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Abstract—A position-dependent asymptotic velocity field de-
scribes the motion of point parts sliding with friction on the
surface of a rigid oscillating plate. These fields can be used to
perform manipulation tasks such as sensorless positioning of
one or several parts simultaneously. This paper examines the
set of fields F generated by periodic plate motions M that
combine a single in-plane component and a single out-of-plane
component that have square wave accelerations with 50% duty
cycles, identical periods, and an arbitrary phase between them.
By deconstructing the full map Π : M → F into three simpler
maps, we expose the structure of F and its relationship to M.
To illustrate, we focus on particular plate motions in M that
generate fields well approximated by polynomial functions of
position with degree n ≤ 2. Numerical simulations suggest that
fields generated from plate motions with more than a single in-
plane and a single out-of-plane component (all with the same
period and square wave accelerations) are well approximated
by linear combinations of fields in F .

I. INTRODUCTION

Based on a simplified dynamic model of a part sliding
with Coulomb friction on an oscillating rigid plate, we have
shown that the part’s velocity is guaranteed to converge to an
asymptotic velocity at each location on the plate’s surface [1].
Thus, an asymptotic velocity field, which maps each position
on the plate’s surface to an asymptotic velocity, is a natural
way of describing the friction-inducedmotion of parts sliding
on a rigid six-degree-of-freedom (DoF) plate oscillating with
small amplitude.
By simply changing the plate’s motion, different asymp-

totic velocity fields can be programmed onto the plate’s
surface. These fields can be designed to perform a range
of manipulation tasks. Fig. 1 shows a multi-exposure image
of several parts moving in a Whirlpool field on our Pro-
grammable Parts-feeding Oscillatory Device (PPOD2) [1].
Without sensing, the field continuously reduces uncertainty
in the parts’ positions as they spiral toward the center of the
plate. Other scenarios include fields designed to interact with
a single part, e.g., to position or orient it; fields designed to
interact with multiple parts, e.g., to assemble or sort them;
and sequences of fields designed for compound tasks, e.g.,
to collect scattered parts in the center of the plate and then
transport them all in a particular direction.
To understand the full range of viable manipulation tasks

using a vibrating plate, we must understand the set of gener-
able asymptotic velocity fields. This paper begins to address
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Fig. 1. A multi-exposure overhead image of six pennies moving in a
Whirlpool field on the PPOD2 (Programmable Parts-feeding Oscillatory
Device). The time interval between the images is 0.75 s. The overlaid vectors
are numerically computed asymptotic velocities based on the plate’s motion.

this issue by examining the set of fields F generated by plate
motions M composed of a single in-plane component (i.e.,
in the horizontal plane) and a single out-of-plane component.
These two components have square wave accelerations with
zero mean and 50% duty cycles, identical periods, and an
arbitrary relative phase between them1. Plate motions in
M may seem restrictive, but simulations and experiments
suggest that if the plate is driven with sinusoidal or triangle
wave accelerations, the set of generable asymptotic velocity
fields is approximately equivalent to F . More significantly,
simulations and experiments suggest that fields generated
by plate motions with more than a single in-plane and a
single out-of-plane component (all having the same period
and square, triangle, or sinusoidal accelerations) are well
approximated by linear combinations of fields in F . Thus,
we hypothesize that the fields in F form a basis that
approximately spans the complete set of fields that can be
generated by any plate motion whose six components (three
in-plane and three out-of-plane) have the same period and
square, triangle, or sinusoidal accelerations.
The key contribution of this paper is to deconstruct the

map Π : M → F into three simpler maps that expose the
structure of F . The first map Π1 takes any plate motion
M ∈ M and a position r̃xy ∈ RM on the plate surface for

1Square wave accelerations are chosen because the asymptotic velocity
fields they generate have closed-form solutions.
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which the part does not stick or lose contact, and produces a
unique point in a three-dimensional spaceD. Given any point
in D, the second map Π2 gives a unique scalar asymptotic
velocity ṽ ∈ R

1. Given a scalar asymptotic velocity and the
direction of the plate’s in-plane motion component, the third
map Π3 gives the two-dimensional asymptotic velocity at r̃xy
in the field generated by M . The field F ∈ F is constructed
by applying these three maps for all r̃xy ∈ RM .

