
Multi-Robot Pursuit-Evasion without Maps

Andreas Kolling and Stefano Carpin

Abstract— We propose a distributed algorithm enabling a
large team of robots to detect all intruders within a large
planar environment. Each robot can only detect intruders and
communicate with other robots within a limited range. No map
of the environment is given, and none is built during the process.
Robots are only capable of following walls and other robots that
are nearby. The algorithm puts together elementary behaviors
giving robots the means to coordinate their movement in order
to cover lines between opposite walls with their sensors and
discover nearby new walls. A line has leading robots at its
endpoints that follow walls and hence move the line of robots
forward. Multiple such lines move through the entire assigned
area in order to detect all intruders. The movement of multiple
lines is coordinated by using a graph representation of the
environment that describes possible line movements and their
associated costs in terms of robots. This coordination requires
only local communication between the leaders of different
robot lines when they meet. Finally, we demonstrate how the
algorithm can be implemented using elementary wall following
and obstacle discovery behaviors.

I. INTRODUCTION

The utilization of robotic systems for search, surveil-

lance, and reconnaissance offers various advantages to the

use of human personnel. Particularly, applications involving

a significant risk such as search and rescue operations

or surveillance of hostile territories benefit from robotic

systems. Robots make these operations feasible by either

being expendable, or designed to be more robust against the

particular risk. Apart from reducing risk, they can also enable

operations that are not cost effective otherwise, such as

surveillance of large areas for security purposes. This relates

to another important problem for the application of robotic

systems for those tasks, namely cost-effective scalability. A

multi-robot system in which each component is reasonably

cheap, but as a consequence also less powerful, can help to

solve this problem. The coordination of these components

to achieve the required capabilities for the entire system is

however not a trivial task.

In this paper we focus on the design of a distributed al-

gorithm for the detection of all intruders within an unknown

environment with a large team of robots. Hereby, each robot

has limited capabilities and can only sense and communicate

within a very limited range1. Intruders are assumed to be

omniscient and capable of moving at unbounded speed. In

Andreas Kolling is with the School of Information Sciences, University
of Pittsburgh, PA, USA.

Stefano Carpin is with the School of Engineering, University of Califor-
nia, Merced, CA, USA.

1The concept of limited range obviously depends on the environment that
is being considered. In our context, limited range means that a single robot
generally cannot cover the distance between any two opposite walls.

particular, they are assumed to have constant and full knowl-

edge about the robots’ positions. This assumption of a worst-

case adversary turns the task into a pursuit-evasion problem.

In these, the possibility of an intruder being located in part

of the environment is often represented by contamination,

and the task of detecting all intruders becomes equivalent to

clearing all contamination.

Given that robots only have limited sensing and com-

munication range, we assemble them onto lines between

obstacles to prevent intruders from crossing between them.

We then move these robot lines through the environment to

clear it from contamination and to discover new obstacles.

The exploration is hence taking place in parallel to the

clearing. The main parts of the algorithm consist of moving

these lines forward and coordinating many such lines to

clear the environment with a given number of robots, or

to determine that more robots are necessary to complete

the task. The coordination is achieved with the help of a

graph representation of the already explored part of the

environment. This graph is known as a surveillance graph and

is described later on in more detail. No metric map is created

during this process nor need the robots have the capability

to create one.

The algorithm presented in this paper extends our previous

work on on pursuit-evasion with limited range sensors and

robots moving on lines [10]. Therein a map was required in

order to extract a surveillance graph from it, and the graph

was then used to schedule the movement of lines. In [6]

the problem is more rigorously formalized and improved

algorithms are presented that coordinate lines better but

still require a map. In this manuscript we provide three

original contributions that significantly generalize our former

findings:

1) we remove the demanding requirement that a map has

to be given up-front;

2) we identify the minimal capabilities needed for each

robot to implement elementary building blocks to

successfully clear an environment;

3) we provide implementations of these procedures, fo-

cusing in particular on wall-following, searching for

new obstacles close to an existing line, and splitting

an existing line into two new lines.

