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Abstract— Reinforcement learning (RL) is one of the most
general approaches to learning control. Its applicability to
complex motor systems, however, has been largely impossible
so far due to the computational difficulties that reinforcement
learning encounters in high dimensional continuous state-action
spaces. In this paper, we derive a novel approach to RL for
parameterized control policies based on the framework of
stochastic optimal control with path integrals. While solidly
grounded in optimal control theory and estimation theory,
the update equations for learning are surprisingly simple and
have no danger of numerical instabilities as neither matrix
inversions nor gradient learning rates are required. Empirical
evaluations demonstrate significant performance improvements
over gradient-based policy learning and scalability to high-
dimensional control problems. Finally, a learning experiment
on a robot dog illustrates the functionality of our algorithm in
a real-world scenario. We believe that our new algorithm, Policy
Improvement with Path Integrals (PI2), offers currently one of
the most efficient, numerically robust, and easy to implement
algorithms for RL in robotics.

I. INTRODUCTION

While reinforcement learning (RL) is among the most
general frameworks of learning control to create tru-
ely autonomous learning systems, its scalability to high-
dimensional continuous state-action system, e.g., humanoid
robots, remains problematic. Classical value-function based
methods with function approximation offer one possible ap-
proach, but function approximation under the non-stationary
iterative learning process of the value-function remains diffi-
cult when one exceeds about 5-10 dimensions. Alternatively,
direct policy learning from trajectory roll-outs has recently
made significant progress [1], but can still become numeri-
cally brittle and full of open tuning parameters in complex
learning problems. Approximate policy iteration methods
based on roll-out sampling [2] are also facing the issue of
scalability to high-dimensional continuous state-action RL.
In new developments, RL researchers have started to com-
bine the well-developed methods from statistical learning and
empirical inference with classical RL approaches in order to
minimize tuning parameters and numerical problems, such
that ultimately more efficient algorithms can be developed
that scale to significantly more complex learning systems
[3], [4], [5], [6], [7], [8], [9].

In the spirit of these latter ideas, this paper addresses a
new method of probabilistic reinforcement learning derived
from the framework of stochastic optimal control and path
integrals, based on the original work of [10], [11]. As it
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will be detailed in the sections below, this approach make
an appealing theoretical connection between value function
approximation using the stochastic HJB equations and direct
policy learning by approximating a path integral, i.e., by
solving a statistical inference problem from sample roll-
outs. The resulting algorithm, called Policy Improvement
with Path Integrals (PI2), takes on a surprisingly simple
form, has no open tuning parameters besides the exploration
noise, and performs numerically robustly in high dimensional
learning problems. It also makes an interesting connection to
previous work on RL based on probability matching [3], [5],
[4] and explains why probability matching algorithms can be
successful.

In the next section, we first develop a generalized form
of stochastic optimal control with path integrals. Second,
from this formulation, we can derive the PI2 algorithm for
probabilistic direct policy learning. Third, we discuss PI2 in
the context of previous work on direct policy learning in the
literature. In the evaluations, we will provide comparisons of
different algorithms on learning control with parameterized
dynamic systems policies [12], and we will demonstrate the
application of PI2 to learning a complex jumping behavior
on an actual robot dog.

II. STOCHASTIC OPTIMAL CONTROL WITH PATH
INTEGRALS

Stochastic Optimal Control Definition and Notation
For our technical developments, we will largely use a con-

trol theoretic notation from trajectory-based optimal control,
however, with an attempt to have as much overlap as possible
with the standard RL notation [13]. Let us define a finite
horizon reward function for a trajectory τ i starting at time
ti in state xti and ending at time tN

R(τ i) = φtN +
∫ tN

ti

rt dt (1)

with φtN = φ(xtN ) denoting a terminal reward at time tN
and rt denoting the immediate reward at time t. In stochastic
optimal control [14], the goal is to find the controls ut that
minimize the cost function:

V (xti) = Vt = min
uti:tN

Eτ i [R(τ i)] (2)

where the expectation E[.] is taken over all trajectories
starting at xti . We consider the rather general control system:

ẋ = f(xt, t) + G(xt) (ut + εt) = ft + Gt (ut + εt) (3)

with xt ∈ "n×1 denoting the state of the system, Gt =
G(xt) ∈ "n×p the control matrix, ft = f(xt) ∈ "n×1 the
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passive dynamics, ut ∈ "p×1 the control vector and εt ∈
"p×1 Gaussian noise with variance Σε. As immediate reward
we consider:

rt = r(xt,ut, t) = qt + utRut (4)

where qt = q(xt, t) an arbitrary state-dependent reward
function, and R the positive definite weight matrix of the
quadratic control cost. The HJB equation [14],[15] associated
with this stochastic optimal control problem is expressed as
follows:

∂tVt = qt + (∂xVt)T ft −
1
2
(∂xVt)T GtR−1GT

t (∂xVt) (5)

+
1
2
trace

(
(∂xxVt)GtΣεGT

t

)

The ∂x and ∂xx symbols refer to the Jacobian and Hessian,
respectively, of the value function with respect to the state x.
For notational compactness, we will mostly use subscripted
symbols to denote time and state dependencies, as introduced
in the equations above.

Linearization of the HJB
The use of the logarithmic transformation of the value

function Vt = −λ log Ψt as well as the assumption
λGtR−1GT

t = GtΣεGT
t = Σ(xt) = Σt results in:

−∂tΨt = − 1
λ

qtΨt + fT
t (∂xΨt)

+
1
2
trace

(
(∂xxΨtGtΣεGT

t

)
(6)

with boundary condition:ΨtN = exp
(
− 1

λφtN

)
. The PDE

in (6) corresponds to the so called Kolmogorov backward
PDE which is second order and linear. Analytical solutions
of (6) cannot be found for the general case of a nonlinear
system under any cost function. However, there is a con-
nection between solutions of PDEs and their representation
as stochastic differential equations (SDEs) which goes back
to the Feynman Kac formula [16],[17]. The Feynman Kac
formula can be used to find distributions of random processes
which solve certain SDEs as well as to propose numerical
methods for solving certain PDEs. According to Feyman Kac
theorem the solution of (6) is:

Ψt = E
(
ΨtN e−

R tN
to

1
λ qtdτ

)
(7)

= E

[
exp

(
− 1

λ
φtN

)
exp

(
− 1

λ

∫ tN

to

qt dt

)]

Generalized Path Integral Formulation
In many stochastic dynamical systems such as rigid body

dynamics or DMPs the state x ∈ "n×1 can be partitioned
into x = [x(m) x(c)] with x(m) ∈ "k×1 and x(c) ∈ "l×1

the part of the state that is directly controllable. The control
variable u ∈ "p×1 has dimensionality smaller than the state
p < n. Moreover the term fti and the control transition
matrix can be partitioned as fT

ti
= [f (m)

ti

T f (c)
ti

T ]T with
fm ∈ "k×1, fc ∈ "l×1 and Gti = [0k×p G(c)

ti

T ]T with
Gc

ti
∈ "l×p. For such systems it can been shown that the

solution of (6) is

Ψti =
∫

p(τ i) exp
(
− 1

λ

(
φtN +

∫ tN

ti

qtdt

))
dτ (c)

i (8)

where the transition probability p(τ i) of a trajectory τ i,
under a Gaussian noise ε assumption, can be written with
only the controlled states x(c):

p(τ i) = ΠN−1
j=i p

(
x(c)

tj+1
|x(m)

tj
,x(c)

tj

)
(9)

= ΠN
j=i

(
2π|Σtj |

)−l/2 exp



− 1
2λ

N−1∑

j=i

γtj dt





Since τ i =
(
xti ,xti+1 , .....,xtN

)
are sample paths starting

at state xti the integration above is taken with respect to
dτ (c)

i =
(
dx(c)

ti
, .....,dx(c)

tN

)
. In the previous equation, the

quantity γ is defined as γtj = αT
tj
h−1

tj
αtj and the terms

htj ∈ "l×l and αtj ∈ "l×1 are expressed as htj =
h(xtj ) = G(c)

tj
R−1G(c)

tj

T and αtj = α(x(c)
tj+1

,xtj ) =
x(c)

tj+1
−x(c)

tj
−f (c)

tj
dt . Substitution of the transition probability

into (8) results in:

Ψti = lim
dt→0

∫
1

D(τ i)
e−

1
λ S(τ i)dτ i = lim

dt→0

∫
e−

1
λ Z(τ i)dτ i

(10)
where Z(τ i) is defined as Z(τ i) = S(τ i) + λ log D(τ i).