II. BACKGROUND

Using programmable force fields to drive planar parts to
stable equilibrium configurations without sensing is a well-
studied topic [2], [3], [4], [5], [6]. Using a single rigid
vibrating plate to program friction-induced versions of these
fields is appealing because the resulting fields are continuous
and the plate can be driven with few actuators. This is in
contrast to array-based systems (e.g., [7], [8], [9]) which
produce discrete fields and require many actuators.
Most previously studied vibratory systems have three or

fewer degrees of freedom. One- and two-DoF translating
plates can only generate translational fields [10], [11], [12],
[13]. Adding a rotational freedom to the plate creates more
possibilities. Examples include two-DoF [14] and three-
DoF [15], [16] plates that can generate fields to position
and orient parts with feedback from vision sensors, and
a two-DoF plate [17] that can generate squeeze fields for
sensorless positioning and orienting. This paper extends our
previous work to determine what further types of fields are
obtainable with a six-DoF plate, particularly for sensorless
applications [1], [18].

III. SYSTEM MODEL

A. Plate Kinematics

Consider a rigid plate undergoing small-amplitude vibra-
tion. All subsequent vectors are defined with respect to a
fixed inertial frame W . In the home position the origin of
W coincides with the center of mass of the plate. The z-
axis of W is in the direction opposite the gravity vector
g = [0, 0,−g]T , g > 0. The configuration of the plate is
given by (R,p), where R ∈ SO(3) and p ∈ R

3. Both
R and p are periodic C1 functions of time with period T .
In the home position, p = 0 and R = I, where I is the
identity matrix. The linear velocity of the origin of the plate
is ṗ = [ṗx, ṗy, ṗz]T and the angular velocity of the plate is
ω = [ωx, ωy, ωz]T . The linear acceleration of the origin of
the plate is p̈ = [p̈x, p̈y, p̈z]T and the angular acceleration of
the plate is α = [αx, αy, αz]T .
In this paper, we analyze plate motions M that combine

a single in-plane acceleration component (p̈x, p̈y , or αz)
with a single out-of-plane acceleration component (p̈z, αx,
or αy). Each of the nine possible combinations (see Table I)
is referred to as a basic plate motion. Both the in-plane and
out-of-plane acceleration components are modeled as square
waves with period T . Mathematically, we define the in-plane

components as

p̈x(t) =

{
Ax 0 ≤ t < T/2
−Ax T/2 ≤ t < T

(1)

p̈y(t) =

{
Ay 0 ≤ t < T/2
−Ay T/2 ≤ t < T

(2)

αz(t) =

{
Aψz 0 ≤ t < T/2
−Aψz T/2 ≤ t < T,

(3)

and the out-of-plane components as

p̈z(t) =

⎧⎪⎨
⎪⎩
−Az 0 ≤ t < τ

Az τ ≤ t < τ + T/2
−Az τ + T/2 ≤ t < T

(4)

αx(t) =

⎧⎪⎨
⎪⎩
−Aψx 0 ≤ t < τ

Aψx τ ≤ t < τ + T/2
−Aψx τ + T/2 ≤ t < T

(5)

αy(t) =

⎧⎪⎨
⎪⎩
−Aψy 0 ≤ t < τ

Aψy τ ≤ t < τ + T/2
−Aψy τ + T/2 ≤ t < T,

(6)

where Ax, Ay , Aψz , Az , Aψx , and Aψy are positive con-
stants and 0 ≤ τ < T/2 is a time corresponding to the
relative phase between the in- and out-of-plane components.
Formally, the space of basic plate motions is defined as
M = {(Ao, Ai, T, τ, o, i)} ⊂ R

4 × O × I, where o ∈ O =
{“z”, “ψx”, “ψy”} and i ∈ I = {“x”, “y”, “ψz”} specify
the out-of-plane and in-plane motion directions.

