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Abstract— We present a system for 2D robot mapping which
is entirely based on line segment representation of the environ-
ment. The system consists of multiple modules, i.e. scan number
reduction, global scan alignment, scan merging and segment-
error filtering, which give an example of the simplicity of mid
level data processing and the advanced possibilities opened by
segment based design. The compact segment representation
enables creation and optimization of a global pose graph for
scan registration, which is the core of the mapping system.
Experiments verify the applicability to real world data sets
and lead to very compact maps, which represent single linear
features, e.g. walls, with single line segments.

I. INTRODUCTION AND APPROACH

The interest in robot mapping based on mid-level geomet-

ric structures like linear elements is currently growing. Com-

pared to low-level point based algorithms, such approaches

have advantages with respect to runtime, memory efficiency

and simpler mid- and high-level analysis capability for pre-

and post-processing.

In this paper, we present a mapping approach which is

entirely line segment based. We immediately extract line

segments from single laser scans (e.g., using approaches

described in [1]). An important design paradigm of the

presented research is to keep the very efficient and compact

data representation given by the extracted segments, without

returning to the underlying points. This leads to the following

advantages:

First: the segment based approach captures structural infor-

mation. This information goes significantly further than the

information of object presence and location, contained in raw

point data. Line segments combine multiple points to a single

feature. This creates the properties of segment direction

and feature membership. These properties, augmenting the

property of object location, lead to more robust feature

correspondences in the alignment process. In our approach,

this allows for significant reduction of scans: the original

data set, usually consisting of thousands of scans with high

redundancy (segment overlap), can be reduced to a few

hundred scans with minimal overlap, which however is still

sufficient for the segment based algorithm to perform the

alignment.

Second: the segment based approach is fast. In indoor

environments or urban outdoor environments, a typical scan

consists of n < 20 segments of sufficient length, while

the number of data points is typically one to two orders of

magnitude higher. This becomes especially important when
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feature correspondences between different scans have to be

evaluated, which usually implies algorithms with runtime

complexity between O(n log n) and O(n2).
Third: the segment based approach is memory efficient,

each line segment consists of two endpoints.

Fourth: the segment based approach is precise. Segment

endpoints don’t have to be adjusted to a resolution parameter,

hence there are no quantization errors. Resolution parameters

are introduced in grid based algorithms e.g. when occupancy

grids are used to determine feature confidence, which is re-

lated to the segment merging and segment cleaning process,

sections VI and VII.

In its core, the scan alignment is computed using a global

pose graph, containing the relative poses of all scans (of a

pre-selected subset of the original scans). The pose graph is

used to optimize line segment correspondences, measured by

a line-segment similarity measure. Items one, two and three

of the enumeration of advantages above, are the assumptions

that make such a global approach feasible: in contrast to

point based algorithms, the lower number of scans with lower

number of features leads to a problem representation which

can be handled by current computers.

The system consists of the following components, which

all utilize the segment similarity measure described in section

III: first, the set of scans is reduced (section IV), followed by

the scan alignment (section V). The alignment leads to pose-

optimized single scans, which are merged to a single global

map with a significantly lower number of segments (VI).

Finally, a post processing step, scan cleaning, eliminates

inconsistent line segments, which originate from scan errors

of multiple sources (section VII). The output is a compact,

segment based map of the environment. Scan selection and

scan cleaning are examples of how segment based represen-

tation leads to simple, efficient and straightforward mid-level

algorithms. For the core process, which is the scan alignment,

the compact data representation by segments allows us to

build a global graph which does not exceed a feasible size.

It therefore allows globally consistent pose optimization on

real world data sets.

II. RELATED WORK

[2] describes a line segment based mapping approach,

which also extracts segments from single scans, and merges

them to a global map. However, their alignment approach is

sequential, with the known drawback of error accumulation.

Additionally, since their segment handling is relatively basic;

no segment weights are used, segment similarity is solely

based on angular and mid-point distance. Reducing segments
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to their direction and mid-point is very critical, and works

only if segments representing the same environmental fea-

ture, are seen from similar perspectives (our measure uses

the center-point, too, but only to determine a single point

on the merged segment. The actual distance computation

goes further). Such a system can therefore only work with

a relatively high scan density, which in turn increases the

probability for higher accumulated errors. In contrast, our

system is based on a more sophisticated similarity measure,

which allows the usage of a more sparse data set, enabling

true global pose graph optimization.