The terms D(τ i) and S(τ i) are defined as D(τ i) =
ΠN

j=i

(
2π|Σtj |

)l/2 and S(τ i) is expressed as

S(τ i) = −φtN −
1
2

N−1∑

j=i

γtj dt−
tN∑

j=i

qtj dt (11)

By taking the limit as dt → 0 we can calculate the
logarithmic value function Ψti which is the solution of (6).
The term Z(τ i) is the total cost of the sample path τ i. A
factorization of the cost Z(τ i) in path depended and constant
terms will simplify the derivation of optimal control.

Z(τ i) = S(τ i) +
λ

2

N−1∑

j=i

log |htj |+
λNl

2
log (2πdtλ) (12)

The constant term in the equation is problematic since
limdt→0

λNl
2 log (2πdtλ) = ∞. However, as it is shown in

the next section, the constant term drops and a new quantity
S̃(τ i) which depends only on the state dependent terms of
Z(τ i) will play the role of cost per sampled path.

Optimal Controls
The optimal controls are given as uti =

−R−1GT
ti

(∂xti
Vti). Due to the logarithmic transformation

of the value function, the equation of the optimal controls
can be written as uti = λR−1Gti(∂xti

Ψti)/Ψti . After
substituting Ψti with (10) and dropping the state independent
terms of the cost we have:

uti = lim
dt→0



λR−1GT
ti

∂xti

(∫
e−

1
λ S̃(τ i)dτ i

)

∫
e−

1
λ S̃(τ i)dτ i



 (13)
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with S̃(τ i) = S(τ i) + λ
2

∑N−1
i=0 log |hti |. Further anal-

ysis of the equation above leads to a simplified version
of the equation for optimal controls formulated as uti =∫

P (τ i)u (τ i) dτ i with the probability P (τ i) and local
controls u (τ i) defined as

P (τ i) =
e

1
λ S̃(τ i)

∫
e

1
λ S̃(τ i)dτ i

(14)

u (τ i) = −R−1G(c)
ti

T lim
dt→0

(
∂
x(c)

ti

S̃(τ i)
)

(15)

The path cost S̃(τ i) is a generalized version of the path
cost in [18], [19], which only considered systems with state
independent control transition. 1 To find the local controls
u (τ i) we have to calculate the limdt→0 ∂

x(c)
ti

S̃(τ i). Due to
space limitations, we do not provide the detailed derivations.
The final result is:

lim
dt→0

(
∂
x(c)

ti

S̃(τ i)
)

= −h−1
ti

(
G(c)

ti
εt0 − bti

)
(16)

where the new term bti is expressed as bti = λhtiΦti and
Φti ∈ "l×1 a vector with the jth element defined as:

(Φti)j = trace

(
h−1

ti
· ∂

x(cj)
ti

hti

)
(17)

The local control can now be expressed as:

u(τ i) = R−1G(c)
ti

T h−1
ti

(
G(c)

ti
εt0 − bti

)
(18)

By substituting hti = G(c)
ti

R−1G(c)
ti

T in the equation above
we get our main result for the local controls of the sampled
path for the generalized path integral formulation:

u(τ i) = R−1G(c)
ti

T
(
G(c)

ti
R−1G(c)

ti

T
)−1

(19)

×
(
G(c)

ti
εt0 − bti

)

Previous work in [20], [18], [19], [11] are special cases of
our generalized formulation. 2

III. PARAMETERIZED POLICIES

Equipped with the theoretical framework of stochas-
tic optimal control with path integrals, we can now turn
to its application to reinforcement learning with param-
eterized policies. For this kind of direct policy learning,
a general cost function J =

∫
τ p(τ )R(τ )dτ is usu-

ally assumed [1] and optimized over state xt and ac-
tion at trajectories τ = (xt0 ,ato , ...,xtN , ). Under the
Markov property, the probability of a trajectory is p(τ ) =
p(xto)Π

N−1
i=1 p(xti+1 |xti ,ati)p(ati |xti). As suggested in [4],

1More precisely if G
(c)
ti

= Gc then the term λ
2

PN−1
i=0 log |hti |

drops since it is state independent and it appears in both numerator and
denominator in (14). In this case, the path cost is reduced to S̃(τi) =
S(τi).

2In fact, for stochastic systems with state independent control transition
matrix G

(c)
ti

= G(c) the term bti = 0l×1 since hti becomes state
independent and therefore ∂

x
(cj)
ti

hti = 0. In such case the local controls

are reduced to u(τi) = εt0 .