B. Part Dynamics

As in previous work [1], we assume that the part is sliding
at all times and that its Coriolis and centripetal accelerations
are insignificant. We also assume that linear and angular
displacements of the plate are small enough that p ≈ 0 and
R ≈ I. It follows that the gravitational and normal forces
are approximately aligned with the axes of W and that the
part’s position r in W is r ≈ rxy = [x, y, 0]T in Cartesian
coordinates or r ≈ rrθ = [r, θ, 0]T in cylindrical coordinates.
The approximate in-plane acceleration axy of the part is

axy = [ẍ, ÿ, 0]T ≈ −μgeff q̇
‖q̇‖ , (7)

where μ is the kinetic friction coefficient, geff is the effective
gravity

geff ≈ p̈z + αxy − αyx+ g, (8)

and q̇ is the relative velocity between the part and the plate

q̇ ≈ [ẋ− (ṗx − ωzy), ẏ − (ṗy + ωzx), 0]T . (9)

From (7) and (8), the magnitude of axy is set by the plate’s
out-of-plane acceleration (i.e., geff). For a basic plate motion
the magnitude of axy at a fixed location r must be one of two
discrete values due to the form of (4)–(6). From (7) and (9),
the direction of axy is set by the relative in-plane velocities
of the part and the plate (i.e., q̇). Thus, for any basic plate
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Fig. 2. (a) In-plane velocity trajectories of the part and the
plate for one cycle of a basic plate motion combining p̈x and
p̈z . These trajectories are based on the plate motion M =
(6.86m/s2, 14.7m/s2, 1/30 s, 1/320 s, “z”, “x”) ∈ M at position r̃xy =
(0, 0), with μ = 0.3 and g = 9.8m/s2. (b) The same trajectories are
shown in dimensionless form. For any plate motion in M, all locations
on the plate’s surface for which ãout = 0.7, ãin = 5, and φ̃ = 1/8 will
generate identical trajectories to those in (b) for the same initial condition.
For the initial condition shown (ṽin(0) = 0), the part is not in an asymptotic
cycle since ṽin(0) �= ṽin(1).

motion, a part starting from rest must always move in the
direction defined by the plate’s in-plane motion component.
As an example, consider the basic plate motion combining

the motion directions “z” and “x”. Fig. 2(a) shows the in-
plane velocities of the plate ṗx and the part ẋ at location
r = (0, 0) as functions of time for one cycle of plate
motion, assuming a negligible change in the part’s position
during the cycle. The slope of ṗx corresponds to p̈x, which
from (1) is equal to ±Ax. The slope of ẋ corresponds to
axy given by (7). From (8) the magnitude of the slope of
ẋ has a constant value of μ(−Az + g) for 0 ≤ t < τ and
τ + T/2 ≤ t < T , and a constant value of μ(Az + g) for
τ ≤ t < τ + T/2. From (9) the slope of ẋ is negative when
ẋ > ṗx and positive when ẋ < ṗx.

C. Non-dimensionalizing the System

For each of the nine basic plate motions we define
a dimensionless out-of-plane plate acceleration ãout, a di-
mensionless in-plane plate acceleration ãin, a dimensionless
phase φ̃, and a dimensionless position on the plate surface

in either Cartesian r̃xy = (x̃, ỹ) or polar r̃rθ = (r̃, θ̃)
coordinates (see Table I for defintions)2. Additionally, we
define a dimensionless in-plane part velocity ṽin = ẋ/(μgT ),
and a dimensionless in-plane plate velocity ṽ∗in = ṗx/(μgT ).
Finally, we non-dimensionalize time variables by dividing
them by T (i.e., t̃ = t/T ).
The in-plane velocity trajectories shown in Fig. 2(a) trans-

form into those shown in Fig. 2(b) when expressed dimen-
sionlessly. The advantage of this dimensionless formulation
is that it allows us to map any plate motion in M and a
position on the plate surface to a single point (ãout, ãin, φ̃) in
a three-dimensional space. We can then associate the time
trajectories for ṽin and ṽ∗in with this point and not worry
about the particular plate motion and location to which they
actually correspond.

