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Abstract— FPGA (Field Programmable Gate Array) devices
have emerged as a new type of reconfigurable high-performance
computing hardware. Despite their successful applications in a
variety of areas, FPGA devices are just about to find their way
into the control systems. In this paper, a FPGA-based adaptive
friction compensation scheme with a FPGA-based velocity
estimator is reported for the first time. The FPGA device allows
the LuGre friction model to be effectively implemented and
updated at a clock rate. A parameter adaptation mechanism
automatically accommodates the parameter uncertainties. To
avert the need of having a division computation, which is
extremely difficult if not impossible for a FPGA device to
perform, a specially designed accumulator is used to create the
velocity signal necessarily required for high-precision position
tracking control. The developed technology is experimentally
tested on a harmonic drive coupled with a brushless motor. The
ratio of the maximum position tracking error to the maximum
velocity reaches 0.00034 (s) - an unprecedented number in the
precision control of harmonic drives.

I. INTRODUCTION

Since being invented in 1980’s, FPGA (Field Pro-
grammable Gate Array) devices have emerged as a new
type of reconfigurable high-performance computing hard-
ware with applications ranging from digital signal pro-
cessing [1], speech recognition [2], image processing [3],
computer hardware emulation [4], to aerospace and defence
systems [5]. Despite being very successful in these afore-
mentioned areas, FPGA devices, however, are just about to
find their way into the control systems.

When control systems are concerned, FPGA devices pos-
sess both advantages and disadvantages over conventional
CPU (Central Processing Unit) centered control systems.
First, FPGA devices possess higher reliability, since they are
logic electronics. Once being programmed, they keep work-
ing subject to the hardware component reliability, without
the need to reset software. Second, FPGA devices make their
clock signals available to control systems so that a FPGA-
based control system can be updated at a rate up to the clock
frequency that is much higher than the sampling rates of most
CPU-centered digital control systems. Nonetheless, FPGA
devices also possess disadvantages. The implementation of
a FPGA design needs to be written in HDL (Hardware
Description Language). The commercially available software
(such as the System Generator by Xilinx Inc.) that converts
graphic programming (such as Simulink) to HDL provides
very limited design options and often results in a super-large
HDL design beyond the hardware limit of a given FPGA
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Fig. 1. The Q5 card with two FPGA devices (produced by Xiphos
Technologies Inc.).

device. In summary, FPGA-based control systems do possess
advantages over CPU-centered control systems for these
applications that require rapid state updates with limited
computational complexity. Notable applications include, but
are not limited to, friction compensations and servo control.

Friction compensation has been a long-term research topic
in the precision servo control of mechatronic systems [6]. In
robotic applications, harmonic drives are being widely used
as driving mechanisms to make light-weight and compact
robots. A typical harmonic drive includes a wave generator, a
circular spline, and a flexspline placed in between [7]. While
being compact in nature, a harmonic drive is inherently
a deformable device associated with a large and dynamic
friction. This characteristic makes the friction compensation
of harmonic drives a thorny issue that, in turn, substantially
challenges the control system design [8].

In this paper, a FPGA device as illustrated in Fig. 1 is
used to implement an adaptive friction compensation scheme
aimed at achieving the highest control precision of harmonic
drives. The LuGre model presented in [9], [10] is used.
The essence of the LuGre model is its inclusion of the
dynamics of the so-called bristle deflection. While being
simple, the LuGre model needs to be rapidly updated to well
represent the friction physics. As a result, using a FPGA for
LuGre model based friction compensation fully utilizes the
advantages of the FPGA while avoiding its disadvantages.

