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Abstract—There are many common error sources that influence
mapping, e.g., salt and pepper noise as well as other effects occurring
quite uniformly distributed over the map. On the other hand, there are
also errors, which occur very rarely but with severe effects. These errors
influence not only the local accuracy but the overall spatial layout of
the map. Concrete examples include bump noise in the robot’s pose
or residual errors in Simultaneous Localization and Mapping (SLAM).
Brokenness is presented here to capture one form of structural errors
in grid maps. Concretely, brokenness measures the degree with which
a map can be partitioned into regions that are locally consistent with
ground truth but ”off” relative to each other. The concept of brokenness
is presented in a formal way and it is shown how it can be computed in an
efficient way using recursive spectral registrations. Experimental results
show that the metric can indeed be used to automatically determine one
structural quality aspect of a map in a quantitative way.

I. Introduction

Given the important of mapping for mobile robotics (1), it should
be of strong interest to be able to assess the quality of maps
or mapping approaches in profound ways. According assessments
can also be used for execution monitoring, i.e., fault detection and
isolation of core functions among which mapping clearly belongs for
mobile robots (2).

The benefits of a mapping algorithm or system are often presented
through differences in the underlying theory, run times, and at most
a qualitative visual assessment of map quality, e.g., by displaying
the generated maps and a comparison basis like the results of other
approaches or a ground truth plan. Surprisingly often, even the
necessary references for this qualitative comparison, i.e., results from
other approaches or ground truth, are omitted.

The problem can of course be simply seen from a task oriented
viewpoint as formulated in (3): ”We feel the ultimate test of a map is
not ’does it look good?’ but ’how accurately, adequately or quickly
can X be performed with it?’”. There is no general quality of a map
or of a mapping algorithm from this viewpoint. Each user should
simply run individual benchmarks based on whatever task X the user
is employing the map for. There is a grain of truth in this view, but
it is not a sufficient motivation to completely abandon to assess the
quality of maps, respectively mapping algorithms in general ways.

There are several simple, general criteria for the quality of a map
M. One is for example its coverage, i.e., the amount of the ground
truth environment that is represented in M (4). Further general criteria
for map quality (4) are its level of detail and its accuracy. The level
of detail is in the predominant form of map representation, namely
2D occupancy grids (5; 6), simply determined by the resolution of
M. Its coverage is determined by the number of cells that contain
information. There hence remains the problem of measuring accuracy.

One option is to use a comparison between the ground truth trajec-
tory of the robot and its estimate by a Simultaneous Localization and
Mapping (SLAM) algorithm, respectively multiple SLAM algorithms
to measure the capabilities of the algorithms (7). But ground truth
measurements of the robot’s trajectory are not trivial to do; they

require a perfect localization system. Ground truth grid maps can be
generated from several sources - including ground truth trajectories
and range sensor reading - and can hence be considered as a more
general case.

Given a ground truth or other reference representation R, one
option is to estimate the accuracy of a map M by relating the content
of each cell in M to the content of the corresponding cell in R, e.g.,
by using cross entropy (8) as a correlation estimate. But cross entropy
only takes information from co-located cells in M and R into account.
The map therefore has to be very similar to the reference to give a
meaningful estimate. Cross entropy fails to provide information about
the map quality in case of any larger disturbances.

A way to overcome this disadvantage is to use a measure of
distance between similar points in M and R like Least Mean Squares
of Euclidean Distances (LMS-ED). A disadvantage of LMS-ED is
that it is expensive to compute. It is therefore not convenient to use
it for whole grid maps and it is hence often applied to smaller sets
of landmarks (9; 10). An alternative to LMS-ED is to use Manhattan
Distances. As shown in (11), this leads to a fast computation of a
map quality, which provides quantitative assessments of the level of
noise in the M. Concretely, this map quality metric shows decreasing
values for increasing amounts of common error sources like salt and
pepper noise and the effects of translation, rotation, and scaling.