TABLE I
PSEUDOCODE OF THE PI2 ALGORITHM FOR A 1D PARAMETERIZED

POLICY (NOTE THAT THE DISCRETE TIME STEP dt WAS ABSORBED AS A

CONSTANT MULTIPLIER IN THE COST TERMS).

• Given:
– An immediate cost function rt = qt + θT

t Rθt
– A terminal cost term φtN

– A stochastic parameterized policy at = gT
t (θ + εt) (cf. 20)

– The basis function gti from the system dynamics
– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:
– step 1: Create K roll-outs of the system from the same start

state x0 using stochastic parameters θ + εt at every time step
– step 2: For all K roll-outs, compute:

∗ step 2.1: Mtj ,k =
R−1gtj ,k gT

tj,k

gT
tj,kR−1gtj ,k

∗ step 2.2: Compute the cost for each sampled trajectory:
S(τi,k) = φtN ,k +

PN−1
j=i qtj ,k+ 1

2

PN−1
j=i+1(θ +

Mtj ,kεtj ,k)T R(θ + Mtj ,kεtj ,k)

∗ step 2.3: P
`
τi,k

´
= e

− 1
λ

S(τi,k)

PK
k=1[e

− 1
λ

S(τi,k)
]

– step 3: For all i time steps, compute:
∗ step 3.1: δθti =

PK
k=1

ˆ
P

`
τi,k

´
Mti,k εti,k

˜

– step 4: Compute δθm =

PN−1
i=0 (N−i) wm

ti
δθm

tiPN−1
i=0 (N−i) wm

ti
– step 5: Update θ ← θ + δθ
– step 6: Create one noiseless roll-out to check the trajectory cost

R = φtN +
PN−1

i=0 rti

the mean of the stochastic policy p(ati |xti) is linearly
parameterized as:

ati = gT
ti

(θ + εti) (20)

where gti is a vector of basis functions and θ is a pa-
rameter vector. For Gaussian noise ε the policy distribution
is p(ati |xti) = N

(
θT gti ,Σti

)
. In our work, we use a

special case of parameterized policies in form of Dynamic
Movement Primitives (DMPs) [12], which are expressed as:

1
τ

żt = ft + gT
t (θ + εt), (21)

1
τ

ẏt = zt,
1
τ

ẋt = −αxt

with ft = αz(βz(g − yt) − zt). Essentially, these policies
code a learnable point attractor for a movement from yt0 to
the goal g, where θ determines the shape of the attractor
– for more details and the definition of the basis functions
gt see [12]. The DMP equations are obviously of the form
of our control system (3), just with a row vector as control
transition matrix G(c)

t = gt
T ∈ "1×p. Thus, we can treat

the parameters θ as if they were control commands, and,
after some algebra and simplifications, we derive the Policy
Improvement with Path Integrals (PI2) which is summarized
in table I.

Essentially, in step (2.3), the term P (τ i,k) is discrete
probability at time ti of each trajectory roll-out that is
computed with the help of the cost S(τ i,k) step (2.2). For
every time step of the trajectory, a parameter update is
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computed δθti in step (3.1) based on a probability weighted
average cost over the sampled trajectories. The parameter
updates at every time step are finally averaged in step (4)
by giving every parameter update a weight according to
the time steps left in the trajectory and the basis function
activation wm

ti
of DMPs (cf. [12]), and the parameter update

θ(new) = θ(old) + δθ takes place in step (5). The entire
formulation allows an interactive updating of θ. The pa-
rameter λ regulates the sensitivity of the exponentiated cost
and can automatically be optimized for every time step i to
maximally discriminate between the experienced trajectories.
Moreover, a constant term can be subtracted from the cost
S(τ i) as long as all S(τ i) is positive. Thus, for a given
number of roll-outs, we compute the exponential term in
(14) as

e
1
λ S̃(τ i) = exp

(
−c

S̃(τ i)−min S̃(τ i)
max S̃(τ i)−min S̃(τ i)

)
(22)

with c = 10 in all our evaluations – this procedure eliminates
λ and leaves the variance of the exploration noise ε as the
only open parameter for PI2. It should be noted that the
equations for PI2 have no numerical pitfalls: no matrix
inversions and no learning rates 3, rendering PI2 to be very
easy to use.