D. Asymptotic Velocity

If a point part is located at r̃xy and its change in position
is assumed to be negligible throughout the cycle, then the
magnitude of the difference between its velocity at the
beginning and end of the cycle is guaranteed to decrease
every cycle [1]. Consequently, ṽin converges to a periodic
cycle with period T̃ = 1. We refer to such a cycle as an
asymptotic cycle. We define the asymptotic velocity ṽ as the
part’s average velocity in an asymptotic cycle:

ṽ =
∫ 1

0

ṽin(t̃)dt̃. (10)

For basic plate motions, the direction of ṽin must converge to
the plate’s in-plane motion direction [1]. Thus, ṽ is a scalar
asymptotic velocity for all plate motions in M.
The rate of convergence to an asymptotic cycle depends

on the part’s position, the plate’s motion, and the friction
coefficient. We will assume the rate of convergence is
always large enough to ensure that the asymptotic velocity
approximates the part’s true motion. Results in [1], [18], [19]
provide experimental and simulation-based justification for
this assumption.

IV. THE THREE MAPS

We define the three-dimensional set D = {(ãout, ãin, φ̃) :
|ãout| < 1, ãin > 1 + |ãout|, 0 ≤ φ̃ < 1/2}. The constraint
|ãout| < 1 ensures the part never loses contact with the
plate; the constraint ãin > 1 + |ãout| ensures the part never
sticks to the plate; the constraint 0 ≤ φ̃ < 1/2 is motivated
by a symmetry of asymptotic velocities discussed in [17]:
ṽ(ãout, ãin, φ̃+ 1/2) = ṽ(−ãout, ãin, φ̃). We also define the
set RM as all positions r̃xy that satisfy the constraints above
for the basic plate motion M ∈ M. Using Table I, we can
construct a map Π1 which converts M and r̃xy ∈ RM to
an element of D: Π1 : M×RM → D. Applying this map
to all r̃xy ∈ RM yields a simply-connected subset of D
corresponding to M .

2x̃ and ỹ for the first two basic plate motions (columns) in Table I are
non-dimensionalized with respect to an arbitrary length scale �0 because
fields generated by these plate motions are translationally invariant (i.e.,
there is no natural length scale).
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Fig. 3. Examples of the four pure asymptotic cycles. Note that ṽin(0) = ṽin(1).

TABLE I

Trans Trans Circle NodalLine NodalLine NodalLine NodalLine DivCircle DivCircle
o “z” “z” “z” “ψy” “ψx” “ψx” “ψy” “ψz” “ψz”
i “x” “y” “ψz” “x” “y” “x” “y” “ψx” “ψy”

ãout
Az
g

Az
g

Az
g

Aψy
g
x

Aψx
g
y

Aψx
g
y

Aψy
g
x

Aψx
g
r sin θ

Aψy
g
r cos θ

ãin
Ax
μg

Ay
μg

Aψz
μg

r Ax
μg

Ay
μg

Ax
μg

Ay
μg

Aψz
μg

r
Aψz
μg

r

φ̃ τ
T

τ
T

τ
T

τ
T

τ
T

τ
T

τ
T

τ
T

τ
T

x̃ or r̃ 1
�0
x 1

�0
x

Aψz
g
r

Aψy
g
x

Aψx
g
x

Aψx
g
x

Aψy
g
x

Aψx
g
r

Aψy
g
r

ỹ or θ̃ 1
�0
y 1

�0
y θ

Aψy
g
y

Aψx
g
y

Aψx
g
y

Aψy
g
y θ θ

For any M , there are exactly nine types of asymptotic
cycles to which ṽin can potentially converge. Four of the nine,
which are shown in Fig. 3, are referred to as pure cycles, and
are classified as AA, AB, BA, or BB. This classification
indicates whether ṽin passes above (A) or below (B) the
points p1 and p2, where p1 is the point on ṽ∗in at t̃ = φ̃ and
p2 is the point on ṽ∗in at t̃ = φ̃+1/2. The other five types of
cycles occur when ṽin passes directly through p1 (TA and TB
cycles), directly through p2 (AT and BT cycles), or directly
through both p1 and p2 (TT cycles). We refer to these five as
transition cycles because they must be transitioned through to
get from one type of pure cycle to another. For each of the
nine cycle types there is a closed-form solution (see [17])
to (10) that gives a unique scalar asymptotic velocity as
a function of the triple (ãout, ãin, φ̃) ∈ D. Thus, (10) is
equivalent to the map Π2 : D → V , where V = R