II. RELATED WORK

The work presented in this paper connects to a variety

of previous research, namely visibility-based pursuit-evasion,

pursuit-evasion on graphs, and sweeping environments with

lines. We will shortly discuss a small selection of papers

from these three areas.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3045

Visibility-based pursuit-evasion focuses on robots with

unlimited range sensors in 2d environments. The body of

work in this area is vast and includes many variations with

respect to the exact type of environment, motion constraints,

field of view of the sensor, and number of robots available.

A great deal is concerned with finding a solution for only

one robot, which can already clear rather complicated envi-

ronments, thanks to the generous sensing range. Much of the

research culminates into the paper [11] in which an online

algorithm is presented that can clear an unknown, simply-

connected, piecewise-smooth planar environment. The robot

can only sense depth-discontinuities, has imperfect control,

and follows only simple motion primitives. The approach

incrementally builds a navigation graph based on the motion

primitives. The information state about possible locations of

the invader is superimposed on this graph forming the so

called information graph. An online version is achieved by

envisioning preliminary solutions in the information graph.

It is a complete algorithm that enables the robot to clear

the same environments than a pursuer with a complete map,

perfect localization, and perfect control can clear. One of

our goals is to present a similar online version for our

scenario with limited range sensors and large robot teams by

entangling exploration with our version of motion primitives

to build a navigation graph on the fly while also envisioning

temporary solutions. We do not borrow any techniques from

this line of research, however, since the unlimited range

assumption changes the problem significantly.

Pursuit-evasion on graphs is an even larger area of research

and we shall only mention two relevant publications con-

cerning weighted graphs, namely weighted edge-searching

[1] and Graph-Clear [9]. Both problems are defined on a

graph with weights on edges and vertices. The formulations

of the two problems differ primarily in the way they ad-

dress the avoidance of recontamination. In weighted edge-

searching contamination is avoided by guarding vertices

while in Graph-Clear edges are blocked instead. Details

on the distinction are discussed in [9]. For our purposes

we will use the Graph-Clear formulation to enable us to

coordinate multiple moving lines using the graph built during

the exploration. This is discussed in more detail in Section

IV. For Graph-Clear we also have access to a probabilistic

variant from [8] which enables the integration of a failure

model for the target detection.

The idea of sweeping environments with robots on lines

has also been discussed in [3], [5], [10] and [6]. In [3] robots

operate in an environment without obstacles and attempt

to trap a possibly faster intruders by forming a so-called

trapping chain which surrounds and captures an intruder once

its is discovered in the center of the chain. Very precise

control laws that governing this behavior are given, and

they enable a precise description of its properties. A similar

description can be used for the line-following behavior in this

paper along the line of [4]. This, however, remains subject

to further work. More closely related is the work in [5].

Therein robots sweep the environment with one polygonal

chain which requires that they are always mutually visible.

Robots are required to have unlimited range. There is only

one chain of robots and this chain sweeps the environment

which is a simply-connected polygon. The algorithm to

coordinate the motion of the robots in the line is based

on a so-called link diagram which represents the minimum

number of links a path between two points on the boundary

of the environment. Our approach allows multiple lines and

focuses on the coordination of when to split these. In general

it can be applied to multiply-connected environments and

associates a different cost to lines, one based on length due

to the limited range and not on the number of links2. In this it

is an extension of our previous work [10]. Therein the idea of

sweep lines with a cost defined by length and the possibility

of splitting these lines has been discussed. To coordinate line

movement a Voronoi Diagram of the environment has to be

computed and converted to a surveillance graph for Graph-

Clear. This leads to a partitioning of the environment based

on the associations of obstacles according to the Voronoi

diagram. A formalization of these ideas as so called sweep
lines is presented in [6]. The resulting problem to coordinate

sweep lines to clear an environment with lowest cost is called

Line-Clear. Based on the formalization it is shown that the

algorithm from [10] does not yield an optimal coordination

of sweep lines, a so-called sweep schedule, and improved

algorithms are presented. The key part of these algorithms

is the selection of obstacle boundaries on which to split

the lines and to find an optimal sequence of these splits.