IV. EVALUATIONS

We evaluated PI2 in several synthetic examples in com-
parison with REINFORCE, GPOMDP, eNAC, [21], [22].
Another interesting algorithm is the PoWER algorithm [4],
which is a probabilistic policy improvement method, not
a gradient algorithm. It is derived from an Expectation-
Maximization framework using probability matching [3], [5]
Except for PoWER, all algorithms are suitable for optimizing
immediate reward functions of the kind rt = qt + utRut.
PoWER requires that the immediate reward behaves like an
improper probability, i.e., the rewards integrate to a finite
number. This property is incompatible with rt = qt +utRut

and requires some special nonlinear transformations, which
usually change the nature of the optimization problem, such
that PoWER optimizes a different cost function. Thus, we
excluded PoWER from a direct comparison in our evalua-
tions. In all examples below, exploration noise and, when
applicable, learning rates, were tuned for every individual
algorithms to achieve the best possible numerically stable
performance. Exploration noise was only added to the maxi-
mally activated basis function in a motor primitive4, and the
noise was kept constant for the entire time that this basis
function had the highest activation – empirically, this trick
helped improving the learning speed of all algorithms – we
do not illustrate such little “tricks” in this paper as they really
only affect fine tuning of the algorithm.

A. Learning Optimal Performance of a Multi-DOF Via-Point
Task

In our first evaluation we examine the scalability of
our algorithms to a high-dimensional and highly redundant

3R is a user design parameter and usually chosen to be diagonal and
invertible.

4I.e., the noise vector in (20) has only one non-zero component.

learning problem. We assume that the multi-DOF systems
are models of planar robot arms, where d = 2, 10 or d = 50
links of equal length l = 1/d are connected in an open
chain with revolute joints. Essentially, these robots look like
a multi-segment snake in a plane, where the tail of the snake
is fixed at the origin of the 2D coordinate system, and the
head of the snake can be moved in the 2D plane by changing
the joint angles between all the links. Figure 1b,d,f illustrate
the movement over time of these robots: the initial position
of the robots is when all joint angles are zero and the robot
arm completely coincides with the x-axis of the coordinate
frame. The goal states of the motor primitives command each
DOF to move to a joint angle, such that the entire robot
configuration afterwards looks like a semi-circle where the
most distal link of the robot (the endeffector) touches the
y-axis. The higher priority task, however, is to move the
endeffector through a via-point G = (0.5, 0.5). To formalize
this task as a reinforcement learning problem, we denote the
joint angles of the robots as ξi, with i = 1, 2, ..., d, such that
the first line of (22) reads now as ξ̈i,t = fi,t+gT

i,t(θi+εi,t) –
this small change of notation is to avoid a clash of variables
with the (x.y) task space of the robot. The endeffector
position is computed as:

xt =
1
d

d∑

i=1

cos(
i∑

j=1

ξj,t), yt =
1
d

d∑

i=1

sin(
i∑

j=1

ξj,t) (23)

The immediate reward function for this problem is defined
as

rt =

∑d
i=1(d + 1− i)

(
0.1f2

i,t + 0.5 θT
i θ

)

∑d
i=1(d + 1− i)

(24)

∆r300ms = 108
(
(0.5− xt300ms)

2 + (0.5− yt300ms)
2
)

φtN = 0

where ∆r300ms is added to rt at time t = 300ms, i.e.,
we would like to pass through the via-point at this time.
The individual DOFs of the motor primitive were initialized
to code a 5th order spline from the start position to the
end position. The cost term in (24) penalizes each DOF
for using high accelerations and large parameter vectors,
which is a critical component to achieve a good resolution of
redundancy in the arm. Equation (24) also has a weighting
term d + 1 − i that penalizes DOFs proximal to the origin
more than those that are distal to the origin — intuitively,
applied to human arm movements, this would mean that wrist
movements are cheaper than shoulder movements, which is
motivated by the fact that the wrist has much lower mass
and inertia and is thus energetically more efficient to move.

The results of this experiment are summarized in Figure 1.
The learning curves in the left column demonstrate that PI2

has an order of magnitude faster learning performance than
the other algorithms, irrespective of the dimensionality. PI2

also converges to the lowest cost in all examples:

Algorithm 2-DOFs 10-DOFs 50-DOFs
PI2 98000 ± 5000 15700 ± 1300 2800 ± 150
REINFORCE 125000 ± 2000 22000 ± 700 19500 ± 24000
PG 128000 ± 2000 28000 ± 23000 27000 ± 40000
NAC 113000 ± 10000 48000 ± 8000 22000 ± 2000
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Fig. 1. Comparison of learning multi-DOF movements (2,10, and 50
DOFs) with planar robot arms passing through a via-point G. a,c,e) illustrate
the learning curves for different RL algorithms, while b,d,f) illustrate the
endeffector movement after learning for all algorithms. Additionally, b,d,f)
also show the initial endeffector movement, before learning to pass through
G, and a “stroboscopic” visualization of the arm movement for the final
result of PI2 (the movements proceed in time starting at the very right and
ending by (almost) touching the y axis).