Another line segment approach is described in [3]. This

approach mainly focuses on detection and merging of lines.

In its core, it is still point based: the point based global

map is embedded into a grid, each cell is then represented

by exactly two line segments. No alignment is reported. [3]

focuses therefore on finding line segments in a point set,

and uses the term mapping more in the sense of line finding,

comparable e.g. to [4].

There are numerous point based mapping approaches,

based on (global) pose graph matching or related techniques.

Bergevin et al. [5], Benjemaa and Schmitt [6], and Pulli [7]

presented iterative approaches for 3D scan matching. Based

on networks representing overlapping parts of images, they

used the ICP (Iterative Closest Point) algorithm for comput-

ing transformations that are applied after all correspondences

between all views have been found. However, the focus of

reseach is mainly 3D modelling of small objects using a

stationary 3D scanner and a turn table; therefore, the used

networks consist mainly of one loop [7]. A probabilistic

approach was proposed by Williams et al., where each scan

point is assigned a Gaussian distribution in order to model

statistically the errors made by laser scanners [8]. In practice,

this causes high computation time due to the large amount

of data.

In robotics, many researchers consider similar problems

when solving the SLAM (simultaneous localization and

mapping) problem [9]. Here an autonomous vehicle builds a

point based map of an unknown environment while process-

ing inherently uncertain sensor data. So-called GraphSLAM

techniques represent the global robotic map in a flexible

graph structure [10–13]. All of these approaches are point

based, and therefore significantly limited in the number of

scans they can optimize simultaneously.

Our approach is a GraphSLAM method, similar to the

approach presented in [14], yet segment based. Additional

significant differences are: their work utilizes a gradient-

descent algorithm to minimize the global error function,

instead of a closed-form solution, as presented in this paper.

In addition, poses, local point correspondences and global

constraints are estimated iteratively, thus increasing the com-

putation requirements of their algorithm and rendering it

impractical for a large amount of data.

III. SEGMENT SIMILARITY MEASURE

This section introduces a distance measure (m,a,wa) =
D(u, v, wu, wv) between a pair of line segments u, v with

weights wu, wv . The weight can be interpreted as a density

or confidence parameter that is initially set to 1 for each

segment in a laser scan. Please see Figure 1 for illustration

of the following. The basic idea of the distance measure is

to merge two line segments to an ‘average’ segment a with

weight wa. The resulting distance is the merging cost m,

which consists of three parts:

1) the angular distance Dang(u) between u and a (same for

v and a),

2) the spatial distance Duva(u) between u and a (same for

v and a),

3) the spatial distance Duv between u and v.

Dang(u)

Duva(u)

Dang(v)

Duva(v)

v

u

a
pa

A

Fig. 1. Illustration for segment distance D. See text for explanations.

a and wa are used for merging purposes (section VI), m

is needed in the context of weighing correspondences for the

alignment (section V).

The first two items penalize the amount of ‘non collinear-

ity’ of the segments, the third part penalizes spatial distance.

Although used as a distance measure between two segments,

the design is also based on comparison to the virtual aver-

age segment a. This is motivated by certain experiments,

suggesting that human perception connects line segments to

larger structures under certain circumstances. For example,

two collinear, overlapping line segments are perceived as

one line (represented by a), i.e. both segments represent

the same element and therefore have a distance of zero.

Note:such a distance measure is non-metric. It disobeys the

most ‘intuitive’ axiom of the metric axioms, the identity of

indiscernibles (D(u, v) = 0 ↔ u = v), since two non

identical collinear segments u, v with u ∪ v 6= ∅ have a

distance D(u, v, wu, wv) = 0. However, the computation of

correspondence weights (section V) does not demand for a

metric but only for symmetry (which is fulfilled), hence the

measure can be utilized in this context.