The above methods only address errors that mainly occur uniformly
distributed over the map. A form of structural error is addressed
here, namely the ”brokenness” of a map or the degree with which a
map can be partitioned into submaps that are ”off” with ground truth
relative to each other. Figure 1 shows a typical example. Suppose
map (a) represents ground truth. Map (b) is broken in the sense that
a complete partition, namely the room shown in the bottom left in
this map, is rotated with respect to ground truth. When considering
only this particular partition, i.e., the submap that covers this room,
it is consistent within itself, i.e., it makes so to say perfect sense
with respect to the according part in ground truth. But this submap
is assessed to be completely false when applying for example a cell
based correlation metric to measure the quality of the overall map.

The term structural error is used here for faults in the map that
affect its global spatial layout. The alternative term ”topological”
is omitted for two main reasons. First of all, ”topological” may be
misleading with respect to the representation that is used. Topological
maps in form of graphs explicitly represent a spatial structure. In
grid maps, the spatial structure is only in the eye of the human
observer, the underlying data structure is nothing but a uniform grid.
Second, topological maps are usually based on higher level spatial
information, i.e., the building blocks of the map have a semantic
quality like ”room”, ”corridor”, etc. This is not the case for grid
maps. It is mere coincidence that a whole room is ”broken” in figure
1. Structural errors in grid maps usually do not correspond with any
semantically meaningful part of the map.
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(a) undisturbed map (b) ”broken” map

Fig. 1. A typical example of a ”broken” map: a complete partition of map
(b) - the room on the bottom left - is ”off” by an angular error compared to
(a) as a representation of ground truth.

We consider brokenness to be an important, if not even the most
important form of structural error in grid maps. The source of
brokenness is a form of error, which occurs very regularly in robot
mapping but which is usually neglected, namely bump noise. In
contrast to Gaussian noise on sensor readings, bump noise occurs
only very rarely, i.e., there is a usually very small probability pB

that at time t the value vB(t) of this noise is non-Zero. Gaussian
noise is in contrast almost always non-Zero, i.e., at every moment t
it is superimposed to the sensor readings. Despite its rare occurrence,
bump noise has severe effects as it can lead to large ”jumps” in sensor
readings. In the context of mapping, bump noise can be modeled as

vB(t) = (θ, d) =

{
θ ∈ U[0, 2π], d ∈ U[0, r] with prob.pB

(0, 0) with prob.1 − pB

where θ is an angle and d is a translation by a certain distance that
are both superimposed on the estimated location of a robot at time t,
and U[c1, c2] is a Uniform distribution of samples over the interval
[c1, c2]. Roughly speaking, vB(t) changes the estimated orientation of
the robot by an arbitrary angle and shifts its estimated position within
a certain radius r on rare occasion that have probability pB to occur;
but most of the time there is no effect of vB(t).

Typical sources of bump noise in mapping are slipping wheels or
tracks when using odometry or the false result of a scan matcher.
One may argue that state of the art Simultaneous Localization and
Mapping (SLAM) algorithms are well suited to compensate this kind
of error (see (12; 1) for a general overview of SLAM). But SLAM
requires loop closing for this purpose and one can not assume that
all parts of all maps are always a part of a loop. And even if this
would be the case, it is not unlikely that a residual error remains
after relaxation or filtering in the loop closing process. Please note
that a single - potentially residual - bump error in just one localization
estimate among the thousands that form the basis of a map can lead
to the severe effects of brokenness illustrated in figure 1.

The rest of this paper is structured as follows. In section 2, the
formal definition of brokenness as introduced in (13) is presented,
which is supplemented by a general algorithmic way to compute the
degree of brokenness in section 3. This paper then extends the own
work in (13) by introducing in section 3 a new, more efficient way to
compute brokenness, namely by using a spectral registration method.
Experiments and results are presented in section 4. It is shown there
with several maps from simulation as well as real world data that the
correct degree of brokenness can indeed be computed in an efficient
way with recursive spectral registration to assess the structural quality
of a map. Section 5 concludes the article.