Figure 1 also illustrates the path taken by the endeffector
before and after learning. All algorithms manage to pass
through the via-point G appropriately, although the path par-
ticularly before reaching the via-point can be quite different
across the algorithms. Given that PI2 reached the lowest
cost with low variance in all examples, it appears to have
found the best solution. We also added a “stroboscopic”
sketch of the robot arm for the PI2 solution, which proceeds
from the very right to the left as a function of time. It
should be emphasized that there was absolutely no parameter
tuning needed to achieve the PI2 results, while all gradient
algorithms required readjusting of learning rates for every
example to achieve best performance.

B. Application to Robot Learning
Figure 2 illustrates our application to a robot learning

problem. The robot dog’s task is to jump across as gap. The
jump should make forward progress as much as possible, as
it is a maneuver in a legged locomotion competition which

scores the speed of the robot. The robot has three DOFs
per leg, and thus a total of d = 12 DOFs. Each DOF was
represented as a DMP with 50 basis functions. An initial
seed behavior (Figure 3-top) was taught by learning from
demonstration, which allowed the robot barely to reach the
other side of the gap without falling into the gap – the
demonstration was generated from a manual adjustment of
spline nodes in a spline-based trajectory plan for each leg.

(a) Real & Simulated Robot Dog
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(b) Learning curve for Dog Jump with PI2 ±1std
Fig. 2. Reinforcement learning of optimizing to jump over a gap
with a robot dog. The improvement in cost corresponds to about 15 cm
improvement in jump distance, which changed the robot’s behavior from
an initial barely successful jump to jump that completely traversed the gap
with entire body. This learned behavior allowed the robot to traverse a gap
at much higher speed in a competition on learning locomotion.

PI2 learning used primarily the forward progress as a re-
ward, and slightly penalized the squared acceleration of each
DOF, and the length of the parameter vector. Additionally,
a penalty was incurred if the yaw or the roll exceeded a
threshold value – these penalties encouraged the robot to
jump straight forward and not to the side, and not to fall
over. The exact cost function was:

rt = rroll + ryaw +
d∑

i=1

(
a1f

2
i,t + 0.5a2 θT

i θ
)

rroll =

{
100 ∗ (|rollt|− 0.3)2, if (|rollt| > 0.3)
0, otherwise

ryaw =

{
100 ∗ (|yawt|− 0.1)2, if (|yawt| > 0.1)
0, otherwise

φtN = 50000(goal − xnose)2

where roll, yaw are the roll and yaw angles of the robot’s
body, and xnose is the position of the front tip (the “nose”)
of the robot in the forward direction, which is the direction
towards the goal. The parameters a1 and a2 are tuned as
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(a1 = 1.e−6, a2 = 1.e−8) The multipliers for each reward
component were tuned to have a balanced influence of all
terms. Ten learning trials were performed initially for the
first parameter update. The best 5 trials were kept, and five
additional new trials were performed for the second and
all subsequent updates. Essentially, this method performs
importance sampling, as the rewards for the 5 trials in
memory were re-computed with the latest parameter vectors.
A total of 100 trials was performed per run, and ten runs
were collected for computing mean and standard deviations
of learning curves. Learning was performed on a physical
simulator of the robot dog, as the real robot dog was not
available for this experiment.

Figure 2 illustrates that after about 30 trials (i.e., 5
updates), the performance of the robot was significantly
improved, such that after the jump, almost the entire body
was lying on the other side of the gap. Figure 3 captures
the temporal performance in a sequence of snapshots of the
robot. It should be noted that applying PI2 was algorith-
mically very simple, and manual tuning only focused on
generated a good cost function, which is a different research
topic beyond the scope of this paper.

V. RELATED WORK

Recent work on stochastic optimal control [23], [24] based
on the Bellman Principle in discrete state - action spaces uses
the KL divergence as a (heuristic) cost between the passive
and the controlled dynamics. Furthermore the exponentiated
value function is used as a heuristic so that the Bellman
update equation can be derived. The path integral approach to
stochastic optimal control in continuous state-action spaces
[25], [18], [26], [10] predates the work of [23], [24], and is
one of the most principled developments.

