
  

  

Abstract—A novel approach to constructing robots is based 
on concentrically combining pre-curved elastic tubes. By 
rotating and extending the tubes with respect to each other, 
their curvatures interact elastically to position and orient the 
robot’s tip, as well as to control the robot’s shape along its 
length. Since these robots form slender curves, they are well 
suited for minimally invasive medical procedures. A substantial 
challenge to their practical use is the real-time solution of their 
kinematics that are described by differential equations with 
split boundary equations. This paper proposes a numerically 
efficient approach to real-time position control. It is shown that 
the forward kinematics are smooth functions that can be pre-
computed and accurately approximated using Fourier series. 
The inverse kinematics can be solved in real time using root 
finding applied to the functional approximation. Experimental 
demonstration of real-time position control using this approach 
is also described. 

I. INTRODUCTION 
INIMALLY invasive medical procedures involve the 
manipulation of tools, sensors and prosthetic devices 

inside the body while minimizing damage to surrounding 
tissue structures. In many cases, navigation to the surgical 
site involves steering the instrument along three-dimensional 
curves through tissue to avoid bony or sensitive structures 
(percutaneous procedures), or following the interior contours 
of a body orifice (e.g., the nasal passages) or body cavity 
(e.g., the heart). Once at the surgical site, it is often 
necessary to control the position and orientation of the 
instrument’s distal tip while holding relatively immobile the 
proximal inserted length.  

The instruments used in minimally invasive procedures 
can be grouped into three general categories. The first 
category includes straight flexible needles that are used for 
percutaneous procedures in solid tissue. Needle steering 
along a curved insertion path is achieved by applying lateral 
forces at the needle base or tip that cause it to flex as it is 
advanced into the tissue. Consequently, these instruments 
possess no ability to produce lateral tip motion without 
further penetration into solid tissue.  
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The second category of instruments is composed of a 
straight, stiff shaft with an articulated tip-mounted tool and 
is in common use for minimally invasive access of body 
cavities (e.g., chest or abdomen) [1]. The shaft must follow a 
straight-line path from the entry point of the body to the 
surgical site. Lateral motion of the tip depends on pivoting 
the straight shaft about a fulcrum typically located at the 
insertion point into the body.  

The third category of instruments includes elongated, 
steerable devices, such as multi-stage micro-robot devices, 
[2], [3] and steerable catheters [4],[5]. Multi-stage micro-
robot devices are typically sufficiently rigid to support their 
own weight as well as to apply appreciable lateral forces to 
the surrounding tissue. Since the steerable length is modest, 
however, these devices are often mounted at the distal end of 
a rigid shaft. Similarly, only the distal portion of catheters is 
steerable, however, their proximal length is of sufficient 
flexibility so as to conform to the curvature of the vessel 
through which it is advanced. An alternate novel technology 
enables extension along an arbitrary 3D curve [3]. This 
technology is, however, nonholonomic in that lateral motion 
of the tip is only accomplished in combination with 
tangential motion.   

Concentric tube robots possess the best properties of all 
three types of instruments. With cross sections comparable 
to needles and catheters, they are nevertheless capable of 
substantial actively-controlled lateral motion and force 
application along their entire length. Since robot shape can 
be controlled, they enable navigation through the body along 
3D curves. Furthermore, the lumen of the tubes can house 
additional tubes and wires for controlling articulated tip-
mounted tools. An example is shown in Fig. 1. 

Thus, this technology holds the potential for enabling 
many new and exciting minimally invasive interventions. An 
important class of applications for such a device would be to 
enter a body lumen by steering along a curved path through 
tissue or through a body orifice. Once inside the lumen, the 
proximal portion can remain relatively fixed while the distal 
portion manipulates tools within the lumen to perform 
minimally invasive surgery. 

 
Fig. 1. Concentric tube robot comprised of four telescoping sections that 
can be rotated and translated with respect to each other. 

The kinematic modeling for real-time control of these 
robots is challenging in comparison to that of traditional 
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robots whose links are relatively rigid and whose joints are 
discrete. The forward kinematics can be cast as a 3D beam-
bending problem in which the kinematic input variables 
(tube rotations and displacements at the proximal end) enter 
the problem as a subset of the boundary conditions. The 
remaining boundary conditions are comprised of point forces 
and torques applied to the distal ends of the tubes. Contact 
along the robot’s length (e.g., with tissue) generates 
additional distributed and point loads.  