In this paper we develop a method that coordinates sweep

lines without requiring a map. In this case it is impossible to

compute the sequence of splits in advance and instead they

are discovered as the lines move through the environment.

Additionally we present a routine that allows robots to follow

sweep lines and thereby coordinate the motion of an actual

robot team.

III. ALGORITHMIC DETAILS

The goal of the algorithm presented in this paper is to

coordinate the movement of robots along lines to simulta-

neously clear and explore an unknown environment. First,

the deployed robot team has to find an obstacle boundary

and form a first line starting and ending at this boundary.

After this line is set up, robots move it until a new obstacle

is encountered. When an obstacle is encountered the line is

split into two new lines and robots have to choose which

line to continue moving. If the team runs out of robots to

cover the line and does not encounter a new obstacle, a search

procedure is executed with which robots attempt extend their

reach towards unknown obstacles. Finally, robots have to

coordinate which line moves at what time and associate

costs to a sequence of moves. In the following we will first

define the capabilities of the robots that are needed for the

algorithm, describe how robots move a line forward, and then

describe the entire algorithm in more detail in the following

sections.

2With unlimited range the number of links or bends in the line determines
the cost in terms of robots.

3046

We assume that robots are holonomic, can detect targets

within a range rdetect, and communicate with other robots

within a range rcomm > 2 · rdetect. Further, they can sense

obstacles and follow the boundary of an obstacle at distance

robstacle by sensing the tangent of the boundary. Finally,

they can detect robot neighbors within a range rdetect,

and determine their relative position. The desired distance

between robots on a line is denoted by rfollow ≤ 2 · rdetect.

Free space of the environment is bounded and is denoted by

E ⊂ R
2. Let n be the number of all robots which are initially

deployed together, i.e. so that their communication graph is

connected. This allows the formation of a first sweep line

that can then be moved forward. Given that robots closer than

rfollow < rcomm can communicate, we assume that robots

forming a line with distance rfollow between neighbors can

maintain a set of shared variables while operating.

A. Moving a line

The basic capability needed by robots is to jointly move a

line forward. Lines are simply chains of robots that cover

an area between two obstacles with their sensors, as in

[10] and [6]. Fig. 1 shows a line covered by robots and

additional robots following the line as a reserve. The robots

on its endpoints control the forward movement of the line by

following the obstacle boundary. More precisely, they sense

the two tangents at the two obstacle boundaries between

which the line of robots is spanned. From these tangents

one can determine whether the length of this line grows or

shrinks. Let us assume that the line of robots is spanned

between points l1(t) and l2(t). At these points let the tangent

along the obstacle boundary be given by T̂ l1(t) and T̂ l2(t)
respectively for each endpoint. The relative angle between

these tangents and the line determines whether a forward

movement of l1 or l2 shrinks or expands the line. The rules

for moving the line are straightforward. If both tangents

determine a decrease in length, then both robots at the end

follow that tangent. If one is decreasing, then only the robot

at that end moves. If both are increasing, then only the one

with less increase moves. Since robots can communicate with

their neighbors on the line and sense their relative position,

we can assume that they all have access to the relative

positions of the end robots r1(t) and r2(t), and can use this

information to position themselves on the line between r1(t)
and r2(t). As seen in Fig. 1, robots that are currently not

needed to cover the line, denoted as reserve, just follow and

join in when the length of the line increases.