With respect to the work on KL control, our PI2 algorithm
differs since it is derived based on the Bellman principle for
continuous state-action spaces. The result of the Bellman
principle is the stochastic HJB equation which is a nonlinear
PDE. Exponentiation of the value function and the use of
the assumption Σ = R−1 transforms the PDE into a linear
and second order PDE. That allows us to use one of the
simpler versions of nonlinear Feynman Kac Lemmas that
provides a bridge between Forward Stochastic Differential
Equations(FSDEs) and Partial Differential Equations(PDEs)
[17]. This derivation is solely based on first-order principles,
without heuristics.

Moreover, in the PI2 algorithm, the probabilistic inter-
pretation of controls comes directly from the Feynman Kac
Lemma rather than being introduced manually. Thus we
do not have to impose any artificial “pseudo-probability”
treatment of the cost as in [23].

An important contribution of our work is the derivation
of optimal controls for a rather general class of systems
with control transition matrix that is state dependent. In this
general class, we can include Rigid Body and Multibody
dynamics, which has as control transition matrix the inertia
matrix. We have shown how our results generalize previous
work in [19], [25], [18], [26], [10]. This generalization was
necessary so that we could apply the Path integral stochastic

Optimal control to Dynamic Movement Primitives which fall
into the category of system with state dependent control
transition matrix. Furthermore we have derived the optimal
controls uti =

∫
p(τ)u(τi)dτi and derived the generalized

formulation for local optimal controls u(τi). We always work
in continuous state action spaces. We do not discretize the
state space and we do not treat the problem as an MDP, as
pretty much done in all KL control work. To the best of our
knowledge, our results present RL in one of the most high-
dimensional continuous state-action systems that have been
tried so far.

In addition, for the continuous state-action spaces, we do
not have to learn the value function as it is suggested in [24]
via Z-learning. Instead, we directly find the controls based
on our generalized formulation of optimal controls equations
14,15 and 19.

KL control [23], [24] does not address the issue of how
to sample trajectories. Essentially, sampling is performed
only once with the hope to cover the all state space. We
follow a rather different approach that allows us attacking
robotic control learning problems of the dimensionality and
complexity of the Little dog robot. Thus we are using
the resampling approach and therefore performing the path
integral optimal control in a iterative fashion. Having to
deal with the high dimensionality of Robot Control learning
problems we feel that this is the right approach.

Previous work on Path Integral and KL control address
systems with known models. In contrast, we demonstrate
how the path integral approach can be taken into a model-
free domain, thus providing a much wider applicability. We
also mention the connection to the PoWER algorithm, which
will be expanded in a forth-coming journal paper.

Finally, we are not aware of anybody taking the path inte-
gral or KL control approach to the domain of parameterized
control policies.

VI. CONCLUSIONS

This paper derived a slightly more general version of
stochastic optimal control with path integrals, based on the
original work by [19], [11]. The key results were presented
in Section II, which considered how to compute the optimal
controls for a general class of stochastic control systems
with state-dependent control transition matrix. One important
class of these systems can be interpreted in the framework of
reinforcement learning with parameterized policies. For this
class, we derived Policy Improvement with Path Integrals
(PI2) as a novel algorithm for learning a parameterized
policy. PI2 inherits its sound foundation in first order
principles of stochastic optimal control from the path integral
formalism. It is a probabilistic learning method without
open tuning parameters, except for the exploration noise.
In our evaluations, PI2 outperformed gradient algorithms
significantly. It is also numerically simpler and has easier
cost function design than previous probabilistic RL methods
that require that immediate rewards are pseudo-probabilities.
Our evaluations demonstrated that PI2 can scale to high di-
mensional control systems, unlike many other reinforcement
learning systems.
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Fig. 3. Sequence of images from the simulated robot dog jumping over a 14cm gap. Top: before learning. Bottom: After learning. While the two sequences
look quite similar at the first glance, it is apparent that in the 4th frame, the robot’s body is significantly higher in the air, such that after landing, the body
of the dog made about 15cm more forward progress as before. In particular, the entire robot’s body comes to rest on the other side of the gap, which
allows for an easy transition to walking. In contrast, before learning, the robot’s body (and its hind legs) are still on the right side of the gap, which does
not allow for a successful continuation of walking.
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