1.
A representation of D is shown in Fig. 4. There are

four three-dimensional subsets of D denoted AA, AB,
BA, BB that correspond to points with those respective
pure cycles. These four subsets are separated by four two-
dimensional transition surfaces AT , TA, BT , TB cor-
responding points with those respective transition cycles,
and a one-dimensional transition line TT corresponding to
points with TT cycles. To help visualize the map Π2, the
surfaces in Fig. 4 are shaded according to their asymptotic
speed |ṽ| based on the analytic solutions to (10). It only
appears that Π2 has an even symmetry with respect to ãout

because the shading is based on |ṽ| and not ṽ; in fact, the
symmetry is odd: Π2(ãout, ãin, φ̃) = −Π2(−ãout, ãin, φ̃). The
two-dimensional surface defined by the dashed boundary is
not a transition surface but rather a zero-velocity surface—
BA cycles just above and below this surface have scalar
asymptotic velocities with opposite signs. All points below
the zero-velocity surface with ãout > 0 (ãout < 0) map to
positive (negative) scalar asymptotic velocities. All points
above the zero-velocity surface with ãout > 0 (ãout < 0) map
to negative (positive) scalar asymptotic velocities. Equations
defining all of these subsets of D are given in [17].
Knowing the scalar asymptotic velocity at r̃xy is not suf-

ficient to determine the direction of the asymptotic velocity
vector at r̃xy in a field F ∈ F . As previously discussed,
however, a positive (negative) scalar asymptotic velocity
indicates the asymptotic velocity vector at r̃xy points in the
positive (negative) direction of the plate’s in-plane motion
component, i. Thus, we define a third map, Π3 : V × I →
V , where V is the set of all two-dimensional asymptotic
velocities that can be generated by plate motions in M.

V. CONSTRUCTING FIELDS IN F
By combining Π1, Π2, and Π3 we can form the map

Π : M × RM → V . For a particular plate motion M ,
we can apply Π to all r̃xy ∈ RM and construct the
corresponding asymptotic velocity field in F . However, the
key to understanding the structure of F is understanding the
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three individual maps. To illustrate, we devote the rest of
this section to constructing a representative field for each
basic plate motion. Due to the nature of Π1 and Π2, the
particular plate motions we examine generate fields that are
well approximated by polynomial functions of the part’s
position with degree n ≤ 2.

A. Trans Class: “z” + “x” and “z” + “y”
Consider basic plate motions of the form

M = (Az , Ax, τ, “z”, “x”), which generate fields in
the Trans class. From the first column of Table I we see
that Π1 maps all r̃xy ∈ RM for this M to a single point
d ∈ D. The mapping is represented graphically in Fig. 5.
For the particular M generating the field in Fig. 5(a), the
dashed and solid lines (and all other points in RM ) map
to the point d = (0.5, 7, 3/8), which is shown in Fig. 5(c).
Applying Π2 to d gives the scalar asymptotic velocity for
all r̃xy ∈ RM . Because i = “x”, Π3 dictates that the
asymptotic velocity at each r̃xy in the field must point in
the x-direction. Thus, there is a set of fields in F of the
form [

ṽx̃
ṽỹ

]
= b

[
1
0

]
, (11)

where b is a constant that depends on ãout, ãin, and φ̃. For
the particular field shown in Fig. 5(a), b > 0 because Π2

maps d to a positive scalar asymptotic velocity (Fig. 5(c)).
Fields characterized by (11) share the basis [1, 0]T and

are called TransX fields. The other basic plate motion
associated with the Trans class generates a set of TransY
fields that share the basis [0, 1]T . Note that the TransY
field in Fig. 5(b) and the TransX field in Fig. 5(a) both
correspond to the same point d ∈ D. More generally, all
fields in the Trans class correspond to a zero-dimensional
subset of D and have the same velocity at all r̃xy .