II. A formal definition ofMap Brokenness

We deal here with the predominant form of maps as 2D arrays.
It is assumed that each cell of a map contains binary information,
which can be seen as a predicate p that is fulfilled or not for this
cell. A typical example for this predicate is occupancy, i.e., the fact
whether a location represented by a cell corresponds to free space
or not. Please note that all concepts presented here can be easily
extended to more general forms of maps where the cells contain
more detailed information like probabilities or pixel values. But as
a matter of convenience, we consider a map M of size kx × ky to
consists of cells m(x, y) with

M = {m(x, y) | ∀1≤x≤kx ,1≤y≤ky m(x, y) = p ∨ m(x, y) = ¬p}

Based on this definition of a map M, it is possible to consider
the set LM of locations (x, y) where the predicate p, for example
occupancy, is fulfilled:

LM = {(x, y) | m(x, y) = p}

It is obvious that there is a canonical way to get M from a given
LM. In the following, we will only deal with sets of locations LM with
property p and use this as a synonym for map. A spatial transform
Tθ,d with a rotation θ followed by a translation d on a map LM is
defined as:

Tθ,d(LM) = {(x′, y′) | ∀(x, y) ∈ LM : (x′, y′) = tθ,d(x, y) }

where tθ,d(x, y) is the spatial transform of point (x, y) ∈ R2 with a
rotation by angle θ ∈ [0, 2π] followed by a translation by distance
d ∈ R.

The operator
Tθ,d
→ applied to two maps L1 and L2 denotes the set

union of the points in L1 with the points in L2 after a non-trivial
spatial transformation of the later ones, i.e.,

L1 Tθ,d→ L2 =̂ L1 ∪ Tθ,d(L2)

with θ , 0 ∨ d , 0.

Based on the above notations, the brokenness of a map M can be
defined as follows (13):

Definition: A map M is broken with degree nBN ≥ 1 with respect to
a reference R if

∃0≤i≤nBN Li, ∃1≤ j≤nBN T
j with

LM = L0 ∪ L1 ∪ ... ∪ Ln
BN

and

LR = L0 T
1

→ L1...
T nBN−1

→ Ln
BN

The degree nBN of brokenness can intuitively be motivated as
follows: it counts the numbers of portions into which a map M is
partitioned due to structural errors. Each Li is a consistent submap
that is locally correct in the sense that it can be perfectly aligned
with the corresponding part in the reference map R. But to get a
globally correct map, the portions Li have to be spatially transformed
to compensate the structural errors. The reference map R is usually a
ground truth representation. This case is also referred to as the general
brokenness of a map. As a matter of convenience, ground truth is
assumed to be the reference if nothing else is explicitly mentioned.

Without loss of generality, it can be assumed that the ”sub-maps”
are proper partitions that can be ordered by their cardinality #, i.e.,
it can be assumed that
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∀i , j : Li ∩ Li = ∅

and

#L0 ≥ #L1 ≥ ... ≥ #Ln
BN

This property can be used to define more fine grain metrics for
brokenness that take the sizes of the different partitions into account.
Consider for example the case when two maps M1 and M2 are both
broken with the same degree k. It can then be of interest to compare
the size of the largest consistent partition L0

1 of M1 with the size of
the largest consistent partition L0

2 of M2. Furthermore, it can be of
interest to apply a norm to the parameters of the spatial transforms
T needed to get the partitions into a globally consistent map. This
norm can then be used to assess how much the different partitions
are ”wrong” with respect to each other.

A general algorithmic approach to compute the degree of broken-
ness n is presented in the following section. This generic algorithm
also leads to a determination of the proper partitions - and hence their
sizes - as well as the underlying spatial transforms between them.

III. Computing Brokenness with Spectral Registration

A general algorithmic approach to compute the brokenness of a
map can be based on the idea to employ map merging to determine
the different partitions in a map with respect to a reference map. Map
merging deals with the fusion of two maps based on the detection of
”identical” regions in the maps where they can be ”glued” together.
Map merging is for example of interest in the context of multi robot
mapping (14; 15; 16; 17; 18; 19; 20; 21; 22).

Map merging is also related to image registration, i.e., the search
process to find a template in an image (23; 24; 25; 26). Though
the task of map merging is harder than just registration. Note that
instead of locating a known template in an image, an unknown
region of overlap has to be identified in two maps for map merging.
This is more comparable to image stitching (27), which is for
example used to generate panoramic views from several overlapping
photographs. Solutions to solve this problem in image processing
usually need common reference points that are identified using local
image descriptors (27; 28; 29).