Thus, it can be anticipated that the most general kinematic 
model can be expressed as a two-point boundary value 
problem involving a differential equation with respect to arc 
length along the common centerline of the tubes. Phenomena 
that may be included in the model are bending, torsion, 
friction, shear, axial elongation and nonlinear constitutive 
behavior.  

Since real-time control necessitates balancing accuracy of 
the model with efficiency of its computation, the first 
kinematic models developed treated the curved portions of 
the tubes as torsionally rigid [6]-[11]. The torsionally rigid 
model, first derived in [6], results in an algebraic expression 
for curvature of the combined tubes that can be analytically 
integrated to yield position and orientation of the robot’s tip. 
The resulting forward kinematic model is also algebraic and 
can thus be computed quickly.  

Closed form inverse kinematic solutions only exist for 
very simple concentric tube robots [8]. Jacobian-based 
inverse kinematics using the algebraic curvature model were 
first formulated in [8] and experimentally implemented in a 
teleoperation system in [9]. Despite error in the kinematic 
model, position control of the slave was possible since the 
human operator visually closes a feedback loop on position 
error.  

Despite its computational efficiency, this approach is not, 
however, amenable to achieving smooth, high-bandwidth 
performance. Toward this end, a forward kinematic model 
and Jacobian matrix were formulated that includes torsion in 
the straight proximal portions (transmission lengths) of the 
tubes, but treats the curved portions as torsionally rigid 
[7],[11]. With this model, each computation of the forward 
model and Jacobian involves solving a root-finding problem 
for the torsional twist in each of the tubes’ transmission 
lengths. This approach can appreciably reduce modeling 
error for robot designs with long transmission lengths at the 
computational cost of real-time root finding. 

The most recent forward kinematic models for concentric 
tube robots include torsional compliance along the entire 
length of the constituent tubes [12]-[14]. This work also 
demonstrates experimentally that the predicted twisting in 
the curved portions of the tubes does occur and can be 
substantial [12],[14]. While providing significantly 
improved accuracy over earlier models, these new models 
are, as anticipated, considerably more complex.  

They consist of second-order differential equations with 
split boundary conditions. Furthermore, integration of these 
equations yields curvature as a function of arc length. To 
solve for the robot tip frame relative to the base, curvature 

must be integrated along the arc length once more to yield 
tip frame orientation and a second time to obtain tip frame 
position.  

The computational difference between the various 
forward kinematic models can be summarized as follows. 
Solution of the torsionally rigid model involves evaluating 
algebraic expressions. This is comparable to the kinematics 
of standard open-chain robots comprised of rigid links and 
discrete joints. Including torsional compliance in the straight 
transmission lengths of the tubes converts the computation 
to an algebraic root finding problem. Finally, including 
torsional compliance in the curved portions of the tubes 
converts the algebraic root finding problem to root finding 
on the (numerically computed) solution of second-order 
differential equations followed by the additional integrations 
needed to compute position and orientation.  

The contribution of this paper is to provide a framework 
that enables real-time position control using the kinematic 
models incorporating torsional compliance along the entire 
length of the tubes. The paper is arranged as follows. Section 
II summarizes the torsionally compliant model. Section III 
describes the proposed approach in which the forward 
kinematic solution is pre-computed over the robot’s 
workspace and approximated by a product of truncated 
Fourier series. The inverse kinematic solution is solved at 
each time step using a root finding method applied to the 
functional approximation. Experimental implementation of 
closed-loop position control is described in Section IV and 
conclusions are presented in Section V.  

II. KINEMATIC MODELING 
This section summarizes the model of [12] that includes 

bending and torsion for an arbitrary number of tubes whose 
curvature and stiffness can vary with arc length. Effects that 
are neglected include shear of the cross section, axial 
elongation, nonlinear constitutive behavior, friction between 
the tubes and deformation due to external loading. Note that 
these effects are neglected, but not necessarily negligible. 
For example, deformation due to external loads during 
environment interaction is an important topic that we are 
also considering [15]. 

In the remainder of the paper, subscript indices, 
1,2, ,i n= … , are used to refer to individual tubes with tube 

1 being outermost and tube n being innermost. Arc length, 
 s , is measured such that    s = 0  at the proximal end of the 
tubes. The total length of each tube is designated by  Li . 