Robots moving along a line execute one of three algo-

rithms, depending on their role. They execute Algorithm 1 if

they are at one of the endpoints, denoted as line leaders,

Algorithm 2 if they are in the center of the line, and

Algorithm 3 if they serve as reserve of the line. Pseudocode

for these algorithms is provided in Algorithm 1, 2 and 3 and

they are here shortly commented. The shared variable rall is

the number of robots associated to the line, i.e. the number

of robots currently running Algorithm 1, 2 or 3. The shared

variable rline is instead the number of robots running only

Algorithm 1 or 2. Furthermore, each robot has access to its

Algorithm 1 Line Leader()
if p = 1 then

x← 1, y ← 2
else if p = rline then

x← 2, y ← 1
end if
while ¬new obstacle do

l← ry(t)− rx(t)
if a(T̂ lx(t), l) < π/2 OR a(T̂ lx(t), l) ≤ a(T̂ ly(t),−l)
then

move along(lx(t))
else

wait()
end if
if length(l) < ε then

trigger dissolve line()
return

else if length(l) > (rall) · rfollow then
trigger search()
return

end if
end while
return

Algorithm 2 Line Center()
while ¬new obstacle do

l← r2(t)− r1(t)
m← (p− 1) · rfollow

length(l)

if m > length(l) then
trigger line shrinks()
Line Reserve()

else
g ← r1(t) + m · l
move robot to(g)

end if
end while
return

relative position in the line via p, i.e. it is the p-th robot in the

line starting from the leftmost robot with p = 1. The function

a returns the smaller angle between two lines; wait() simply

leaves the robot stationary; move robot(to) moves the robot

to point to; move along(d) moves it in the direction d;

follow line() lets the robot follow r2; sense obstacles()
returns true if a new obstacle is encountered and sets shared

variable new obstacle to true; first in reserve returns true

if the robot is the designated first amongst all those running

Algorithm 3. Four functions trigger events that are caught on

a higher level, trigger dissolve line(), trigger search(),
trigger line shrinks() and trigger line grows() are ex-

ecuted when discrete events occur. They are respectively

called when a line is no longer necessary, when a new

obstacle must be sought because a line cannot be further

stretched, and when a line shrinks by one robot or grows by

one robot.

3047

Algorithm 3 Line Reserve()
while true do

if first in reserve() then
l← r2(t)− r1(t)
m← length(l)

rline−1
if m ≤ rfollow then

trigger line grows()
return

end if
follow line()

end if
end while

l1 l2

tt

Fig. 1. A generic illustration of the main line moving forwards to extend
the cleared area marked in grey. On the right hand side are possible
configurations for the tangent of the line. A tangent at an endpoint away
from line leads to its length increasing while a tangent inwards leads to
a decrease. The three cases depicted are one where 1) both sides lead to
decrease, 2) one side leads to a decrease and one to an increase 3) both
sides lead to an increase in length. On the left figure some robots in the
gray area serving as reserve are shown.

B. Obstacle Search

The purpose of an obstacle search is to extend the reach

of the robots that form a line. It triggers when the robots

try to move a line forward but cannot continue due to an

increase in its length and a lack of robots in the reserve.

It entails moving the sweep line backwards to a narrower

position between the two obstacles in order to free up robots

that then join the reserve. Once at least one robot joins the

reserve, a search is executed. Fig. 2 illustrates how additional

robots can be used to split the original robot line into two

line segments, sl on the left and sr on the right, to extend

the reach. All possible such extensions can be described by

the number of robots allocated to each segment. Given rall

robots and rline robots required for the original line, we can

allocate i + 1 robots to sl with i ∈ {1, . . . , rall − 2} which

leads to rall − i robots on segment sr. Note that one robot

is the end point on both segments. Fig. 3 shows the simple

trigonometry involved in finding the outmost position for

every i ∈ {1, . . . , rall − 2}. Since the lengths of the triangle

formed by each point pi are known, we can find pi and move

the robots to cover sl and sr for every choice of i. Even

though method depicted in the figure ensures that we get

extended reach for a given number of robots in the line, we

are not able to compute the best positions for the original

line. Hence, it is desirably to search through all pi every

time another robot becomes available. However, we cannot

claim this ensures that an obstacle will be found even if it is

theoretically possible to reach one with the available number

of robots while maintaining a line between obstacles l1 and

l2. If the backwards movement of the line does not free up a

robot but requires one more, then the search has failed and

it triggers a search failure.

l1
l2

l3

sl
sr

Fig. 2. Top left: a line runs out of robots and cannot move further (the
arrow indicates how it will move back). Top right: it then moves back.
Bottom left: it then searches for a new obstacle. Bottom right: the line is
split in two and each of them can individually move.