The similarity measure takes u, v, wu, wv and computes

the direction da of the average segment a based on the

weighted average direction of u, v, A point pa is computed

as the weighted center between the center points of u and

v to uniquely define the line segment A containing a. The

segment a is then the convex hull of endpoints of u, v

projected onto A. a is used to compute the angular distance

in the following way:

Dang =

wu |u| ∗ |tan(acos

„

uḋa
|u||da|

«

)| + wv |v| ∗ |tan(acos

„

vḋa
|v||da|

«

)|

wu + wv
(1)
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which, intuitively, computes the orthogonal (to u, v respec-

tively) distance of endpoints of u and v to a line parallel to

A, going through one endpoint of u and v, respectively (see

Figure 1, Dang(u) and Dang(v). It penalizes rotation away

from the direction of A, also taking into account weight and

length of the segments.

The spatial distance Duva of u and v to a is computed

by the maximum distance between endpoints of u and their

projections onto A (same for v). Duva is the sum of the two

maxima Duva(u), Duva(v), see Figure 1.

The spatial distance Duv between u and v is the minimal

distance between endpoints of u, v and their mutual projec-

tions onto v, u. This means, if u and v are collinear and

overlap, Duv = 0.

The final distance (cost c) is computed as weighted sum:

D(u, v, wu, wv) = 0.66∗Dang+0.09∗Duva+0.25∗Duv (2)

The angular distance is emphasized as it is a more important

criteria for distuingishing segments.

Motivation of the computation are out of the scope of

this paper. For examples of segments, their resulting average

segments and distances, please see [15].

IV. PRE-PROCESSING: SCAN SELECTION

Since global scan alignment (see section V) is compu-

tationally infeasible on large data sets (> 500 scans), we

first eliminate scans of high redundancy (feature overlap).

This pre-process significantly speeds up the runtime of

the alignment without significant loss of quality. Our scan

representation is segment based, hence the correspondence

between features of (subsequent) scans is less ambiguous

than in point based systems. The advantage of segments is

twofold here: first, redundancy of a few feature-rich line

segments (compared to many single-featured data points)

is easier to define and determine and the computational

load is lower Second, less ambiguous feature correspondence

leads to more robust alignment, less feature overlap in

scans is required. This allows the selection process to define

redundancy more strictly, and therefore allows for stronger

scan reduction.

We define the intersection between scans S1 ∩ S2 as the

set of segments pairs (ui, vi), ui ∈ S1, vi ∈ S2 with

ui similar to vi (ui ∼ vi) in the sense of the similarity

measure D, section III (using an experimentally determined

similarity threshold TD). Segment reduction is then formu-

lated as a minimization problem: given an ordered set of

scans S = (S1, .., Sn), select an ordered minimal subset

S− = (Si1, .., Sim) ⊂ S such that for each two subsequent

scans Sj , Sj+1 ∈ S− the following holds:

• |Sj∩Sj+1| ≥ 2, i.e. two subsequent scans in the reduced

set intersect in at least two segments.

• With Sj ∩Sj+1 = {(u1, v1), .., (uk, vk)}, there must be

at least two features (ui1, ui2) and (vi1, vi2) with ui1

not similar to ui2, and vi1 not similar to vi2.

Intuitively, we select a set which is as disjunct as possible,

under the constraint of a minimum required overlap of two

dissimilar features. To keep the computational cost of the

minimization low, we only compute a local minimum using a

greedy approach: given a scan st ∈ S, we select its successor

by finding the first scan st+j ∈ S after st which does not

obey the conditions. The successor to st is then st+j−1,

i.e. the scan before st+j (which, by definition, does obey

the conditions). Please observe that this algorithm tends to

eliminate scans which represent the same environment and

pose. Strong changes in the location or the direction (e.g.

fast rotation of the robot) lead to less overlap, more scans

are kept, see Figure 3. Also, the algorithm does not guarantee

the survival of all features: dynamic objects in an otherwise

static environment are likely to belong to scans which are

eliminated.

Experiments on different data sets show a significant

reduction down to typically ≈ 1% of the original scans.

Figures 5, 7, 8 show examples of maps after scan reduction:

all significant features are present. See Figure 2 for the

original map of ‘Freiburg082’ before scan selection. Figure

3 shows the result of the selection process (74 out of 8653
scans) by index of scans for the data set ‘Freiburg082’.

Fig. 2. Selection of scans: the original data set ‘Freiburg082’. Compare
to Figure 5a), which shows the selected 74 scans.