As shown in Fig. 2, material coordinate frames for each 
cross section can be defined as a function of arc length s  
along tube i  by defining a single frame at the proximal 
end, (0)iF , such that its z axis is tangent to the tube’s 
centerline. Under the unrestrictive assumption that the tubes 
do not possess initial material torsion, the frame, ( )iF s , is 
obtained by sliding (0)iF  along the tube centerline without 
rotation about its z axis (i.e., a Bishop frame [16]). As the 
tubes move, bend and twist, these material frames act as 
body frames tracking the displacements of their cross 
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sections. It is also useful to define a reference frame, 0 ( )F s , 
which displaces with the cross sections, but does not rotate 
about its z axis.  

As the thi  tube’s coordinate frame ( )iF s slides down its 
centerline, it experiences a body-frame angular rate of 
change per unit arc length given by 

   
ui (s) = uix (s) uiy (s) uiz (s)!

"#
$
%&
T

             (1) 

in which ( , )ix iyu u are the  components of curvature due to 
bending and 0izu = is the curvature component due to 
torsion.  

The kinematic input variables consist of the rotation and 
translation of each tube about and along the common 
centerline of the combined tubes. The rotation angle,    !i (s) , 
is defined as the  z -axis rotation angle from frame 0 ( )F s  to 
frame ( )iF s . The translation variable,  li , is defined as the 

arc length distance from frame   F0 (0)  to the initially 

coincident frame   Fi (0) . Elastic interaction of the tubes is a 
function of relative rotation angles of the tubes so these are 
also defined as  

1( ) ( ) ( ), 2, ,i is s s i n! " "= ! = … .                 (2) 
The forward kinematic equations for n tubes of arbitrary 
stiffness and initial curvature can be written in terms of 
  2n! 2  state variables    {! i ,uiz }, i = 2,…,n  as [12] 
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In these equations, 
 
kixy and  kiz are the bending and torsional 

stiffnesses, respectively, of the ith tube. A circumflex on a 
curvature component is used to designate the initial pre-
curvature of a tube.

   
Rz (! j )  is the rotation matrix for a 

rotation of angle 
  
! j  about the z axis. Also, 

  
ui x ,y

denotes the 

x and y components of the vector. 
Half of the boundary conditions for this equation are 

obtained from the kinematic input variables, (0)i!  

     !i (0) = "i (0)!"1(0), i = 2,…,n .                    (4) 
The remaining boundary conditions are defined by the 
torque applied at the distal ends of the tubes. Assuming no 
external torque, the torsional bending moment and thus 
curvature are zero at this location, 

    uiz (Li ) = 0, i = 2,…,n                               (5) 
 Equations (3)-(5) are easily applied to any combination of 
pre-curved tubes. The stiffness and pre-curvature of each 
tube can be an arbitrary function of arc length – even 

discontinuous. Consequently, there is no need to subdivide 
the domain during integration over a telescoping 
arrangement of tubes. Distal to the physical end of each 
tube, its stiffness and curvature can be defined as zero. 
Details of the numerical solution are presented below. 
 

 
Fig. 2. Tube coordinate frames are denoted   Fi

(s) . The relative z-axis twist 

angle between tube frames 1 and 2 is   !2 (s) . Due to torsional twisting, it 

varies from a maximum  !2 (0) at the base to a minimum    !2 (L) at the tip.  

III. CLOSED-LOOP POSITION CONTROL 
Tool-frame position control involves solving the forward 

and inverse kinematic problems at real-time rates. The 
forward kinematic model (3)-(5) presents a challenge in this 
regard since it is a nonlinear second-order differential 
equation with split boundary conditions. Furthermore, these 
equations yield curvature as a function of arc length. 
Curvature must be integrated once more to yield tip frame 
orientation and a second time to obtain tip frame position. 

To achieve a real-time implementation, the approach 
taken here is to pre-compute the model’s forward kinematic 
solution over the robot’s workspace and then to approximate 
it by a product of truncated Fourier series. The inverse 
kinematic solution is solved at each time step using a root 
finding method applied to the functional approximation. 
These techniques are described in the following subsections. 