But occupancy grids usually lack rich textures like photographs.
Image stitching techniques can hence not be applied in a straightfor-
ward manner. But there are several recent advances in map merging
(30; 31; 32; 33) that exactly provide the means for registering the
partitions as needed here. Please note that the general formulation
of the computation of brokenness is not dependent on a concrete
map merging algorithm and that there are several possible choices
for implementing it.

Given a map M and a reference map R, e.g., ground truth, we
will now present a way to compute the degree of brokenness nBN as
formally defined in section II.

In the most general way as formulated in algorithm 1, a metric
Ψ1(X1, X2) is needed to determine the ”similarity” between two raster
data sets X1 and X2. The registration step in algorithm 1 is used to
determine a spatial transform Tθ,d(), which finds the best, i.e., most
similar, match of a partition in the reference R with a partition of the
transformed map Tθ,d(T ) where T in the beginning holds a copy of M.
Roughly speaking, one can imagine that T is ”moved around” such
that an as large as possible region in it matches with a corresponding
region in the reference R.

In the following step, the matching regions are so to say masked
out from the maps T and R. Again, a similarity metric is used, here

Algorithm 1 The general algorithmic approach to determine the
degree of brokenness n of a map M with respect to a reference R.

1: T = LM

2: n = 0
3: while T , ∅ do
4:
5: < register T with reference R >

6: find nTθ,d() : max Ψ1(nTθ,d(T ),R′) for R′ ⊆ LR

7: T = nTθ,d(T )
8:
9: < mask out the part of T that is well aligned with R >

10: find max Ln ⊆ T : Ψ2(Ln,R′′) ≤ c for R′′ ⊆ LR

11: T = T \ Ln

12:
13: < increment the degree of brokenness >
14: n = n + 1
15:
16: end while

denoted with Ψ2() as it may be identical with Ψ1() but it does not
have to be. In the previous registration step, the largest partition that
is consistent with the reference is determined in the sense that it gets
registered by a transform T () with the corresponding region in the
reference R. Cells m(x, y) in this matching partition of T (T ) have
hence a high similarity to co-located cells r(x, y) in R. This property
is now used to so to say remove this partition Ln from the current
T and to then apply the registration and masking on the remainder
T \ L1.

The general principle of computing brokenness can be achieved
with fundamentally different implementations of the registration and
masking steps. In (13), where we introduced the general idea of
brokenness, a map merging algorithm introduced in (32) was used for
the steps in lines 5 to 7 of algorithm 1. This map merging algorithm
builds upon a (dis)similarity measure of 2D raster data sets using
Manhattan distances between nearest neighbors with the same cell
property (34) combined with an Adaptive Random Walk (35; 36; 37)
to stochastically search the space of possible transformations. In
addition, a correlation metric is used to avoid convergence to local
optima.

Though this approach works reasonably well and is fully sufficient
to demonstrate the general idea of computing brokenness, it has two
significant disadvantage from a practical viewpoint. First of all, it
is based on a stochastic search method that may not always lead to
the same results for the same input data. Second, it is relatively slow,
i.e., it requires a few dozen seconds up to several minutes to compute
brokenness.

It is shown in this paper how both the long computation time and
the stochasticity can be remedied by using a different registration
algorithm, namely the improved Fourier Mellin (iFMI) registration
(38). The iFMI is a variant of the Fourier Mellin transform for image
representation and processing (39)(40), which is supplemented by the
following two modifications. First, a logarithmic representation of the
spectral magnitude of the FMI descriptor is used. Second, a filter on
the frequency where the shift is supposed to appear is applied. A
detailed description of iFMI can be found in (38).

IV. Experiments and Results

Two sets of maps are used for the following experiments. Both
consist of a reference map and several versions of it with varying
amounts of brokenness generated by different levels of bump noise.
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(a) undisturbed map R1 (b) M1
1, broken, degree n = 1

(c) M1
2, broken, degree n = 2 (d) M1

3, broken, degree n = 3

(e) M1
4, broken, degree n = 4 (f) M1

5, broken, degree n = 5

Fig. 2. An undisturbed map R1 as reference plus several versions of with varying degrees of brokenness due to bump noise.