As stated in [11], the LuGre model belongs to the class
of empirically motivated friction models. In fact, the LuGre
model captures the statistic behaviour of frictions without
giving insightful details about the asperity interactions in a
microscopic scale, leading to the existence of uncertainties in
friction modeling. The friction uncertainties resulting from
these asperity interactions can be interpreted as a parametric
uncertainty associated with the LuGre model. Consequently,
the need of using an adaptive mechanism to accommodate
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this parametric uncertainty is motivated.
Accurate velocity estimation is crucial to the appropriate

implementation of the LuGre model, since the only input to
the LuGre model is the relative velocity between the two
surfaces at which a friction occurs. Estimating a velocity
with a theoretical zero phase-lag and an infinite bandwidth
inevitably requires an acceleration measurement [12]. In
applications where the reliability and the cost are concerned,
using a position sensor (encoder) alone to estimate the ve-
locity signal is always desirable. By far, the commonly used
methods to estimate a velocity from a position measurement
include the frequency count method and the period count
method [13], [14]. The latter method requires an inverse
calculation that converts the time period corresponding to
each encoder pulse increment to the velocity signal. While
being an easy task in CPU-centered control systems, the
inverse calculation required in the period count method
becomes extremely difficult, if not impossible, in FPGA
implementation. In [15], a technology of using a counter
driven by a frequency divider controlled by a look-up table
was suggested to replace the inverse calculation. In this
paper, an accumulator is used in the velocity estimator to
replace the memory-consuming look-up table so that the
entire velocity estimator that takes the advantages of both
frequency count and period count methods can be effectively
implemented in a FPGA device.

As will be seen blow, the FPGA-based adaptive friction
compensation approach and the FPGA-based velocity esti-
mation method constitute the two main contributions of this
paper.

This paper is organized as follows: Section II presents
the FPGA-based adaptive friction compensation scheme by
incorporating the LuGre model. Then, the FPGA-base ve-
locity estimation by using an accumulator is presented in
Section III. In Section IV, both the FPGA-based velocity
estimator and the FPGA-based adaptive friction compensa-
tion approach are implemented on a Xilinx Virtex-II FPGA
device and tested experimentally on a commercially available
harmonic drive coupled with a brushless motor, resulting in
a trajectory tracking control result with an unprecedented
accuracy.

II. ADAPTIVE FRICTION COMPENSATION

A. Position Control Objective

Let xd(t) be the desired position trajectory for all t ∈
[0,∞). The position control objective is to find a control
variable u(t) such that the actual position x(t) tracks xd(t)
asymptotically.

B. System Dynamic Model

The system dynamic model is described by

mẍ(t) + F (t) + d = u(t) (1)

where m represents either a mass or a moment of inertia, d
denotes a constant disturbance representing the bias of the
Coulomb friction in different directions, u(t) is the control

variable, and x(t) denotes the relative displacement between
the two surfaces at which the friction occurs.

Remark 2.1: Eq. (1) represents the dynamics of either a
point mass subject to a friction force or a motor rotor subject
to a joint friction torque. When payloads are concerned,
these payloads can be treated separately by using the virtual
decomposition control approach [16], [17]. As a result, a
payload related force/torque term will be added to the left
hand side of (1).

C. The LuGre Friction Model

The LuGre model in continuous time can be expressed
as [9], [10]

ż(t) = v(t) − σ0 |v(t)|
g(v)

z(t) (2)

F (t) = σ0z(t) + σ1ż(t) + σv(v) (3)

where v(t) = ẋ(t) is the relative velocity between the two
surfaces at which the friction occurs, z(t) is an internal
variable representing the average deflection of the bristles,
σ0 > 0 and σ1 > 0 are two constants, g(v) and σv(v) specify
the profiles of the Coulomb and Stribeck effects and the
viscous friction, respectively, and finally F (t) is the friction
force/torque.

To properly accommodate the uncertainties associated
with the friction model in the pre-sliding phase, (3) is re-
written as

F (t) = σ[σ0z(t) + σ1ż(t)] + σv(v) (4)

in which an uncertain parameter σ is added. Eqs. (3) and
(4) are equivalent with σ = 1. The following assumption
applies:

Assumption 2.1: Parameter σ > 0 is an unknown constant.