V. SEGMENT BASED ALIGNMENT

We align the single scans using an optimization approach

of a global pose graph. We will first describe the definition of

the pose graph, before we describe its usage in our alignment

framework. Consider one or multiple robots traversing the

n + 1 poses X0, . . . ,Xn. At each pose Xi a laser scan of

the environment is taken. By matching two scans made at

two different poses i and j, the relative pose error Di,j is

acquired. In the pose graph, poses are represented as nodes,

and relations between them as edges. For simplification, the

relative pose difference is assumed to be linear in the poses

Xi and Xj , so that the pose error given by the squared

differences is given by:

Ei,j = |Xi − Xj + ci,j |
2
, (3)

where ci,j is some constant, e.g., an estimate of the pose

difference. The task is to find an optimal set of poses that

minimizes the weighted global error metric:

E =
∑

i,j

wi,jEi,j . (4)
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Fig. 3. Selection of scans, data set ‘Freiburg082’ (see also Figure 5).
74 out of 8653 scans were selected. The selection of scans 42 to 65 is
a good example for the difference to equidistant sub-sampling: while the
selected scans 42 to 50 are taken from a range of ≈ 1000 scans (5500
to 6500), scans 51 to 65 only span a range of ≈ 100 scans (6500 to
6600). 5500 − 6500 represent scans where the robot is moving slowly,
without significant rotation, while 6500 − 6600 includes strong rotation,
and therewith a significant change of the robot’s view.

In this simplified linear case, the solution is easily computed

by solving a linear equation system with n equations given

by:

BX = A,

where X = (XT
1 , . . . ,XT

n )T is the concatenation of all Xi’s

and A and B are given by:

Bi,i =
∑

i,j

wi,j +
∑

j,i

wj,i

Bi,j = −wi,j

Ai =
∑

i,j

wi,jci,j −
∑

j,i

wj,icj,i.

The weights wi,j represent the strength of the correspon-

dence between i and j. In general it can be seen as the co-

variance of the estimate of pose difference. For an extensive

derivation of the equation system see [16].

A. Segment-based Global Alignment

Due to the combination of orientation and translation in

a pose Xi = (xi, yi, αi)
T , the pose difference Xi ⊖ Xj

is highly non-linear. Therefore a linearization as in [13]

and [16] is usually required. As a consequence, multiple

iterations are required to find the global optimum of the

global error metric. This section demonstrates how a linear

pose error Ei,j is established and the global optimum is

found in a single step by using a segment-based approach.

1) Establishing segment correspondences: Before the

pose graph is optimized we seek segment correspondences

for each edge i, j. The strength of a correspondence between

segment u and v is computed using the similarity measure

D as parameter for a Gaussian correspondence probability:

wi,j
u,v = e

−D(u,v,wu,wv)

2σ2 ,

The variable σ is used to control the soft assigned cor-

respondences. For large values of σ, segments that are far

away from each other may still feasibly correspond to each

other. This is useful in the initial iterations of the algorithm,

when pose estimates are still uncertain. In later iterations

a smaller σ is used to only let strong correspondences

influence the optimization. This leads to a gradual transition

to hard assignment. Clearly, computing the weight of all

pairs of segments is in O(n2). However, only the weight

for those segment pairs is computed, that is potentially non-

zero. This can be done by a simple bounding box overlap

check. Additionally, n is very small so that the computational

burden is reduced to a minimum.

B. Computing the Optimal Rotation

Each segment u has an orientation αi
u in the local coor-

dinate system of scan i. The global orientation of u is given

by αi
u +αi. Two corresponding segments u and v must have

the same global orientation. Therefore, the rotational error

between two scans i, j is given by the weighted sum of the

squared differences in the orientation of all pairs of segments:

ER
i,j =

∑

u,v

wi,j
u,v

∣

∣

(

αi
u + αi

)

−
(

αj
v + αj

)∣

∣

2

=
∑

u,v

wi,j
u,v

∣

∣(αi − αj) +
(

αi
uαj

v

)∣

∣

2

This error metric is in the form of the linear pose error as

given in eq. (3). By substituting ER
i,j for Ei,j in eq. (4) the

minima X = (α1, . . . , αn)T is easily obtained by solving

the linear equation system BX = A, where A and B are

given by:

Bi,i =
∑

i,j

∑

k,l

wi,j
u,v +

∑

j,i

∑

u,v

wj,i
u,v

Bi,j = −
∑

u,v

wi,j
u,v

Ai =
∑

i,j

∑

u,v

wi,j
u,v

(

αi
u − αj

v

)

−
∑

j,i

∑

u,v

wj,i
u,v

(

αj
u − αi

v

)

.