(a) undisturbed map R2 (b) M2
1, broken, degree n = 1 (c) M2

1, broken, degree n = 2 (d) M2
1, broken, degree n = 3

Fig. 3. A second undisturbed map R2 as reference plus several versions of it with varying degrees of brokenness due to bump noise.
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TABLE I
Results based on reference R1

map ncomp tBCMM (min:sec) tiFMI (sec)

R1 0 0:15 0.264

M1
1 1 1:16 0.350

M1
2 2 2:02 0.436

M1
3 3 4:30 0.522

M1
4 4 5:18 0.608

M1
5 5 6:14 0.694

TABLE II
Results based on reference R2

map ncomp tBCMM (min:sec) tiFMI (sec)

R2 0 0:27 0.264

M2
1 1 1:07 0.350

M2
2 2 2:23 0.436

M2
3 3 3:50 0.522

The first set of maps (figure 2) is generated with USARsim (41), a
high fidelity robot simulator (42). USARsim is based on the Unreal
Game engine including an according physics and 3D visualization
engine. It also includes realistic robot components models, e.g., with
realistic noise on the sensor data. The robot-model used to generate
the maps is based on the Jacobs rescue robots (43). The environment
is a detailed model of the R1 research building at Jacobs University.

The second set of maps (figure 2) is based on real world data
from the Robotics Data Set Repository (Radish) (44). Concretely,
the maps are based on the dataset ”ap hill 07b”, which contains
the raw sensor data from four robots. For the experiments, the maps
are generated from the raw data of the 3rd robot in the team - it
simply explored most of the environment - with a state-of-the-art
SLAM algorithm (45) and varying degrees of bump noise.

An undisturbed map R is used for both sets as reference. The
levels of bump noise vary within the sets, i.e., different degrees of
brokenness ranging from n = 1 to 5 for set 1 and from n = 1 to
3 for set 2 are investigated. Each map in a set is compared to the
reference using the algorithm from section ??. For completeness, the
reference R is also compared to itself; obviously the result should be
a brokenness of degree 0. The computation of the registration part of
algorithm 1 (lines 5 to 7) is once based on the map merging method
used in (13) and once based on iFMI. The masking operation in
algorithm 1 (lines 9 to 11) is done both times with the masking step
described in (13), namely by employing a local similarity measure
using Manhattan distances between nearest neighbors with the same
cell property (34) for Ψ2. The experiments are carried out on a Intel
Core-2 Duo 1.8 GHz processor under Linux.

The results of the experiments are shown in tables I and II. The
most important fact is that for all 10 maps their correct degree
of brokenness is properly determined independent of the concrete
method used for the registration. But the computation times differ
significantly. The map merging based method, for which the run-times
are denoted with tBCMM , takes in the order of dozens of seconds up
to several minutes. The iFMI based method, for which the run-times
are denoted with tiFMI , takes in contrast a few hundred milliseconds.

An other important advantage of the iFMI based registration is that
it is deterministic.

V. Conclusions

The paper dealt with a contribution to assessing structural errors
in grid maps, i.e., errors that disturb the large scale spatial layout of
a map with respect to a reference, typically ground truth. Concretely,
the concept of brokenness is presented. It is an important - if not
even the most important - form of structural error. Typical sources of
brokenness in maps are bump noise in robot localization, respectively
residual errors in SLAM. A formal way is used to derive the degree
of brokenness of a map. The introduced concepts can in general be
useful for discussions of map quality; despite its formal basis, the
degree of brokenness is based on intuitive notions that are also helpful
to describe common properties of robot maps in informal ways.

Second, an efficient way to compute the degree of brokenness
with a spectral registration method is introduced. It is one possible
implementation of the general approach to recursively use registration
and masking operations to determine the partitions of a map that are
locally consistent but spatially transformed with respect to each other.
The efficiency of the spectral based registration is shown through
experiments, namely in comparison with a map merging method
previously used to to compute brokenness.
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