1

2

3

4 5

p1

p3p2
p4 p5

p6

Fig. 3. The radii of the circles are multiples of rfollow . The line from
which the search originated is marked as a thick black line with thick circles
representing the left and right line leader. The original line requires 7 robots
and the small black dots show which points can be reached with a total of
rall = 8 robots by separating them onto the two new line segments into,
i.e. for i = 1 there are i+1 robots on the left segment and 8− i robots on
the right segment. The grey circles indicate the points that could be reached
if we had rall = 9.

If the extensions or the search procedure is successful and

a new obstacle is encountered the line splits into a left and

right side. Each side needs sufficiently many robots to be

able to span a line between the found point on the third

obstacles l3 and l1 and l2 respectively as seen in fig. 2. The

team can try to improve both sides of the split locally by

moving the endpoints towards the direction into which the

line length is decreasing. A split is also triggered when a

robot encounters a new obstacle while following a line. If the

search procedure is not successful, then the robots track back

to the previous split. Executing a split and finding a previous

3048

split is discussed in IV. Since all the previous motions are

reversible moving to the previous split is possible.

IV. SURVEILLANCE GRAPHS AND LINE COORDINATION

The procedures introduced in the previous section can

been seen as local behaviors of the robot team that enable the

movement of robot lines through the environment and as such

are motion primitives. As the robot team moves lines and

searches for obstacles, it explores the environment. The ex-

ploration is captured by a surveillance graph that represents

the discovered topology of the environment, and the cost in

terms of robots to form a line and moving it forward. We can

associate the motion primitives to this surveillance graph and

construct it on the fly. Here we discuss how to create such a

surveillance graph and how to use it to coordinate the motion

primitives and scale them to clear a larger environment.

Formally, a surveillance graph is a triple G = (V,E, w) with

undirected edges and the weight function w defined on both

edges and vertices w : V ∪ E → N
+. Two types of actions

can be executed on the graph, namely blocking on edges and

sweeping on vertices. The state of G is given by a description

of which vertex and edge is clear, contaminated or blocked.

A sweeping action clears a vertex while a blocking action

clears an edge and prevents contamination from spreading

through it. A surveillance graph that represents all previous

line movements and their costs is easily constructed as

follows. First, a vertex is created and given the maximum

cost of the starting line. Every successful encounter of a third

obstacle leading to a split creates three new vertices. The

first receives as cost the number of robots that are needed

to execute the split on the third obstacle into two sweep

lines, and is connected to the graph trough an edge added to

the previous vertex the line encountered with the weight of

the minimum line width3 between these two positions. The

next two vertices for the encountered obstacle are created for

each new line and receive as weight the cost of the respective

new line. For each of these new vertices, an edge to the first

vertex of the encountered obstacle is added, and it receives

the same weight as the vertex. Furthermore, a number of

consecutive increases in the number of robots while moving

the line forward followed by one decrease creates a vertex,

representing the cost of passing through a narrowing region.

Naturally, edges are created for every two vertices that are

encountered consecutively by one moving line. Their weight

is always given by the number of robots needed to cover

the shortest line encountered during the movement between

vertices. We call this line blocking line, since it represents

the cost of a blocking action of the surveillance graph since it

has the lowest cost of preventing contamination between the

vertices with a robot line. Built this way, the surveillance

graph is a record of the line movements. A traversal of a

vertex in the graph can be associated to moving a line from

a blocking position to either another blocking line or a split.

It hence captures the motion primitives that the robot team

3Technically, this is the number of robots, however line width and number
of robots necessary to cover it are proportionally related, so the two terms
are considered synonym.