(5)

C. Computing the Optimal Translation

Aside from the rotation αi each scan’s translation Ti =
(tx,i, ty,i)

T
needs to be corrected. For every corresponding

segment pair u, v, the projection of the start and end points

su and eu of segment u onto v are given by s′u,v and e′u,v .

For ease of notation, we refer to the differences su − s′u,v

and eu − e′u,v with Si,j
u,v and Ei,j

u,v respectively. Again, we

wish to minimizes the summed weighted differences over all

segments, i.e.:

ET
i,j =

∑

u,v

wi,j
u,v

(

∣

∣Ti − Tj + Si,j
u,v

∣

∣

2
+

∣

∣Ti − Tj + Ei,j
u,v

∣

∣

2
)
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Substituting ET
i,j for Ei,j in eq. (4) leads to a linear equation

system BX = A that is very similar to the one used for the

rotation:

X = (T1, . . . , Tn)T

Bi,i =
∑

i,j

∑

u,v

wi,j
u,v +

∑

j,i

∑

u,v

wj,i
u,v

Bi,j = −
∑

u,v

wi,j
u,v

Ai =
∑

i,j

∑

u,v

wi,j
u,v

(

Si,j
u,v + Ei,j

u,v

)

(6)

−
∑

j,i

∑

u,v

wj,i
u,v

(

Sj,i
u,v + Ej,i

u,v

)

.

Interestingly, the matrix B is the same as in the equation

system for the optimization of the rotation. This means

that even though the rotation and translation are calculated

seperately the matrix inversion only has to be computed once.

D. The Algorithm

A single execution of Algorithm 1 guarantees pose esti-

mates that are globally optimal with respect to the given cor-

respondences. However, iteratively executing the algorithm

will still improve the quality of the map. Much like the

ICP algorithm, the correspondence search benefits from more

accurate pose estimates and the pose estimates will be more

accurate given the improved correspondences.

At first correspondences between range scans need to be

established. In order to do so for each corresponding pair

of scans the segment correspondences wi,j
u,v are computed.

Due to computational concerns, the matrix B is inverted

independently of the rotation and translation. As B is a

positive definite matrix by construction, a sparse cholesky

decomposition may be used to increase the speed of the ma-

trix inversion [17]. Following the computation of the inverse

the optimal rotations as well as the optimal translations are

computed. The new pose estimates are then applied to the

laser scans, so that the process may be iterated. Note that

we rotate and translate independently, i.e. we compute the

translation based on the result of the rotation using the same

previously established correspondences.

Algorithm 1 Optimal estimation algorithm

1) Establish pose correspondences by a bounding box

overlap check.

2) Compute the segment correspondences wi,j
u,v .

3) Compute the matrix B and its inverse B−1.

4) Form and solve the linear system for the rotation as

given in (5).

5) Form and solve the linear system for the translation as

given in (6).

6) Update the poses with the computed rotations and

translations. Iterate from (1), break on convergence

(pose update almost zero).

Should the initial pose error be so big that a large

number of incorrect scan correspondences are introduced,

the algorithm may fail to converge to the correct globally

optimal map. This is sometimes the case when relying solely

on the odometry of a single robot, e.g., when the robot

believes it crossed its own path even though this is not

the case. We therefore sequentially pre-align the data using

a meta-scan matching approach. Every scan i is matched

to all scans preceeding i, i.e. the metascan. The poses of

all scans 1, . . . , i − 1 in the metascan remain constant,

while the current scan in the sequence is brought into the

locally optimal position. Metascan matching is a special

case of the global alignment, with the simple pose graph

1, . . . , i − 1 → i. The linear growth of the metascan can

easily make this computationally infeasible when matching

a very large number of scans. The size of the metascan is

therefore reduced once it reaches that threshold. This is done

either by using the merging process as laid out in this paper

to merge all scans 1, . . . , i − 1 or by randomly selecting a

subsample of segments out of the scans 1, . . . , i− 1. Before

the periodic reduction of the size of the metascan, a global

optimization is applied to all scans in the metascan. Note,

that all scans in the metascan are globally optimized, i.e.

the first scans of the sequence are matched repeatedly. This

is intentional because scans later on in the sequence may

introduce valuable information, so that earlier parts of the

map can still be improved.