B. Circle Class: “z” + “ψz”
Basic plate motions of the form M =

(Az , Aψz , τ, “z”, “ψz”) generate fields in the Circle
class. From the third column of Table I, ãout and φ̃ are
constant for this M , but ãin depends on r̃; specifically,
ãin = r̃/μ. Thus, Π1 mapsM and every set of points in RM

satisfying θ̃ = θ̃0 (e.g., the solid radial line in Fig. 6(a)) to
a line in D parallel to the ãin axis (Fig. 6(b)). Equivalently,
Π1 maps M and every set of points in RM satisfying
r̃ = r̃0 (e.g., the dashed circle in Fig. 6(a)) to a single
point on the same line. For the particular M generating the
field in Fig. 6(a), the line in D is described by ãout = 0.5
and φ̃ = 5/32. All points on this line correspond to AA
cycles. Fig. 6(c) shows how Π2 maps ãin to ṽ along this
line and illustrates a general property of Π2: nearly all
points corresponding to AA cycles get mapped such that ṽ
is approximately proportional to ãin. Because i = “ψz”, Π3

dictates that the asymptotic velocity at each r̃rθ in the field
must point in the ψz-direction (angular direction). Thus,
there is a set fields in F with the form[

ṽr̃
ṽθ̃

]
≈ b

μ

[
0
r̃

]
, (12)
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ãoutãin
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Fig. 4. The thee-dimensional space D. AA, AB, BA, and BB are
three-dimensional subsets corresponding to points with those respective pure
cycles. AT , TA, BT , and TB are two-dimensional subsets corresponding
to points with transition cycles that pass through either p1 or p2. TT is a
one-dimensional subset corresponding to points with transition cycles that
pass through p1 and p2. The BA subset also contains the two-dimensional
zero-velocity surface whose boundary is shown dashed. Π2 maps all points
below the zero-velocity surface with ãout < 0 (ãout > 0) to positive
(negative) scalar asymptotic velocities; it maps all points above the zero-
velocity surface with ãout < 0 (ãout > 0) to negative (positive) asymptotic
velocities. The shading corresponds to the asymptotic speed based on Π2.
Slices of D are shown in Figs. 5–8. Note that ãin = 10 is an arbitrary
cutoff, not an actual boundary of D.

where b is a constant that depends on ãout and φ̃. Fields char-
acterized by (12) share the basis [0, r̃]T (in polar coordinates)
and are called Circle fields.
All fields in the Circle class correspond to one-dimensional

subsets of D parallel to the ãin axis. If we had chosen
a different M than the one corresponding to the field in
Fig. 6(a), then the subset in D would differ from the one
in Fig. 6(b). As a result, Π2 may introduce a nonlinear
relationship between ãin and ṽ. For example, if φ̃ > 1/4 then
the subset in D includes a point on the zero-velocity surface
(dashed line in Fig. 6(b)). This type of subset maps to fields
with velocity vectors that switch from counterclockwise to
clockwise at a critical radius. We also note that because
ãin > 1 + |ãout| is required to avoid sticking, there is a
minimum radius r̃min = μ(1+ ãout) for all fields in the Circle
class below which our analysis does not yield solutions.

C. NodalLine Class: “ψy”+“x”, “ψx”+“y”, “ψx”+“x”,
and “ψy” + “y”

Consider basic plate motions of the form M =
(Aψy , Ax, τ, “ψy”, “x”), which generate fields in the the
NodalLine class. From the fourth column of Table I, ãin and
φ̃ are constant, but ãout depends on x̃; specifically, ãout = x̃.
Thus, Π1 maps M and every set of points in RM satisfying
x̃ = x̃0 (e.g., the solid line in Fig. 7(a)) to a line in D
parallel to the ãout axis (Fig. 7(e)). Equivalently, Π1 maps
M and every set of points in RM satisfying ỹ = ỹ0 (e.g.,
the dashed line in Fig. 7(a)) to a single point on the same
line. For the particular M generating the field in Fig. 7(a),
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x̃

