected object rays define

a set of cells updated after each measurement. Each cell

is associated with an orientation and class density (for all

possible classes). As an example, the marginalized probabil-

ities for c0, c1 and c2 are visualized in Figure 12 for class

measurements of o2 (recall we have assumed that particular

class measurements can be assigned to the correct object).

In this particular snapshot, o2, which is of true class c2, is

seen from two positions (points 3 and 4 in Figure 8) and two

rays are cast. The gray shading in each picture along the rays

represents the probability P(ci, o2|y2) for each respective

class. We have normalized the shading so P(ci, o2|y2) = 0 is

pure white while P(ci, o2|y2) = 1 is pure black. The orange

background is used here to simplify visualization but can be

thought of as the initial prior class probabilities for all cells

(i.e. equal priors for all classes) and remains valid since these

cells are not updated given only these measurements.

In Figure 12 we can note the probability P(c2, o2|y2)
along the rays increases in magnitude up until the grid

cells located at the approximate object location, i.e. the

intersection point of the rays. It then decreases as expected.

Similarly, P(co, o2|y2) decreases in magnitude along the rays

until the intersection where it is almost zero and then begins

to increase as expected further away from the object.

VI. CONCLUSION

We have provided a solution to the problem of simultane-

ous object class and pose estimation using a generic object

classifier and a spatially dependent measurement likelihood

model. Our novelty is the ability to estimate both the class

and pose of the objects in the environment given only mea-

surements of the object class label from a generic classifier.

We believe the heuristics behind the design of the like-

lihood functions are realistic. However, one practically and

(a) Class c0

(b) Class c1 (c) Class c2

Fig. 12. An example distribution over a grid where o2, which is of true
class c2, is seen from points 3 and 4 in Figure 8.

theoretically interesting direction for future work includes the

development of reinforcement-like learning algorithms for

estimating the likelihood function parameters online. Another

interesting direction for future work involves the design of

control algorithms for actively searching the environment in

order to maximize the information gain.
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