4

3

4
4

6

7

3

7

7
3

4

6

4

4
44

Fig. 4. Example of the construction of a graph as a result of the exploration
with lines. The cleared and known vertices are marked in grey. The lines
leading to their creation are marked as thick dashed lines with the associated
number of robots needed. The robots explore the environment, following
the arrows and stop before discovering the vertex with weight 7. Hence the
neighboring vertex 4 is not considered explored.

can jointly execute. Fig. 4 illustrates this idea and shows how

vertices and edges are created as lines move and split.

Given a sufficiently large number of robots for the envi-

ronment being cleared, one can incrementally discover the

whole graph by just choosing to continue on an arbitrary

side, left or right after a split, and coming back once the

side is entirely cleared. If a successful search is triggered,

the robot team can similarly continue. However, the sequence

in which vertices are encountered can be expected to lead to

a much higher cost in terms of robots than the best possible

sequence. In other words, the discovery of vertices leads

to a sequence in which vertices were cleared, a so-called

strategy, and this strategy is not necessarily a sub-strategy of

an optimal strategy of the entire, partially unknown, graph.

The discovery of more vertices may require all previously

cleared vertices to be recontaminated to reach a state of the

graph that is in fact a state reached by an optimal strategy.

In the worst case the discovery of the last vertex can require

the recontamination of all previously cleared vertices. This

is an unavoidable problem, also occurring in [11] which also

computes and executes partial solutions that can require to

start from scratch once the entire environment is explored.

An overview of the algorithm is given in fig. 5. The

exploration consists of moving only one line, denoted as the

main line, which has all available robots in its reserve. Once

a split is encountered the robots choose with which direction,

sl or sr (left or right), to continue as the main line while

the other side will remain stationary until the robots from

the main line return and activate it. Once the length of the

main line reduces to zero, i.e. the two endpoints meet, it

is dissolved and all its robots follow either the left or right

wall to go back to the next stationary line. The same happens

when the main line encounters a stationary line which joins

the robots of both lines and sends them to the next stationary

line. For now we shall ignore this event and merely note

that it can be dealt with by adding a cycle edge into the

graph and then simply dissolve the two lines consecutively.

Every stationary line is always associated to an unexplored

vertex and hence one can find the next stationary line by

searching through the graph. As vertices are added during

3049

the exploration they are marked as unexplored until the line

passing through them has lead to the addition of another

vertex or triggered a dissolution of the line. The choice of the

next stationary line to become a main line after a split is in

principle arbitrary, but as a heuristic one can choose to extend

the line with more robots. Similarly, after the dissolution

of the line the choice is also arbitrary. As a heuristic we

minimize the graph distance, but other criteria can be applied,

such as picking the longest stationary line.

Setup cleared space
and first sweep lines

Move an unexplored line
forward Ran out of robots

Hit a new obstacle

Reposition line to initiate a
search

Split line into two
unexplored lines

Line approached 0 length
and is explored

Search for obstacles

failure

success

new search

searches failed

Backtrack: Move line to last
vertex with unexplored line

unexplored line exists and is

reachable

Clearing failed

unexplored lines

exist

Clearing succeeded

all lines explored no reachable unexplored line exists

Fig. 5. A diagram of states of the robot team.