A. Forward Kinematic Functional Approximation 
For solving (3)-(5), we note that robot shape is independent 
of rigid body translation and rotation. Since rotation or 
translation of all tubes simultaneously produces rigid body 
motion, the number of independent kinematic inputs can be 
reduced by two. Given the form of (3), we choose the 
rotation and translation of the first tube,   !1  and   l1 , as 
references for measuring all tubes’ angles and linear 
displacements. Thus, the reduced set of kinematic input 
variables is     {!2-n (0), l2-n}={!i (0), li} ,     i = 2,…,n  and the 
desired output is the tip frame position and orientation 
relative to the base,    g1(!2-n (0), l2-n ) . Here, the subscript 1 
indicates that the displacement is for the reference values of 
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    !1 = l1 = 0 . The transformation for nonzero values is given 
by 

    

g0 (!2-n (0), l2-n ,"1, l1) =
Rz ("1)

0
0
l1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

0 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

g1(!2-n (0), l2-n )   (6) 

 To pre-compute the forward kinematic solution over a 
grid of kinematic input values, it is convenient to define the 
grid at the robot’s tip in terms of    {!i (L), li} ,     i = 2,…,n  and 
so solve (3) and (5) as an initial value problem by integrating 
backward in arc length from  L  to 0. This yields the 
curvature along the robot as well as the input twist angles, 

   !i (0) ,     i = 2,…,n . Curvature can then be integrated along 
the robot’s length to yield tip position and orientation 
relative to the base,    g1(!(0), l)  as defined above. Integrating 
curvature is analogous to integrating body frame twist 
velocity. A variety of numerical integration methods are 
available that preserve group structure on   SE(3) [17]![18]. 
 A dense discretization of    {!2-n (0), l2-n}  yields a large data 

set of    g1(!2-n (0), l2-n ) . While one approach is to store this 
data as a lookup table, functional approximations offer 
reduced storage requirements at modest computational cost. 
Since the input variables have a periodic effect on the tip 
frame, each of the tip frame coordinates can be modeled 
using a product of truncated Fourier series.  

Define a scalar Fourier series  H of order  q  as   

    
H (!,q) = cje

i( j!)

j=!q

+q

"                                   (7) 

in which 
   
cj !! , 

   
c! j = cj

*  and asterisk indicates complex 
conjugate. We model each of the tip coordinates in 

   p1 = [x1, y1, z1]T using a product of series in the form of (7). 
For example, assuming n tubes that can be rotated and 
translated and using the same order series for all input 
variables,   x1  is of the form 

  
    
x1 = H (!i ,q)
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                   (8) 

in which the linear displacement variables,  li , are scaled by 

appropriate wavelength variables,   !i .   
Tip orientation can be modeled in a similar fashion. For 

example, for the five degree of freedom robot used in the 
experiments, roll angle is undefined and a tangent vector can 
define orientation,

   
t1 = [tx1, ty1, tz1]T , with components 

modeled by (8). 
Multiplying out the product expansion for each 

component of tip position and direction produces sets of 
unknown constant coefficients that can be estimated using 
linear least squares from the data set    g1(!2-n (0), l2-n ) . The 

resulting approximation is denoted as     !g1(!2-n (0), l2-n ) and it 

can be used in (6) to produce the approximated forward 
kinematic solution,     !g0 (!2-n (0), l2-n ,"1,s1) . 

B. Real-time Inverse Kinematics 

Given the desired tip frame   g0
des , the inverse kinematics 

problem can be posed as a root finding problem. The desired 
joint values correspond to the zero of a scalar- or vector-
valued function,    d(!g0 , g0

des ) , representing the distance 
between the actual and desired tip frames. One example of 

   d(!g0 , g0
des )  is the twist vector corresponding to the screw 

motion between    !g0 and   g0
des . In this context, the standard 

Jacobian inverse approach is an on-line implementation of 
Newton’s root finding method. 

 For the five degree of freedom robot used in the 
experimental implementation described below, tip frame roll 
angle is undefined and so the function     d(!g0 , g0

des )!"6 is 
selected as 

     

d(!g0 , g0
des ) =

p0! p0
des

! sin!1 t0"t0
des( ) t0"t0

des( )
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              (9) 

Here, tip position is given by   p0 and tip tangent direction by 

unit vector   t0 . The scaling factor  !  is given by the ratio of 
maximum tip position error to maximum orientation angle 
error,  

    

! =
p0! p0

des( )max

sin!1 t0"t0
des( )max

                            (10) 

Root finding is accomplished using the Gauss-Newton 
method. The method requires the Jacobian of (9) with 
respect to the joint variables. This can be evaluated 
numerically using additional function evaluations of (9) or 
computed from the analytic form of the Jacobian. The latter 
is easily obtained since the partial derivatives of (8) with 
respect to the joint variables have the same functional form 
as (8). 