D. Adaptive Friction Compensation for Position Control

Given xd(t) and its first and second order time-derivatives
ẋd(t) and ẍd(t) for all t ∈ [0,∞), the required velocity and
its time-derivative are designed as

ẋr(t) = ẋd(t) + λ[xd(t) − x(t)] (5)

ẍr(t) = ẍd(t) + λ[ẋd(t) − ẋ(t)] (6)

where λ > 0 is a control parameter.
Then, let zr(t) be a (design) variable characterizing the

required deflection of the bristles. The following dynamics
are designed

żr(t) = v(t) − σ0 |v(t)|
g(v)

zr(t) + α(t)[ẋr(t) − ẋ(t)] (7)

where α(t) is a time-variant control parameter to be specified
later.

After having zr(t), the feedforward friction compensation
term is design as

Fr(t) = σ̂(t)[σ0zr(t) + σ1żr(t)] + σv(v) (8)

where σ̂(t) denote the estimate of σ in (4) and is updated
by using the P function defined in [19, page:311] as

σ̂ = P (sσ, ρσ, σ, σ) (9)
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with
sσ = [ẋr(t) − ẋ(t)][σ0zr(t) + σ1żr(t)]. (10)

In (9), ρσ > 0 is an update gain, and σ > 0 and σ > 0
denote the lower and upper bounds of σ, respectively.

Finally, the control variable is designed as

u(t) = m̂(t)ẍr(t) + Fr(t) + ks[ẋr(t) − ẋ(t)] + d̂(t) (11)

where ks > 0 is a control gain, and m̂(t) and d̂(t) denoting
the estimates of m and d, respectively, are being updated by
using the P function defined in [19, page:311] as

m̂ = P (sm, ρm, m, m) (12)

d̂ = P (
sd, ρd, d, d

)
(13)

with

sm = [ẋr(t) − ẋ(t)]ẍr(t) (14)

sd = [ẋr(t) − ẋ(t)] (15)

where ρm > 0 and ρd > 0 are two update gains, m > 0 and
m > 0 denote the lower and upper bounds of m, and d and
d denote the lower and upper bounds of d.

E. Stability Result

Theorem 1: The system described by (1), (2), and (4),
subject to its control equations (5)-(15) under the following
condition

α(t) =
σ0 − σ1

σ0|v(t)|
g(v)

β
(16)

is asymptotically stable for the position control, that is,
xd − x → 0 when t → ∞.

Proof: Let β > 0 be a constant, choose a non-negative
function as

V (t) =
m

2
[ẋr(t) − ẋ(t)]2 +

σβ

2
[zr(t) − z(t)]2

+
1

2ρm
[m − m̂(t)]2 +

1
2ρd

[d − d̂(t)]2

+
1

2ρσ
[σ − σ̂(t)]2. (17)

After mathematical operations involving (1), (2), (4), and
(5)-(16), it yields

V̇ (t) ≤ −[ks + σσ1α(t)][ẋr(t) − ẋ(t)]2

−σβ
σ0 |v(t)|

g(v)
[zr(t) − z(t)]2 (18)

leading to

ẋr(t) − ẋ(t) ∈ L2

⋂
L∞ (19)

zr(t) − z(t) ∈ L∞. (20)

Expression (19) further results in

ẋd(t) − ẋ(t) ∈ L2

⋂
L∞ (21)

xd(t) − x(t) ∈ L2

⋂
L∞ (22)

in view of (5) and the Lemma 1 in [20, page:1956].