If this process continues without unsuccessful obstacle

searches occurring, it is in principle a depth first traversal

of a tree, if the environment is simply connected, or a

graph, if it is multiply-connected. If the main line runs

out of robots and cannot proceed, it initiates an obstacle

search. If the search finds an obstacle the main line splits

and continues as before. If it is not successful, the robots

continue moving the main line backwards until they reach

the cost of the last blocking line to free up as many robots

as possible without recontaminating a vertex. The main line

then becomes stationary and the remaining robots choose the

next closest stationary line on the graph and attempt to extend

it. Once all attempts to extend every stationary line have

failed, the robots need to resort to allow recontamination of

already cleared vertices. This enables further exploration by

freeing up robots that are currently locked into stationary

lines. The Graph-Clear problem, defined on surveillance

graphs, is to find strategies that have minimal cost and hence

use the least robots. This problem is shown to be NP-hard in

[9], but for surveillance graphs that are trees we can compute

optimal strategies in polynomial time using the algorithm

presented in [9]. For graphs one can adapt strategies that

are created by removing all edges of cycles and then uses

these as presented in [7], but these are not guaranteed to be

optimal.
Given the partially explored graph we need to pick an un-

explored vertex and then compute a state of the partial graph

that allows more robots to be freed so that they can join the

main line. There is a variety of possibilities how to achieve

this. The brute force approach would be to recontaminate all

known vertices and move all robots to the chosen unexplored

vertex. Obviously, a totally contaminated state of the graph

does not require any robots to block contamination and hence

frees all. To avoid as much recontamination as possible one

could resort to the algorithm in [9] for optimal strategies on

trees. It computes so-called cut sets that are associated to

edges and can be used to identify states of the graph which

have low blocking cost but also a larger number of cleared

vertices. Unfortunately, in the worst case it may well be that

the unexplored vertex has a cost that requires all robots. The

environment could still be cleared with the given number of

robots, but only if starting at the high cost vertex. With plenty

of excess robots and if the total time needed for clearing is an

issue, then cut sets should be used to identify which vertices

to recontaminate and free robots one by one. But for our

current purposes the brute force approach suffices.

The algorithm could run on one main robot that collects

all the information and takes part in the movement of every

line. But it may also be done distributively with relevant

information being transferred between robots when they meet

the main line. Its primary function is to catch discrete events

that occur as the lines are moving and update the graph

structure and determine which line is moving next.

V. IMPLEMENTATION AND RESULTS

Most of the procedures presented above can be imple-

mented in a variety of ways, depending on the robot platform.

In particular, if the robots are non-holonomic, wall and

line following behavior has to be designed differently. To

demonstrate the feasibility of the proposed algorithm we

implemented a specific wall following routine that utilizes

a laser sensor to estimate the obstacle tangent. Robots are

simulated with the Player/Stage software [2] and each robot

ran its own control program communicating with others

through the network interface. The range of the laser is set to

0.7m and the desired distance between robots is 1m allowing

for an overlap of 0.4m to accomodate for synchronization

and control errors. Fig. 7 shows the environment which

is a 457x458 pixel bitmap at a resolution of 0.032m per

pixel leading to 14.5m width and height. It also shows the

resulting surveillance graph of a test run that successfully

cleared the environment with 9 robots and is presented in

the accompanying video. For this run robots are placed at the

bottom of the environment. Starting at the same spot with 8
robots leads to a failure for the first obstacle search that is

seen executed with 9 robots in the accompanying video. The

algorithm from [10] applied to the same map with equivalent

sensing range yields a solution that requires 7 robots. Hence,

the cost of not knowing the optimal starting position and

optimal positions for splits is two additional robots. Running

the algorithm with robots initially placed on the top right,

however, clears the environment successfully with 8 robots.

Reducing the number of robots to 7 leads to problems with

final obstacle search on the very top of the environment. It

succeeded in one out of three trials with 7 robots due to

position of the line when the obstacle search was initiated.

It is hence possible to clear this environment with 7 robots

if one resets the starting position during clearing and retries

multiple obstacle searches. Needless to say, the surveillance

graph created with 7 or 8 differs from the one created by 9
robots since the exploration proceeds differently when more

robots are available. This can be seen in the top part of the

3050

environment for which 9 robots leads to a vertex of cost 9
while 8 robots created an additional vertices by executing

one more split.

3 93

3
3 3

3
6

6

3

3

6
3

3
7

4

3

6

3

3
3

3

3

6

33

3

3
3

3 4

3

Fig. 6. The simply-connected sample environment and its associated
surveillance graph that was created by clearing the environment with 9
robots placed at the bottom of the environment.