ỹ
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ṽx̃ = 0 ṽỹ = b
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Fig. 5. The TransX and TransY fields in (a) and (b) correspond to the same zero-dimensional subset of D shown in (c). The plus and minus signs in
(c) indicate whether the scalar asymptotic velocity is positive or negative. The lines in (c) denote where the transition (solid) and zero-velocity (dashed)
surfaces cut through the slice of D .
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Fig. 6. The Circle field in (a) corresponds to the one-dimensional subset of D shown in (b). Because this subset is contained in the AA region, Π2

maps points in it such that ṽ is approximately proportional to ãin (c).

this line is described by ãin = 7 and φ̃ = 1/16. All points
on this line correspond to AB cycles. Fig. 7(f) shows how
Π2 maps ãin to ṽ along this line and illustrates a general
property of Π2: nearly all points corresponding to AB cycles
get mapped such that ṽ is approximately proportional to ãin.
Because i = “x”, Π3 dictates that the asymptotic velocity
at each r̃xy in the field must point in the x-direction. Thus,
there is a set fields in F with the form[

ṽx̃
ṽỹ

]
≈ b

[
x̃
0

]
, (13)

where b is a constant that depends on ãin and φ̃. Fields
characterized by (13) share the basis [x̃, 0]T and are called
NodalLineX fields.
The three other basic plate motions associated with the

NodalLine class generate a set of of NodalLineY fields
with basis [0, ỹ]T , a set of ShearX fields with basis [ỹ, 0]T ,
and a set of ShearY fields with basis [0, x̃]T . Examples
of these fields are shown in Fig. 7(b)–(d). Note that all
four fields in Fig. 7 correspond to the same subset of D.
Though all fields in the NodalLine class correspond to one-
dimensional subsets of D parallel to the ãout axis, not all
exhibit a linear relationship between velocity and position.

D. DivCircle Class: “ψx” + “ψz” and “ψy” + “ψz”

Consider basic plate motions of the form M =
(Aψx , Aψz , τ, “ψx”, “ψz”), which generate fields in the Div-

Circle class. From the eighth column of Table I, φ̃ is constant,
but ãin depends on r̃, and ãout depends on both r̃ and θ̃;
specifically, ãout = r̃ sin θ̃, and ãin = m̃r̃, where m̃ =
Aψz/(μAψx) is a dimensionless constant that determines the
minimum distance r̃min = 1/(m̃ − | sin θ̃|) the part can be
from the origin without sticking.

Π1 maps M and every set of points in RM satisfying
r̃ = r̃0 (e.g., the dashed semi-circles in Fig. 8(a)) to lines
in D (the dashed lines in Fig. 8(c)) defined by ãin = m̃r̃0
and −k̃ < ãout < k̃, where k is the minimum of r̃, m̃r̃ − 1,
and 1. Π1 mapsM and every set of points in RM satisfying
θ̃ = θ̃0 (e.g., the solid radial lines in Fig. 8(a)) to lines
in D defined by ãin = (m̃/ sin θ̃0)ãout (the solid lines in
Fig. 8(c)). Thus, Π1 maps M and all r̃xy ∈ RM to a
horizontal plane in D with the constraint ãin > m̃|ãout|.
For the particular M generating the field in Fig. 8(a), this
plane is described by φ̃ = 1/16, ãin > 5|ãout|. Nearly all
points in this plane correspond to AB cycles. Fig. 8(d) shows
how Π2 maps ãout to ṽ along the dashed lines in this plane;
Fig. 8(e) shows how Π2 maps ρ̃ to ṽ along the solid lines
in this plane (where (ρ̃, γ̃, φ̃) is a point in D expressed in
cylindrical coordinates). This illustrates a general property of
Π2: nearly all points corresponding to AB cycles are mapped
such that ṽ is approximately proportional to both ãout and
ãin, or equivalently, ṽ is approximately proportional to both
ρ̃2 and sinγ cos γ (Figs. 8(d) and (e)). Because i = “ψz”,

545
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Fig. 7. The NodalLineX, NodalLineY, ShearX, and ShearY fields in (a)–(d) correspond to the same one-dimensional subset of D shown in (e).
Because this subset is contained in the AB region, Π2 maps points in it such that ṽ is approximately proportional to ãout (f).