Given bounded ẋd(t) and ẍd(t), the boundedness of
v(t) = ẋ(t) is ensured from (21). Then, the boundedness of
v(t) = ẋ(t) ensures the boundedness of g(v), the bounded-
ness of z(t) and ż(t) from (2), the boundedness of F (t) from
(3), the boundedness of zr(t) from (20), and the boundedness
of żr(t) from (7) and (19). Furthermore, the boundedness
of v(t), zr(t), and żr(t) leads to the boundedness of Fr(t)
from (8) and the boundedness of u(t) from (6), (11), and
(19). Finally, the boundedness of u(t) and F (t) implies the
boundedness of ẍ(t) from (1), leading to the asymptotic
stability in the sense of

ẋd(t) − ẋ(t) → 0 (23)

xd(t) − x(t) → 0 (24)

from [21].
Remark 2.2: When payloads are concerned, a payload

related required (design) force/torque term will be added
to the right hand side of (11). As a result, the asymptotic
stability in the sense of (23) and (24) remains, in view of
the virtual decomposition control approach [16].

III. FPGA-BASED VELOCITY ESTIMATION

A. Frequency Count and Period Count Methods

The frequency count method counts the number of encoder
pulses occurred within a pre-specified sampling time period.
Regardless of a variety of implementations, the velocity
signal can be estimated by

v(k) =
x(k) − x(k − 1)

T
(25)

where x(k) and v(k) denote the position measurement by
an encoder and the estimated velocity at the sampling time
k, respectively, and T denotes the sampling period. The
frequency count method is effective at high velocities, but
insensitive at low velocities.

On the other hand, the period count method counts the
time period corresponding to each encoder count increment
by filling in a high frequency clock signal. The counted
time period is then inversed to obtain the velocity estimation.
In contrast to the first method, the period count method is
accurate at low velocities, but ineffective at high velocities
when the time period corresponding to each encoder count
increment reduces to the scale of the clock signal period.

In on-chip implementation of the period count method,
the most difficult task is to compute the inverse of the
time period corresponding to each encoder count increment
in order to obtain the velocity. The direct solution is to
use a division calculation. While being effective for CPU-
centered embedded microprocessors, this division computa-
tion is particularly difficult, if not impossible, for a FPGA
implementation. In order to avert this division calculation, an
US invention using two counters has been registered [15]. In
this scheme, one counter counts the number of clock pulses
upward to represent the time period. Another counter counts
the velocity downward. A look-up table is used to adjust
the down-counting rate of the velocity counter based on the
reading from the time period counter. As a result, a trade-off
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Fig. 2. Diagram of the velocity estimation approach.

between the complexity of the look-up table and the velocity
counting accuracy must be made.

B. Proposed Solution with an Accumulator

With respect to the difficulty arisen from using a look-up
table, a novel solution of using an accumulator is developed
in this paper. The diagram is shown in Fig. 2.

This is basically a period count based approach with a
limit being imposed on the minimum number of clock counts
to be used. This number is ns � 1.

In Fig. 2, a velocity counter vc and a clock counter p are
used. The counting mechanism is designed with an aim to
make vcp as close to a constant integer (≈ n2

s) as possible
with its residual error being represented by the value of
accumulator Ac. Note that vc ≥ 0 implies Ac ≥ 0. Oh the
other hand, this counting mechanism makes sure that Ac ≤ p
holds after a counter correction. Therefore, the maximum
counting error for vc is to be limited by ±1.

The clock counter limit number ns plays a vital role to
limit the maximum quantization error of the velocity estimate
by

δv ≈ δe

n2
sTc

(26)

where δe is the encoder quantization error and Tc is the clock
time period.

The final velocity estimation is given by v = vc (x − xp),
where x represents the current encoder reading and xp the
encoder reading at the last reset. This design makes sure
that the estimated velocity can be either positive or negative.
Furthermore, this counting mechanism permits the absolute

value of x − xp to be larger than one for automatically
performing the function of a frequency counter at high
velocities.

IV. FPGA IMPLEMENTATION AND EXPERIMENTS

A. The Physical System

1) The Q5 Card: A Q5 card from Xiphos Technologies
Inc. is illustrated in Fig. 1 in reference to a Canadian Quarter.
There are two FPGA devices on the board. A Virtex-II -
1000 from Xilinx Inc. with a clock rate of 50 MHz is used
to implement all the logic gates associated with both the
velocity estimation and the adaptive friction compensation
approaches. The other FPGA device functioning as a Pow-
erPC 405 is not being used.