33

3
3 3

3
6

6 3

8
3

35

Fig. 7. The surveillance graph created for 8 robots of the top part of the
environments shown in the figure differs from the one with 9 due to an
additional split that occurs as a result from an obstacle search.

The algorithm can deal with cycles. If a cycle is present a

stationary line will be met by a moving line. The latter can

treat the stationary line just like an obstacle and once the

moving line moved past or dissolved on it the stationary line

is dissolved and its robots merge into the reserve. For every

cycle encountered the associated surveillance graph also

receives a cycle. The complications arising from cycles for

strategies on the graph are identical to those of Graph-Clear

and Line-Clear, as discussed in [6]. The experiments pre-

sented are a qualitative investigation and encourage further

improvements of the methods presented here. A companion

video offers more details about the different stages of the

algorithm.

VI. DISCUSSION AND CONCLUSION

This paper presents the first attempt to connect the rigorous

pursuit-evasion theory on graphs with low-level behaviors

executed with robots with minimalist capabilities. As such,

there are numerous improvements and future developments

that are readily envisioned for this work. On the practical side

the weights of the graph, particularly the costs of the split,

should be improved by locally optimizing the split position.

An important question here is whether one can improve the

algorithm to always find the optimal split that is found by the

algorithms that are provided with a map. Similar questions

can be asked about the obstacle search and backtracking.

We can now attempt to design these parts of the algorithm

with the goal that they provably guarantee to discover the

same strategies that the algorithms with known maps from

[6] compute. The hardness of this question remains open

for now, but the preliminary results from simulations are

encouraging. Obviously, a more rigorous formulation as well

as improvements to the methods presented here are required

before such formal claims can be made and proven. Once

such a formalization, potentially in form of a hybrid algo-

rithm, is developed then a suite of experiments can be carried

out to quantify the trade-off in terms of recontamination and

longer searches between algorithms with and without a map

and to validate proven claims in practice.

Furthermore, we presented a minimalist approach that

does not require robots to localize themselves nor create a

map. Only walls and neighbors need to be sensed. In this

sense the contribution of this paper is also a practical one

since it enables a robot team with minimalist capabilities

and without a map to attempt to clear an environment. The

general ideas of the algorithm can be applied to any robot

team so long as they can form lines between obstacles, move

these lines, can communicate locally and sense obstacles.

One modification of interest is to adapt the basic behaviors

and implement them for non-holonomic platforms.

REFERENCES

[1] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture
of an intruder by mobile agents. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 200–209, New York, NY, USA, 2002. ACM Press.

[2] G. Biggs, T. Collett, B. Gerkey, A. Howard, N. Koenig,
J. Polo, R. Rusu, and R. Vaughan. Player/Stage project.
http://playerstage.sourceforge.net, 2005.

[3] S. D. Bopardikar, F. Bullo, and J. P. Hespanha. Cooperative pursuit
with sensing limitations. In American Control Conference, pages
5394–5399, 2007.

[4] F. Bullo, J. Cortés, and S. Martı́nez. Distributed control of robotic net-
works. Applied Mathematics Series. Princeton University Press, 2009.
To appear. Electronically available at http://coordinationbook.info.

[5] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and
T. M. Murali. Sweeping simple polygons with a chain of guards. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pages 927–936, 2000.

[6] A. Kolling. Multi-Robot Pursuit-Evasion. PhD thesis, University of
California, Merced, December 2009.

[7] A. Kolling and S. Carpin. The GRAPH-CLEAR problem: definition,
theoretical properties and its connections to multirobot aided surveil-
lance. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1003–1008, 2007.

[8] A. Kolling and S. Carpin. Probabilistic Graph-Clear. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 3508–3514, 2009.

[9] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams.
IEEE Transactions on Robotics, 2009. accepted for publication.

[10] A. Kolling and S. Carpin. Surveillance strategies for target detection
with sweep lines. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5821–5827,
2009.

[11] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion
in an unknown planar environment. The International Journal of
Robotics Research, 23(1):3–26, January 2004.

3051