The number of iterations needed to converge to the 
inverse solution depends on the initial magnitude of (9). In 
teleoperation, the current joint values and tip location can be 
used to initiate root finding for the next time step. Thus, the 
maximum magnitude is usually small and can be estimated 
from the desired tip motion bandwidth and controller cycle 
time. For example, a 10 mm amplitude sinusoidal tip 
displacement at 10 Hz has a maximum displacement of less 
than 1 mm during a 1 kHz control cycle. Consequently, the 
algorithm typically converges within a controller time step. 
For those cases when convergence is not obtained within a 
control cycle, motion is still well behaved since the 
implementation is such that error decreases with each 
iteration. As described below, our current unoptimized 
implementation can compute up to eight iterations during the 
1 msec time step of our 1 kHz controller. 
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IV. EXPERIMENTS 
To demonstrate real-time position control using the approach 
described above, a teleoperation system using the robot 
shown in Fig. 3 and Fig. 4 was implemented using the 
controller shown in Fig. 5. The system includes a master arm 
comprised of a PHANTOM Omni haptic device (Sensable 
Technologies, Inc.), a slave arm consisting of the concentric 
tube robot, and master and slave controllers. The robot 
consists of the three NiTi tubes shown in Fig. 4 and 
possesses five degrees of freedom. The tubes comprising the 
outer pair are of almost equal stiffness and are translated as 
pair. Thus, they form a section of variable curvature with 
kinematic input variables consisting of tube rotation angles, 

 !1,!2 , and a single translation variable for the pair,    l1 = l2 . 
The innermost tube is much less stiff than the outer pair such 
that the portion of its length retracted inside the outer pair 
conforms to the curvature of the pair. Its kinematic variables 
are    !3, l3 . The five kinematic inputs are used to control the 
robot’s tip position and tangent direction. 

The properties of the tubes are given in Table 1. To solve 
the forward kinematics, (3) requires the ratio of bending to 
torsional stiffness for each tube as well as the relative 
stiffness of the tubes. For linear elastic tubes, the former is 
given by    1+!  and was computed using a value of    ! = 0.3 . 

Given that the tubes are of the same alloy and were 
processed similarly, the relative stiffness of the tubes should 
be computable as the ratio of moments of inertia. Stacking 
the tolerances for inner and outer diameters of tube pairs, 
however, produces large variations in stiffness ratio. Instead, 
calibrated stiffness ratios were computed by measuring the 
individual tube pre-curvatures and the pair-wise combined 
curvature for     !i (s) = "  using a camera measurement system 
(Vision Appliance, Dalsa, Inc.). Using this approach, it was 
observed that the curved section of Tube 3 was a third of the 
stiffness of the straight portion. This observation is in 
agreement with the flattening of the stress-strain curve that 
occurs for NiTi alloys at strains greater than 1%.  
 In Fig. 5, the slave controller receives the position and 
tangent direction of the tip of the master arm (represented by 

  g0
m ) and calculates the inverse kinematics of the concentric 

tube robot using the method described in the preceding 
section. Then, a set of PID controllers calculate the 
torques/forces applied to the joints of the robot. The master 
controller reads the joint configuration of the robot and 
calculates the position and direction of its tip. The force 
feedback provided to the master is governed by a 
proportional control law based on the Cartesian position 
error between the master and slave tip positions.  

The teleoperator system of Fig. 5 is implemented by a 
multi-thread process under Windows 2000. While Windows 
2000 does not natively support hard real-time scheduling, it 
does support soft real-time scheduling with a time-critical 
thread priority. When used appropriately, a time-critical 
thread may be used to maintain a regular 1 kHz update rate 
with sufficiently low timing variations to be used for closed-
loop control. For this particular controller, the slave 
mechanism bandwidth is less than 10 Hz, so soft real-time 

implementation of a 1 Khz control loop was more than 
sufficient. 

The process includes two time-critical user mode threads 
running at 1 kHz that implement the controllers and an 
application thread that updates a GUI (not shown). One of 
the time-critical threads executes the PID controller of the 
slave arm and the other executes the master controller and 
inverse kinematics block of the slave controller. The 
separation of threads eases integration between the master 
with its IEEE-1394 based interface and the slave controlled 
through a Quanser Q8 data acquisition board with its real-
time IO subsystem support accessed through the HIL SDK. 

 

 
Fig. 3.  Three-tube concentric tube robot. 

 
Fig. 4. Tubes comprising the robot. Tubes 1 and 2 form a variable curvature 
balanced pair that dominate tube 3. Ruler shows units in mm.  
 