2) Harmonic Drive and Power Amplifier: A device FHA-
11C-100 (from Harmonic Drive LLC) incorporating a har-
monic drive with a brushless motor is used as the sys-
tem to be controlled. This device has a gear ratio of 100
with a 2000-pulse quadrature encoder being attached to the
motor shaft. This encoder gives a position resolution of
2 × π/(100 × 4 × 2000) = 7.854 × 10−6 (rad) at the
output shaft. The brushless motor is driven by a power ampli-
fier ZDR300EE12A8LDC from Advanced Motion Controls.
Being configured in its motor torque control mode with a
sampling time of 50 (μs), this power amplifier is driven by
a DAC output channel associated with the Q5 Card [17],
[18].

B. FPGA Implementation

1) Modification of (7) : To avoid the use of divisions in
the control implementation, (7) is modified to

żr(t) =
|v(t)|
g∗

[sign(v)g(v) − σ0zr(t)] + α∗[ẋr(t) − ẋ(t)]

(27)
where g∗ > 0 and α∗ > 0 are two constant representing the
nominal values of g(v) and α(t), respectively.

Remark 4.1: The modification from (7) to (27) only
affects the rate of the required bristle deflection żr(t). This
modification, however, does not change the steady state of
the bristle deflection zr(t) in the sliding phase, which is
characterized by σ0zr(t) → sign(v)g(v).

2) Friction Profile Determination: When in the sliding
phase associated with σ0zr(t) → sign(v)g(v), żr(t) ≈ 0,
and σ̂(t) ≈ 1, it follows from (8) that Fr(t) ≈ σ0zr(t) +
σv(v) ≈ sign(v)g(v)+σv(v) holds. Without loss of general-
ity, v(t) > 0 is assumed, leading to Fr(t) ≈ g(v)+σv(v). Let
g(v) be expressed by g(v) = Fc + gv(v) with gv(0) = 0,
where Fc > 0 denotes the Coulomb friction force/torque.
Then, set control u(t) in (11) as

u(t) = 0.75Fc + gv(v) + σv(v) (28)

and apply it to the system.
Remark 4.2: The reason of using the number 0.75 is to

make sure that no over-compensation can occur during the
friction profile determination process.

The principle behind the friction profile determination is
that a constant payload under a constant residual friction
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Fig. 3. Velocity responses with and without friction compensation by (28).

should produce a constant deceleration given an initial ve-
locity. With this principle in mind, adjust both the structures
and parameters of gv(v) and σv(v) such that the deceleration
of a given harmonic drive from a non-zero initial speed
under control (28) becomes constant. As a result, the velocity
profile of the constant deceleration is illustrated in the top
figure of Fig. 3 and both g(v) and σv(v) are determined as

g(v) =
{

Fc + 3csv
2
s − csv(t)2 when |v(t)| ≤ vs

Fc + 2csv
3
s

1
|v(t)| when |v(t)| > vs

(29)

σv(v) =
{

[σ2 + (σ3 − σ4|v(t)|)]v(t) when |v(t)| ≤ σ3
σ4

σ2v(t) when |v(t)| > σ3
σ4

(30)
where Fc > 0 denotes the Coulomb friction force/torque,
and cs > 0 and vs > 0 determine the profile of the Stribeck
effect. In (30), σ2 > 0, σ3 > 0, and σ4 > 0 are three
parameters determining the profile of the viscous friction.

In Fig. 3, the two figures correspond to two cases by using
(28) (the upper figure) and u(t) = 0 (the lower figure),
respectively. The times needed to stop the two motions from
the same initial velocity for the two cases is 0.326 second in
the upper figure and 0.084 second in the lower figure. This
suggests a 1 − 0.084

0.326 = 74% friction compensation without
encountering over-compensation.