Using this framework we achieve a high robustness against

large initial errors while still maintaining the accuracy and

efficiency of the globally optimal alignment. In fact, even

though the algorithm was implemented entirely in MATLAB,

it was able to process all data sets of our experiments

on a current subnotebook faster than the robot needed to

acquire the data. Using such non optimized equipment, meta-

scan matching typically needs less than a second per scan,

while the global matching with 100 scans (about 2000 scan

correspondences) takes about 5 seconds per iteration.

VI. MERGING SINGLE SCANS TO A GLOBAL MAP USING

SEGMENT CLUSTERING

The global map alignment results in optimized poses for

the single scans. Superimposing these scans in the global

coordinate system leads to representation of single features

by multiple segments. Segment merging reduces the number

of segments, such that single features are represented by

single segments. The basic idea is to cluster segments based

on the similarity measure D (section III), and to represent

each cluster by a single representative, which is computed

using the average segment a and its weight wa of segment

pairs of the cluster in an iterative way. The weight can

be seen as a measure of confidence for the corresponding

segment, e.g., if the same segment has been observed in two

scans wa would be close to 2. For details of the clustering

please see [15]. Figure 4 shows an example of the merging

process.
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Fig. 4. Segment merging. Clusters of segments (left) are replaced by single
representative segments (right). The figure shows a magnified view of the
center of Figure 5 b) and c).

VII. POST-PROCESSING: SEGMENT EXTRACTION BASED

ON VISUAL CONFIDENCE USING SIGHT TRIANGLES

After performing scan selection and scan alignment, the

global map still consists of all segments which are present

in the selected scans Si ∈ S−. This includes erroneous

segments, originating from different sources (‘ground-scans’

from strong tilt, moving objects, ghost objects etc.). To

eliminate these segments, we post-process the global map.

Using the corrected poses and the segments of single scans,

we eliminate segments in the global map which are in-

consistent in the sense of occlusion using the approach of

sight triangles, which is straightforward due to segment

representation of the data.

A. Sight Triangles

Given the robot’s position Pi (in the global coordinate

system) of a single scan Si ∈ S−, and a segment uj ∈
Sj with endpoints aj , bj , a sight triangle Tij is spanned

by (Pi, aj , bj). We create sight triangles for all scans and

their segments (these triangles are defined in the global

coordinate system). Each segment ui of the global map

which is significantly inside of a sight triangle is defined

as inconsistent (it occludes the segment which was observed

in the scan); such a segment is a candidate for removal from

the global map. We define a soft confidence measure C(ui)
for each segment. During the merging process (section VI),

each segment ui is assigned a weight wi which is correlated

to the number of scans it appears in. Using sight triangles,

we define µi, the number of times the segment has been seen

incorrectly. The confidence measure is defined as

C(ui) =
µi

wi

(7)

with C(ui) = 0 representing the highest confidence. Seg-

ments ui with C(ui) > TD exceeding a certain threshold

TD are removed. An additional test is needed due to small

computational errors and alignment errors: a segment only

qualifies as a candidate for removal, if it is not similar to the

segment defining the sight triangle.

In the current implementation, we reduce the complexity

K of O(n2) of the map cleaning process to O(n) ≤ K ≤
O(n2), n=number of segments in the global map, using

a bounding box approach (axis aligned bounding boxes

containing all segments of a single scan). As can be seen

in Figures 5, 7, 8, map cleaning significantly reduces the

noise in the global map.

Note: Figure 5 d) shows a certain ‘over-cleaning’, tables

(which exist in the original environment) are removed, see

rightmost wall in Figure 5 d). Since in certain scans these

features could not be seen (scanning on different height

than the table), they were classified as inconsistent and were

removed. This can happen when objects with small vertical

extent are present in the scans. Even if the removal of

such features is not necessarily beneficial in certain cases,

the cleanup module can help to detect them. The level of

cleanup is steerable using the threshold TD. Its influence is,

however, minimal, since inconsistent segments tend to have

high values of C(ui), lacking smooth transitional values.