Π3 dictates that the asymptotic velocity at each r̃rθ in the
field must point in the ψz-direction (angular direction). Thus,
there is a set of fields in F with the form[

ṽr̃
ṽθ̃

]
≈ bm̃

[
0

r̃2 sin θ̃

]
, (14)

where b is a constant that depends on φ̃. Fields characterized
by (14) share the basis [0, r̃2 sin θ̃]T (in polar coordinates)
and are called DivCircleX fields. The other basic plate
motion associated with the DivCircle class generates a
set of DivCircleY fields with basis [0, r̃2 cos θ̃]T . The
DivCircleY field in Fig. 8(b) and the DivCircleX field
in Fig. 8(a) both correspond to the same subset of D.
Though all fields in the DivCircle class correspond to sub-

sets of D that are horizontal planes, not all are characterized
by (14). For example, if the plate motion corresponds to
φ̃ > 5/16, then the subset of D includes points on the
zero-velocity surface. This type of subset maps to fields
with velocity vectors that switch from counterclockwise to
clockwise at a critical radius.

VI. COMBINING FIELDS IN F
When expressed in Cartesian coordinates, linear combina-

tions of the nine basis fields presented in Section V form an
eight-dimensional space of polynomial functions of position
with degree n ≤ 2:

ṽx̃ = a1ỹ
2 + a2x̃ỹ + b1x̃+ b2ỹ + c1

ṽỹ = a2x̃
2 + a1x̃ỹ + b3x̃+ b4ỹ + c2, (15)

where [a1, a2, b1, b2, b3, b4, c1, c2]T is a full-dimensional sub-
set of R

8 that includes the origin.
Based on numerical simulations, we hypothesize that all

fields in (15) can be generated by adding more motion
components to a basic plate motion (such that all components
have the same period and square wave accelerations). For
example, the Sink field in Fig. 9 is a linear combination of a
NodalLineX and a NodalLineY field. Using a gradient-
based numerical optimization algorithm, one plate motion
found to generate this Sink field (see Fig. 9) combines two
in-plane motion components (“x” and “y”) with two out-of-
plane motion components (“ψx” and “ψy”). We note that this
plate motion is parameterized by four amplitudes and three
relative phases (between “x” and “ψy”, “x” and “ψx”, and
“x” and “y”). Thus, the plate motion is not a strict sum of the
plate motions used to generate the individual NodalLineX
and NodalLineY fields—that motion has only two relative
phases (between “x” and “ψy” and between “y” and “ψx”).

VII. CONCLUSIONS

By deconstructing the map Π : M → F into three simpler
maps, we have shown how to find all fields generated by
plate motions in M. The deconstruction also exposed how
the relationship between M and F critically depends on
simply-connected subsets of the three-dimensional space D.
The examples in Section V showed that many fields in F
are well approximated by polynomial functions of position
with degree n ≤ 2. There is strong numerical evience that
the fields in F approximately span the set of fields that can

546
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Fig. 8. The DivCircleX and DivCircleY fields in (a) and (b)
correspond to the same two-dimensional subset of D shown in (c). Because
this subset is almost entirely contained in the AB region, Π2 maps points
in it such that ṽ is approximately proportional to both ãin and ãout (d), or
equivalently, ṽ is approximately proportional to both sin γ̃ cos γ̃ and ρ̃2 (e).

be generated from any plate motion whose six components
have square, triangle, or sinusoidal accelerations with the
same period; however, this is an area of future research.
Additionally, we are investigating analogues of the three
maps described in this paper for plate motions combining in-
plane and out-of-plane components with different periods. By
pairing components with different periods, we hope to build
up a more complete understanding of the set of all fields that
a six-DoF rigid plate can generate.
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