C. Precision Position Control

A fifth order polynomial 6(pf − p0) (t/tf )5 − 15(pf −
p0) (t/tf )4 + 10(pf − p0) (t/tf )3 + p0 is used to create the
desired position trajectory, where p0 and pf denote the initial
and final positions, respectively, and tf > 0 denotes the time
duration. This trajectory guarantees zero velocity and zero
acceleration at both initial and final time instants.

Let p0 = 0 (rad), pf = 0.1571 (rad), and tf = 1 (sec).
The maximum velocity is 0.2945 (rad/s) occurred at t = 0.5
(sec).

The position tracking result is illustrated in Fig. 4. In the
upper figure, the dashed red line represents the desired po-
sition and the solid black line represents the actual position.
The position tracking error is illustrated in the lower figure.
In Fig. 5, the parameter adaptation of σ̂(t) is shown in the
upper figure, and the overall friction compensation torque
Fr(t) is shown in the lower figure.
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Fig. 4. Position tracking result and position error.
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Fig. 5. Friction parameter σ̂(t) and friction torque Fr(t).

In view of Fig. 4, the maximum position tracking error is
about 1.0 × 10−4 (rad). Thus, the ratio of the maximum
position tracking error to the maximum velocity reaches
3.4 × 10−4 (s).

D. Effect of Friction Parameter Adaptation

The effect of the adaptive friction compensation on the
position tracking error is evaluated in Fig. 6. The four
subplots correspond to σ̂(t) being updated by (9), σ̂(t) = 1.0,
σ̂(t) = 1.7, and σ̂(t) = 2.44, respectively. The parameter
adaptation substantially reduces the position tracking error.

E. Performance Comparison

The position tracking control result obtained in this paper
is compared to other results in previous publications, see
Table I. The ratio of the maximum position tracking error
to the maximum velocity is used as a performance indicator.
Compared to a CPU-centered control system with a sampling
rate of 1000 (Hz), the FPGA-based control reduces the
performance indicator by a factor of five, suggesting that
the control performance is improved five times. This result
also reveals that the FPGA-based control of harmonic drives
can even surpass the control performances of a direct drive
robot with a CPU-centered control system.

V. CONCLUSION

In this paper, a FPGA-based adaptive friction compensa-
tion approach has been developed for ultra precision control

4661



0 0.5 1 1.5 2
−2

−1

0

1

2
x 10

−3

(a)

P
os

iti
on

 e
rr

or
 (

ra
d)

0 0.5 1 1.5 2
−2

−1

0

1

2
x 10

−3

(b)

P
os

iti
on

 e
rr

or
 (

ra
d)

0 0.5 1 1.5 2
−2

−1

0

1

2
x 10

−3

(c)

P
os

iti
on

 e
rr

or
 (

ra
d)

0 0.5 1 1.5 2
−2

−1

0

1

2
x 10

−3

(d)

P
os

iti
on

 e
rr

or
 (

ra
d)

(Second) 

(Second) 

(Second) 

(Second) 

Fig. 6. Effect of the friction parameter adaptation on position tracking
errors: (a) σ̂(t) is updated by (9); (b) σ̂(t) = 1.0; (c) σ̂(t) = 1.7; and (d)
σ̂(t) = 2.44.

TABLE I

PERFORMANCE COMPARISON.

Controller type max |e|
max |v| (s)

FPGA-based adaptive control for harmonic drive 0.00034
Adaptive control for harmonic drive in [22] 0.00170

Precision control of direct drive robot in [23] 0.00100

of harmonic drives. With the LuGre model, the parameter
adaptation mechanism allows the natural uncertainties of the
friction to be automatically updated at a hardware clock
rate. An unprecedented position tracking result has been
achieved in laboratory conditions. The ratio of the maximum
position tracking error to the maximum velocity has reached
0.00034 (s). This result suggested that the proposed FPGA-
based control can yield a substantial control performance
improvement over a CPU-centered digital control system
with the position tracking accuracy being increased by five
times.
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