VIII. EXPERIMENTS

We show results of our mapping system on three different

data sets. For each experiment we show the selected scans

(output from the selection module), the result of the global

alignment, the merged globally aligned map and the result

of map cleaning.

A. Data Set ‘Freiburg082’

a b

c d

Fig. 5. Data set Freiburg082. a) 74 selected scans, pre-aligned by a point
based algorithm. b) improvement of global segment based alignment c)
merged map d) cleaned map
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Fig. 6. Photo of the original NIST maze. The camera position is marked
by the gray dot in Figure 7 b)

a b

c d

Fig. 7. Data set ‘NIST maze’. a) Heavily misaligned input. b) alignment
(gray spot shows the camera position of picture Figure 6). c) merged map.
d) cleaned map, consisting of < 100 segments.

Data set ‘Freiburg082’ consists originally of 8653 scans,

which were reduced by the scan selection module to only

74 scans (Figure 5a). The input is pre-aligned by a point

based algorithm described in [18]. The alignment and merged

output, Figure 5 b),c), shows a significant improvement over

the point based alignment (a). Interesting in the cleaned

version (d) is the rightmost side: the cleanup algorithm

removed segments which represented a desk in front of

a wall. See note at the end of section VII for further

information.

B. Data Set NIST Maze

Data set ‘NIST Maze’ is a non pre-aligned ‘2.5-

dimensional’ data set: it represents the scan of a NIST

standard maze, which includes floor ramps, such that the

scans include heavy pitch, roll and yaw of the robot, often

resulting in false scan information (scanning the ground,

misinterpreting the distance measure etc.). The data, con-

sisting of 4130 scans, was generated during the TEEX/NIST

a b c d

Fig. 8. Data set ‘Darmstadt’. a) input with additional simulated rotational
and translational error. b) alignment result. c) merging. d) cleanup. The long
walls consist of single segments, simplifying further high-level processing
(e.g. recognition of rooms/hallways).

Response Robot Evaluation exercise in Disaster City, Texas,

November 2008. The scan selection module chose 197 scans,

a relatively high number, which results from the heavy

misalignment of the input data, see Figure 7, a) (scan

selection is a purely sequential process). The original maze

can be seen in Figure 6. To complicate scanning for robots

equipped with mechanical tilt compensation, the entire maze

is built on a tilted platform. The alignment, Figure 7(b) of

the input data (a) was performed with metascan matching

and global matching, 20 iterations. The merging (c) works

robustly, the cleanup (d) removes segments resulting from

ground scans, leading to an error-segment free map of the

maze. The map consists of < 100 segments, and uses ≈ 3kB.

The compact size of this map is interesting for search and

rescue applications: it can easily be transmitted even with

high redundancy (often needed in disaster scenarios) to hand

held devices.

C. Data set ‘Darmstadt’

This data consists originally of 10778, number of auto-

selected scans is 150. We added a simulated odometry error

with rotational error of [−4, 6] degrees and a translation error

of [−0.2, 0.2] meters to the original data set, see Figure 8 a).

The alignment was performed with metascan matching and

global matching (10 iterations). Please note, that especially

the long walls are represented by single segments. This

simplifies the task for higher level modules to recognize

structural features (rooms, hallways, etc.).

IX. CONCLUSIONS AND FUTURE WORK

We presented a segment based system to register 2D

laser range scans. The compact single scan representation

by line segments allows for straightforward pre- and post-

processing, wrapping the core routine, a global optimization

algorithm. To align scans in a globally consistent manner,

we first build a network of pairwise relations between laser

scans. Given this network, poses are optimized by solving

linear systems of equations that minimize rotational and

translatory distance measurements between the scans. The
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matching algorithm is fast enough to allow us to employ

soft assigned segment correspondences to increase robustness

against initial errors. As all poses are modified simultane-

ously, accumulations of local errors are eliminated.

Experiments illustrate high robustness and speed of the

proposed algorithm on various 2D data sets. In the future we

will extend the approach to 3D data. The algorithm will then

be based on patches, i.e., bounded polygons identified in 3D

laser scans instead of segments. The general outline of the

algorithm will mainly remain the same, while the distance

metrics will have to be adapted to 3D (additionally, since a

full extension to 3D data requires 3 Degrees of Freedom for

the rotation, the rotation will have to be linearized in order

for a metric to fit into our framework).
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