TABLE 1. TUBE PARAMETERS. 
Tube 1 2 3 

Outer Diameter (mm) 2.77+/-0.01 2.41+/-0.01 1.85+/-0.01 

Inner Diameter (mm) 2.55+/-0.01 1.97+/-0.01 1.65+/-0.01 
Sections of constant pre-

curvature listed base to tip 
(length, mm; radius, mm) 

(l=150; r=242) (l=18; r= ! ) 
(l=150; r=260) 

(l=186; r= ! ) 
 (l=57; r=35) 

Calibrated stiffness (relative 
to Tube 1) 1 1.53 0.21 (straight) 

0.07 (curved) 
Maximum % strain to 

straighten curved section 0.57 0.46 2.64 

 

 
Fig. 5. Teleoperator block diagram. 
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A. Forward Kinematic Model 
The method of section III.A was used to arrive at a 

functional approximation of the forward kinematic model. 
Removing the rigid body degrees of freedom, the reduced 
set of kinematic input variables is given by    {!2 ,!3, l3} . 
Solving (3) and (5) as an initial value problem, the resulting 
curvature was integrated backward in arc length from  L  to 0 
to get    g1(!2 (0),!3(0), l3 )  for a uniform 40 !40 !40 grid of 

   {!2 (L),!3(L), l3} . As an example, the position coordinate 

  x1 is plotted as a function of   !2 and   !3 for a fixed value of 

  l3 in Fig. 6. It can be seen that the coordinate is a smooth, 
periodic function of the inputs. 

This data set was used to construct a second-order product 
series (8) for each component of position vector  p1 and 

direction vector   t1  using a wavelength of     !2 = 2" / l3
max . The 

resulting functional approximations, each defined by 125 
constant coefficients, were evaluated against a second data 
set constructed using grid values midway between those of 
the original set. In this evaluation, the average tip position 
error was 0.025 mm (0.1 mm maximum) and the average tip 
direction error 0.02 degrees (0.06 degrees maximum). This 
approximation error is insignificant in comparison to a 
modeling error of several mm and degrees [12]. 
Furthermore, it is a fraction of the desired model error of 1 
mm and 5 degrees that is suitable for many clinical 
applications. 

 
Fig. 6. Model computed tip position coordinate  x1

as a function of 

  !2
and  !3

for   l3
= 20.5 mm. 

B. Inverse Kinematic Model 
Inverse kinematics were implemented as described in 

section III.B. Tube lengths and pre-curvatures limit 
maximum tip position and orientation errors over the entire 
workspace to approximately 200 mm and  !  radians, 
respectively. For convenience of interpretation, the scaling 
factor of    ! = (180 mm) / (" rad)  was selected yielding a 
tangent error magnitude in degrees. 

Our current unoptimized implementation of the Gauss-
Newton method can perform eight iterations in 0.5 msec, 
however, convergence to the accuracy of the functional 
approximation is usually achieved in five or fewer iterations. 
This fits easily within the 1 msec cycle time of our 

controller. 
In addition, the inverse kinematic implementation 

enforces continuity of the inverse solution and enforces joint 
limits on the tube extension variables,    l1 = l2  and   l3 . 

C. Demonstration Task 
Performance of the teleoperation system was evaluated for 

a task that consisted of touching a sequence of nine 2 mm 
diameter beads embedded in the faces of three dodecahedral 
dice suspended on posts as shown in Fig. 7. This task 
requires the operator to control both the tip position and 
tangent direction to contact the beads. As shown in the 
accompanying video, teleoperation is smooth and 
responsive.  

Since the inverse kinematic model converges within a 
single time step, any trajectory following error is due to two 
factors: kinematic modeling error and electromechanically-
imposed bandwidth limitations. Steady state control error is 
due only to modeling error. 

V. CONCLUSIONS 
Concentric tube robots are a novel technology that has 

broad potential in minimally invasive surgery. While the 
most recently proposed and most accurate kinematic models 
are two-point boundary value differential equations, the 
solutions are smooth periodic functions that permit accurate 
approximation. This property is exploited and combined 
with an on-line root finding method for implementing real-
time position control. Unoptimized control code running on 
a PC was easily able to compute the three-tube inverse 
kinematic solution at 1 kHz rate. Thus, both analytically and 
numerically, the approach provides the capacity for 
extension to robots with greater numbers of tubes. It can also 
be easily adapted to future kinematic models that include 
currently neglected effects such as friction and nonlinear 
constitutive behavior. 

 

 
Fig. 7. Teleoperated real-time position control task. Touching sequence of 
nine silver beads embedded in dice involves controlling both position and 

tangent direction of robot tip.  
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